
This Publicly Available Specification (PAS) is being submitted for Fast-track processing in
accordance with the provisions of ISO/IEC JTC 1 Directives.

In accordance with the provisions of Council Resolution 21/1986 this DIS is circulated in the
English language only.

Conformément aux dispositions de la Résolution du Conseil 21/1986, ce DIS est distribué en
version anglaise seulement.

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO
AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH
REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

© International Organization for Standardization, 2001
International Electrotechnical Commission, 2001

DRAFT INTERNATIONAL STANDARD ISO/IEC DIS 20970

Attributed to ISO/IEC JTC 1 by the Central Secretariat (see page ii)

Voting begins on Voting terminates on
2001-05-31 2001-11-31

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • � � � • ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION • �� �� • COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

Information technology — Programming languages, their
environments and system software interfaces — JEFF file format

Technologies de l'information — Langages de programmation, leurs environements et interfaces de logiciel système
— Format de fichier JEFF

ICS 35.060

PUBLICLY AVAILABLE
SPECIFICATION

PROCEDURE

rex
My comments are attached as Post-It notes such as this.

I'm coming at this not as someone working with or familiar with this subject matter, but as someone who spends a lot of time reading and writing programming language standards.

Rex Jaeschke
Chair NCITS/CT22, US TAG to SC22, August 2001.

rex@RexJaeschke.com

winkleaf
L2/01-373

ISO/IEC DIS 20970
"PAS FAST-TRACK"

NOTE FROM ITTF

This draft International Standard is submitted for JTC 1 national body vote under the Fast-Track
Procedure.

In accordance with Resolution 30 of the JTC 1 Berlin Plenary 1993, the proposer of this document
recommends assignment of ISO/IEC DIS 20970 to JTC 1/SC 22.

See also explanatory report.

"FAST-TRACK" PROCEDURE

1 Any P-member, Category A liaison organization or recognized PAS submitter of ISO/IEC JTC 1,
may propose that an existing standard from any source be submitted directly for vote as a DIS. The
criteria for proposing an existing standard for the fast-track procedure are a matter for each
proposer to decide.

2 The proposal shall be received by the ITTF which will take the following actions.

2.1 To settle the copyright and/or trade mark situation with the proposer, so that the proposed text
can be freely copied and distributed within JTC 1 without restriction.

2.2 To assess in consultation with the JTC 1 secretariat which SC is competent for the subject
covered by the proposed standard and to ascertain that there is no evident contradiction with other
International Standards.

2.3 To distribute the text of the proposed standard as a DIS. In case of particularly bulky
documents the ITTF may demand the necessary number of copies from the proposer.

3 The period for combined DIS voting shall be six months. In order to be accepted the DIS must be
supported by 75 % of the votes cast (abstention is not counted as a vote) and by two-thirds of the P-
members voting of JTC 1.

4 At the end of the voting period, the comments received, whether editorial only or technical, will
be dealt with by a working group appointed by the secretariat of the relevant SC.

5 If, after the deliberations of this WG, the requirements of 3 above are met, the amended text
shall be sent to the ITTF by the secretariat of the relevant SC for publication as an International
Standard.

If it is impossible to agree to a text meeting the above requirements, the proposal has failed and the
procedure is terminated.

In either case the WG shall prepare a full report which will be circulated by the ITTF.

6 If the proposed standard is accepted and published, its maintenance will be handled by JTC 1.

ii

JEFF File Format

1 Overview..4
2 Data Types...5

2.1 Basic Types...5
2.2 Language Types..5
2.3 Specific Types...6

2.3.1 Access flags ...6
2.3.2 Type Descriptor ..7
2.3.3 Offsets..8
2.3.4 Index Values...8

3 File Structure..9
3.1 Definitions ...9

3.1.1 Fully Qualified Names ..9
3.1.2 Symbolic Names ..9
3.1.3 Internal Classes and External Classes ..10
3.1.4 Fields and Methods ..10
3.1.5 Field Position..10

3.2 Conventions ..11
3.2.1 Notations ..11
3.2.2 Byte Order..11
3.2.3 Alignment and Padding...12

3.3 The File Structure..12
3.3.1 File Header...13
3.3.2 Class Area..15

3.3.2.1 Class Header...16
3.3.2.2 Interface Table ..18
3.3.2.3 Referenced Class Table ..18
3.3.2.4 Internal Field Table..18
3.3.2.5 Internal Method Table..19
3.3.2.6 Referenced Field Table ...20
3.3.2.7 Referenced Method Table ...21
3.3.2.8 Bytecode Block Structure...22
3.3.2.9 Caught Exception Table ..23
3.3.2.10 Constant Data Section...23

3.3.3 Attribute Section ...25
3.3.3.1 Attribute Type..26
3.3.3.2 Class Attributes ...27
3.3.3.3 Attribute Table ...27

3.3.4 Symbolic Data Section ...28
3.3.5 Constant Data Pool...29

3.3.5.1 Constant Data Pool Structure ..29
3.3.5.2 Descriptor ..30
3.3.5.3 Method Descriptor ...30

3.3.6 File Signature ...30
4 Bytecodes ..31

iv

4.1 Principles ..31
4.2 Translations...31

4.2.1 The tableswitch Opcode ...32
4.2.2 The lookupswitch Opcode...32
4.2.3 The new Opcode ..33
4.2.4 Opcodes With Class Arguments ...33
4.2.5 The newarray Opcode ..34
4.2.6 The multianewarray Opcode...34
4.2.7 Field Opcodes ..35
4.2.8 Method Opcodes ..35
4.2.9 The ldc Opcodes ..36
4.2.10 The wide <opcode> Opcodes ...37
4.2.11 The wide iinc Opcode ...37
4.2.12 Jump Opcodes ...38
4.2.13 Long Jump Opcodes...38
4.2.14 The sipush Opcode...39
4.2.15 The newconstarray Opcode ..39

4.3 Unchanged Instructions ...40
4.3.1 One-Byte Instructions ...40
4.3.2 Two-bytes Instructions ..43

4.4 Complete Opcode Mnemonics by Opcode...43
5 Restriction ..46

1

1 Overview
This document describes the JEFF File Format. This format is designed to download and store
classes on a platform. The distribution of applications is not the target of this specification.

JEFF is a translation of the Java class file format defined in the “Virtual Machine Specification”
(see [1]). The class file format defined in [1] is not a ready-for-execution format, i.e. the
information stored in this format must be processed further before it can be used for execution
by the virtual machine. Consequently, at runtime, the classes stored in this class file format
have to be recopied into dynamic runtime memory where they are put in a new form
appropriate for execution. Thus, the size of the dynamic runtime memory needed to execute a
Java program stored in this class file format is proportional to the size of the stored program.
The goal of JEFF is to provide a ready-for-execution format allowing Java programs to be
executed directly from static memory, thus avoiding the necessity to recopy classes into
dynamic runtime memory for execution.

The constraints put on the design of JEFF are the following:
• Any set of class files must be translatable into a single JEFF file.
• JEFF must be a ready-for-execution format. A virtual machine can use it efficiently,

directly from static memory (ROM, flash memory…). No copy in dynamic runtime
memory or extra data modification shall be needed.

• All the standard behaviors and features of a Java virtual machine as defined in [1]
must be reproducible using JEFF.

• In particular, JEFF must facilitate “symbolic linking” of classes (see [1]). The
replacement of a class definition by another class definition having a compatible
signature (same class name, same fields and same method signatures) must not
require any modifications in the other class definitions.

 The main consequences of these choices are:

• A JEFF file can contain several classes from several packages. The content can be a
complete application, parts of it, or only one class.

• To allow “symbolic linking” of classes, the references between classes must be kept at
the symbolic level, even within a single JEFF file.

• The binary content of a JEFF file is adapted to be efficiently read by a wide range of
processors (with different byte orders, alignments, etc.).

• JEFF is also a highly efficient format for the dynamic downloading of class definitions
to dynamic memory (RAM).

This specification is a self-contained normative definition of the JEFF format. However, to fully
understand the content of this specification, the reading of the following documents is
recommended:

[1] The Java™ Virtual Machine Specification, Second Edition, by Tim Lindholm and
Franck Yellin, 496 pages, Addison Wesley, April 1999, ISBN 0201432943.
[2] The Java™ Language Specification, Second Edition, by Bill Joy, Guy Steele,
James Gosling and Gilad Bracha, 544 pages, Addison Wesley, June 5 2000, ISBN
0201310082.

The limitations introduced by the use of JEFF are described in chapter 5 Restriction.

rex
I think Frank's name is misspelled.

2

2 Data Types
This chapter describes the data types used by the JEFF format specification. All the values in
a JEFF file are stored on one, two, four or eight bytes. In this document, the expression “null
value” is synonym of a value of zero.

2.1 Basic Types
The types TU1, TU2, and TU4 represent an unsigned one-, two-, or four-byte quantity,
respectively. The types TS1, TS2, and TS4 represent a signed one-, two-, four-byte quantity,
respectively.

2.2 Language Types
The language types like int, short or char are represented internally as follows:

Format
Types

Language
Types

Format Min. Value Max. Value

JBYTE byte 8-bit signed integer -128 127
JSHORT short 16-bit signed integer -32768 32767
JINT int 32-bit signed integer -2147483648 2147483647
JLONG long 64-bit signed integer -9.2233e+18 9.2233e+18
JFLOAT float 32-bit IEEE 754 - -
JDOUBLE double 64-bit IEEE 754 - -
JCHAR char 16-bit Unicode char 0 Unicode max.

Note: The floating-point data are always stored in the file using the JFLOAT and JDOUBLE
format corresponding to 32- and 64-bit IEEE 754 specification. The byte order used is the
global byte order used for the whole file. If a specific processor does not use this order, the
virtual machine is responsible for the data translation during the download or at runtime.

The character strings are stored in the following structure:

VMConstUtf8 {
 TU2 nStringLength;
 TU1 nStringValue[];
}

The items of the VMConstUtf8 structure are as follows:

nStringLength
The length of the encoded string, in bytes. This value may be different from the number of
characters in the string.

nStringValue
The string value encoded with the Utf8 format as defined in the Virtual Machine Specification
(see [1]).

rex
I presume these bytes must be contiguous. If that is the case, you should say so.

rex
I suggest replacing the final phrase ``the expression “null
value” is synonym of a value of zero.''

 with

``the expression “null
value” is a synonym for a value of zero of the appropriate type.''

rex
Change `or' to `and'.

rex
I presume these must be integers types. If that is correct, you should say so.

rex
Insert `and' before four-byte.

rex
I would strike `like int, short or char'. Why call these out? The table has them all.

rex
I suggest you set all Java keywords in a constant-width font. That's is far easier on the eyes than making them bold roman.

rex
This designates a US standard. For ISO standards you should make some mention of the corresponding IEC 559 standard.

rex
The min and max values for long are simply not accurate or useful as is.

rex
Why are there no values here?

rex
Is this a secret?

rex
Why do you need to call out the fp format? Would it be anything else than this?

rex
I suggest you replace `The character strings are stored in the following structure:'

with

`Character strings are stored according to the following structure:'

3

2.3 Specific Types
Theses types are used to store values with a specific meaning.

Types Description Format
VMACCESS Access Flag (see values below) 16-bit vector
VMTYPE Type descriptor (see values

below)
8-bit vector

VMNCELL Number of virtual machine cells 16-bit unsigned integer
VMOFFSET Memory offset (in bytes) 16-bit unsigned integer
VMDOFFSET Memory offset (in bytes) 32-bit unsigned integer
VMCINDEX Class Index 16-bit unsigned integer
VMPINDEX Package Index 16-bit unsigned integer
VMFINDEX Field Index 32-bit unsigned integer
VMMINDEX Method Index 32-bit unsigned integer

2.3.1 Access flags
The VMACCESS type describes the access privileges for classes, methods and fields. This
type is conforming to the access flag type defined in the “Virtual Machine Specification” (see
[1]). It's a bit vector with the following values:

Flag Name Value Meaning
Class

ACC_PUBLIC 0x0001 Is public; may be accessed from outside its package.
ACC_FINAL 0x0010 Is final; no subclasses allowed.
ACC_SUPER 0x0020 Treat superclass methods especially in invokespecial.
ACC_INTERFACE 0x0200 Is an interface.
ACC_ABSTRACT 0x0400 Is abstract; may not be instantiated.

Field
ACC_PUBLIC 0x0001 Is public; may be accessed from outside its package.
ACC_PRIVATE 0x0002 Is private; usable only within the defined class.
ACC_PROTECTED 0x0004 Is protected; may be accessed within subclasses.
ACC_STATIC 0x0008 Is static.
ACC_FINAL 0x0010 Is final; no further overriding or assignment after

initialization.
ACC_VOLATILE 0x0040 Is volatile; cannot be cached.
ACC_TRANSIENT 0x0080 Is transient; not written or read by a persistent object

manager.
Method

ACC_PUBLIC 0x0001 Is public; may be accessed from outside its package.
ACC_PRIVATE 0x0002 Is private; usable only within the defined class.
ACC_PROTECTED 0x0004 Is protected; may be accessed within subclasses.
ACC_STATIC 0x0008 Is static.
ACC_FINAL 0x0010 Is final; no overriding is allowed.
ACC_SYNCHRONIZED 0x0020 Is synchronized; wrap use in monitor lock.
ACC_NATIVE 0x0100 Is native; implemented in a language other than the

source language.
ACC_ABSTRACT 0x0400 Is abstract; no implementation is provided.
ACC_STRICT 0x0800 The VM is required to perform strict floating-point

rex
`These' is misspelled.

rex
It's not obvious that the three parenthetical notes in the Description column are useful. This table gives the executive summary; the details are availalable in the sections that follow.

It would be more useful if each description had a section number forward reference, so the reader can read more details about it.

rex
In the detail sections that follow this table VMNCELL is missing.

rex
Change `This type is conforming' to `This type conforms'

rex
This meaning doesn't quite sound right.

4

operations.

2.3.2 Type Descriptor
A type descriptor is composed of a type value (a VMTYPE), an optional array dimension value
(a TU1) and an optional class index (a VMCINDEX).

Type Value

The VMTYPE type is a byte built with one of the following values:

VM_TYPE_VOID 0x00 Used for the return type of a method
VM_TYPE_SHORT 0x01
VM_TYPE_INT 0x02
VM_TYPE_LONG 0x03
VM_TYPE_BYTE 0x04
VM_TYPE_CHAR 0x05
VM_TYPE_FLOAT 0x06
VM_TYPE_DOUBLE 0x07
VM_TYPE_BOOLEAN 0x08
VM_TYPE_OBJECT 0x0A

These values can be interpreted as a bit field as follows:

7—---4 3--2 1--0
 0000 | XX | YY |

Where:
• YY is the type size in bytes. The size is: 1 << YY
• XX is just used to differentiate the types having the same size.

The following flags are also set:

VM_TYPE_TWO_CELL 0x10 for a type using two virtual machine cells (this flag is
not set for an array)

VM_TYPE_REF 0x20 for an object or an array
VM_TYPE_MONO 0x40 for a mono-dimensional array
VM_TYPE_MULTI 0x80 for a n-dimensional array, where n >= 2

Dimension Value

The dimension value gives the number of dimensions (0-255) of an array type. This value is
optional for a non-array type or for a mono-dimensional array. For a multi-dimensional array,
the VM_TYPE_MULTI flag is set in the type value and the dimension value is mandatory to
know the exact array type.

The dimension values are as follows:
0 for a non-array type,
1 for a simple array (ex: int a[2]),
2 for a 2 dimensional array (ex: long array[2][8]),
...
255 for a 255 dimensional array.

rex
I can't find a definition for VMCINDEX.

rex
I suggest you replace `built with one of the following values:' with
`whose low nibble contains one of the following values:'

rex
Replace `can be' with `are'.

rex
Replace `YY is the type size in bytes. The size is: 1 << YY' with `YY is an encoded representation of the type size in bytes. The actual type size is: 1<< YY'

rex
Replace `XX is just used to differentiate the types having the same size.' with `XX serves to differentiate types having the same size.'

rex
Change `are also set' to `may be set'

rex
replace `a n-dim...' with `an n-dim...' This appears in numerous places throughout the spec.

rex
Replace `This value is
optional for a non-array type or for a mono-dimensional array.'

with

`This value is optional for non-array and mono-dimensional array types.'

rex
Replace `is mandatory to
know the exact array type.' with `must be present.'

rex
I presume the two occurances of `ex:' should be `e.g.,'

rex
I suggest setting all Java language code fragments in a constant-width font.

rex
Is a Dimension Value permitted for all array types, include one with a void return type? I ask because the final example in 2.3.2 over the page shows no Dimension Value.

5

Class Index

The optional class index gives the exact type of descriptor of a class or of an array of class.
For a scalar type or an array of scalar types, the class index is useless.

Examples

A simple instance of "String": type = 0x2A, optional dimension = 0x00, class index = index of
"java.lang.String"

A primitive type descriptor of a "short": type = 0x01, optional dimension = 0x00, no class index

A simple array of integers (e.g. int[5]): type = 0x62, optional dimension = 0x01, no class index

A simple array of class "MyClass" (e.g. MyClass[5]) : type = 0x6A, optional dimension = 0x01,
class index = index of "MyClass"

A primitive type descriptor of a "long": type = 0x13, optional dimension = 0x00, no class index

A 3-dimensional array of long (e.g. long[5][4][]): type = 0xA3, dimension = 0x03, no class index

A 4-dimensional array of class "MyClass" (e.g. MyClass[5][4][][]): type = 0xAA, dimension =
0x04, class index = index of "MyClass"

A "void" return type (for a method): type = 0x00, no dimension, no class index

2.3.3 Offsets
There are two types of offset values used in the specification: VMOFFSET and VMDOFFSET.

A VMOFFSET is an unsigned 16-bit value. This value is an offset in bytes from the beginning
of a class file header. Depending of where the offset value is located, the corresponding class
file header is unambiguous.

A VMDOFFSET is an unsigned 32-bit value. This value is an offset in bytes from the
beginning of the file header.

2.3.4 Index Values
See the File Structure.

rex
Saying that `the class index is useless.' is hardly standards language. I suspect it must NOT be present.

rex
Are example normative or non-normative?

rex
In all the examples in which the dimension is optional, I don't understand how you can tell if it is present or not.

rex
I don't understand this sentence.

rex
A forward reference here would be nice.

rex
Why not list the 4 index types here like you did for 2.3.3 and offsets?

6

3 File Structure
This chapter gives the complete structure of the JEFF file format.

3.1 Definitions
This part describes the definitions and rules used in the specification.

3.1.1 Fully Qualified Names
Fully qualified name have the following definition:

• The fully qualified name of a named package that is not a sub-package of a named
package is its simple name.

• The fully qualified name of a named package that is a sub-package of another named
package consists of the fully qualified name of the containing package followed by the
character "/" (Unicode 0x002F) followed by the simple (member) name of the sub-
package.

• The fully qualified name of a class or interface that is declared in an unnamed package
is the simple name of the class or interface.

• The fully qualified name of a class or interface that is declared in a named package
consists of the fully qualified name of the package followed by the character "/"
(Unicode 0x002F) followed by the simple name of the class or interface.

3.1.2 Symbolic Names
The file specification refers to symbolic names for the classes, the packages, the fields and the
methods. They are defined as follow:

Class Symbolic Name

A class symbolic name is the fully qualified name of the class (package and class names, e.g.
"java/lang/String"). If a class has no package, the class symbolic name is the class name.

Package Symbolic Name

A package symbolic name is the fully qualified name of the package (e.g. "java/lang ").

Field Symbolic Name

A field symbolic name is the concatenation of the field name, a space character (Unicode
0x0020) and the field descriptor string.

e.g. for the field double m_Field[], the symbolic name is “m_Field [D”.

Method Symbolic Name

A method symbolic name is the concatenation of the method name, a space character
(Unicode 0x0020) and the method descriptor string.

e.g. for the method void append(String), the symbolic name is “append
(Ljava/lang/String;)V”.

rex
Either `name' should be plural or the whole intro phrase should be singular.

rex
Unless you are talking about a specifical set of classes, packages, fiilds, and methods, I'd strike the 4 definite articles in this list.

rex
This slanted text makes it hard to distinguish between a slash and the letter l.

rex
Different kind of quotes used here.

rex
I suspect this bad line break may be misleading. I swhite space permitted between these two parts, and if so, how much?

7

3.1.3 Internal Classes and External Classes
A JEFF file contains the definition of one or several classes. For a given file, the classes
stored in the file are called “internal classes”. The classes referenced by the internal classes
but not included in the same file are called “external classes”.

The packages of the internal and external classes are ordered following the crescent
lexicographic order of their fully qualified names. This order defines an index value for each
package (a VMPINDEX value). The package index range is 0 to number of packages – 1. If
an internal or an external class has no package, this class is defined in the “default packqage”,
a package with no name. In this case the “default package” must be counted in the number of
packages and its index is always 0.

The internal classes and the external classes are ordered and identified by an index (a
VMCINDEX value). The index range is:

0 to InternalClassCount – 1 for the internal classes
InternalClassCount to TotalClassCount – 1 for the external classes

The class index values follow the crescent lexicographic order of the class fully qualified
names (separately for the internal classes and for the external classes)

The package index and the class index assignments are local to the file.

3.1.4 Fields and Methods
The field indexes are built as follows: The symbolic name of the internal class fields and the
symbolic name of the external class fields are ordered in a table following the crescent
lexicographic order. The redundancies are eliminated. All the symbolic names representing the
internal class fields are stored at the beginning of the table. Each entry in the table is identified
by a zero-based index (a VMFINDEX value).

By definition of the field symbolic name and the construction of the table, the following
properties are deducted:

• Two different field indexes identify two different symbolic names.
• Two different fields, internal or external, share the same index if and only if they have

the same name and the same descriptor.

The same construction is used to define the method indexes (VMMINDEX).

By definition of the method symbolic name and the construction of the table, the following
properties are deducted:

• Two different method indexes identify two different symbolic names.
• Two different methods, internal or external, share the same index if and only if they

have the same name and the same descriptor.

The field index and the method index assignments are local to the file.

3.1.5 Field Position
JEFF includes some information about the position of the field in memory. These pre-
computed values are useful to speedup the download of classes and to have a quick access to
the fields at runtime.

The computation must take into account the following constraints:
• Class fields and instance fields are stored in separate memory spaces.

rex
It's pretty common in technical writing to set the first use of terms in italics rather than in quotes.

rex
Replace `This order defines an index value for each
package (a VMPINDEX value).'

with

`This order defines an index value (of type VMPINDEX) for each package.

rex
Since you say above that the default package has index 0, this list suggests that the default package is part of the internal class range. Is this correct or do internal classes really start at index 1?

rex
Change ``class fully'' to ``classes' fully''

rex
I don't think speedup is one word. Maybe it's hyphenated. (Several places.)

rex
Replace `have a' with `allow'

8

• The field data must be aligned in memory according to their sizes.
• Most of the virtual machines store the field values contiguously for each class.
• When a class A inherits from a class B, the way the instance fields of an instance of A

are stored depends of the virtual machine. Some virtual machines store the fields of A
first and then the fields of B, others use the opposite order and other stores them in
non-contiguous memory areas.

• The binary compatibility requirement (see Overview) implies that the values computed
for a class are independent of the values computed for its super classes, whether or
not they are included in the same file.

The consequences of these constraints are the following:
• The pre-computed values are redundant with the field information. They are only

included to speedup the virtual machine.
• Some virtual machines may not use these values.
• The values are computed independently for each class.

The same construction process is applied separately for the class fields and the instance
fields. The super class fields and the sub-class fields are not taken into account.

• The fields are classed in an ordered list. The order used follows the size of each field.
The longer fields are stored first (type long or double), the smaller fields are stored at
the end of the list (type byte). The order used between fields of the same size is
undefined. This ordering allows keeping the alignment between the data.

• The position of a given field is the position of the preceding field in the list plus the
size of the preceding field. The first field position is zero.

• The total size of the field area is the sum of the size of each field in the list.

3.2 Conventions
The following conventions are use in this chapter.

3.2.1 Notations
The format is presented using pseudo-structures written in a C-like structure notation. Like the
fields of a C structure, successive items are stored sequentially, with padding and alignment.

3.2.2 Byte Order
All the values are stored using the byte order defined by a set of flags specified in the file
header. Floating-point numbers and integer values are treated separately.

rex
I believe that superclass is one word and subclass has no hyphen.

rex
`fields are classed' doesn't sound right.

rex
In C, they are called `members' not fields.

rex
Do you mean treated differently. I don't think separately is the right word.

9

3.2.3 Alignment and Padding
If a platform requires the alignment of the multi-byte values in memory, JEFF allows an
efficient access to all its data without byte-by-byte reading.

When a JEFF file is stored on the platform, the first byte of the file header must always be
aligned in memory on a 8-byte boundary.

All the items constituting the file are aligned in memory. The following table gives the memory
alignment:

Elements Element
size, in
bytes

Alignment on
memory
boundaries
of

TU1, TS1, JBYTE, VMTYPE 1 1 byte
TU2, TS2, JSHORT, JCHAR, VMACCESS, VMNCELL,
VMOFFSET, VMCINDEX

2 2 bytes

TU4, TS4, JINT, JFLOAT, VMDOFFSET, VMMINDEX,
VMFINDEX

4 4 bytes

JLONG, JDOUBLE 8 8 bytes

When aligning data, some extra bytes may be needed for padding. These bytes must be set to
null.

Structures are always aligned following the alignment of their first element.

Example:

VMStructure {
 VMOFFSET ofAnOffset;
 TU4 nAnyValue;
}

The structure is aligned on a 2-byte boundary because VMOFFSET is a 2-byte type. The field
nAnyValue is aligned on a 4-byte boundary. A padding of 2 bytes may be inserted between
ofAnOffset and nAnyValue.

3.3 The File Structure
All the structures defined in this specification are stored in the JEFF file one after the other
without overlapping and without any intermediate data other than padding bytes required for
alignment. Every unspecified data may be stored in an optional attribute as defined in
3.3.3 Attribute Section.

The file structure is composed of six ordered sections.

Section Description
File Header File identification and directory
Class Section List of class areas
Optional Attributes Section List of the optional attributes
Symbolic Data Section The symbolic information used by the classes
Constant Data Pool Set of common constant data
Digital Signature Signature of the complete file

rex
Strike `the'.

rex
Strike `an'

rex
Insert `requiring' after `without'

rex
Change `a 8-byte' to `an 8-byte.

rex
This is almost the same name as chapter 3 itself. I think one of them should be somewhat different.

rex
You say ordered, but you don't say. Perhaps the same as the entries in the table?

10

File Header
The file header contains the information used to identify the file and a directory to access to
the other sections content.

Class Section
The class section describes the content of each class (inheritance, fields, methods and code).

Optional Attributes Section
This optional section contains the optional attributes for the file, the classes, the methods and
the fields.

Symbolic Data Section
In this area are stored all the symbolic information used to identify the classes, the methods
and the fields.

Constant Data Pool
The constant strings and the descriptors used by the Optional Attribute Section and the
Symbolic Data Section are stored in this structure.

Digital Signature
This part contains the digital signature of the complete file.

3.3.1 File Header
The file header is always located at the beginning of the file. In the file structure, some
sections have a variable length. The file header contains a directory providing a quick access
to these sections.

VMFileHeader {
 TU1 nMagicWord1;
 TU1 nMagicWord2;
 TU1 nMagicWord3;
 TU1 nMagicWord4;
 TU1 nFormatVersionMajor;
 TU1 nFormatVersionMinor;
 TU1 nByteOrder;
 TU1 nOptions;
 TU4 nFileLength;
 TU2 nFileVersion;
 TU2 nTotalPackageCount;
 TU2 nInternalClassCount;
 TU2 nTotalClassCount;
 TU4 nTotalFieldCount;
 TU4 nTotalMethodCount;
 VMDOFFSET dofAttributeSection;
 VMDOFFSET dofSymbolicData;
 VMDOFFSET dofConstantDataPool;
 VMDOFFSET dofFileSignature;
 VMDOFFSET dofClassHeader[nInternalClassCount];
}

The items of the VMFileHeader structure are as follows:

nMagicWord1, nMagicWord2, nMagicWord3, nMagicWord4
The format magic word is nMagicWord1 = 0x4A, nMagicWord2 = 0x45, nMagicWord3 =
0x46 and nMagicWord4 = 0x46 ("JEFF" in Ascii).

rex
Chaneg `sections content' to ``sections' contents'

rex
Is this parenthetic list necessary here? Are these examples are is this the complete list? Should there be an e.g., there somewhere?

rex
Replace `In this area are stored' with `This section contains' just like the other sections here.

rex
Ascii should be all caps

11

nFormatVersionMajor, nFormatVersionMinor,
Version number of the file format. For this version (1.0), the values are nFormatVersionMajor
= 0x01 for the major version number and nFormatVersionMinor = 0x00 for the minor version
number.

nByteOrder
This 8-bit vector gives the byte order used by all the values stored in the file, except the magic
number. The following set of flags gives the byte order of integer values and the floating-point
values separately. In the definitions, the term “integer value” designs all the two-, four- and
height-bytes long values, except the JFLOAT and JDOUBLE values.

VM_ORDER_INT_BIG 0x01 If this flag is set, integer values are stored using the
big-endian convention. Otherwise, they are stored
using the little-endian convention.

VM_ORDER_INT_64_INV 0x02 If this flag is set, the two 32-bit parts of the 64-bit
integer values are inverted.

VM_ORDER_FLOAT_BIG 0x04 If this flag is set, JFLOAT and JDOUBLE values
are stored using the big-endian convention.
Otherwise, they are stored using the little-endian
convention.

VM_ORDER_FLOAT_64_INV 0x08 If this flag is set, the two 32-bit parts of the
JDOUBLE values are inverted.

nOptions
A set of information on the content of the internal classes.

This item is an 8-bit vector with the following flag values:

VM_USE_LONG_TYPE 0x01 One of the classes uses the "long" type (in the
fields types, the methods signatures, the constant
values or the bytecode instructions).

VM_USE_UNICODE 0x02 This file contains non-ASCII characters (Unicode).
VM_USE_FLOAT_TYPE 0x04 One of the classes uses the "float" type and/or the

"double" type (in the fields types, the methods
signatures, the constant values or the bytecode
instructions).

VM_USE_STRICT_FLOAT 0x08 One of the classes contains bytecodes with strict
floating-point computation (the "strictfp" keyword
is used in the source file).

VM_USE_NATIVE_METHOD 0x10 One of the classes contains native methods.
VM_USE_FINALIZER 0x20 One of the classes has an instance finalizer or a

class finalizer.
VM_USE_MONITOR 0x40 One of the classes uses the flag

ACC_SYNCHRONIZED or the bytecodes
monitorenter or monitorexit in one of its
methods.

nFileLength
Size in bytes of the file (all elements included).

nFileVersion
Version number of the file itself. The most significant byte carries the major version number.
The less significant byte carries the minor version number. This specification does not define
the interpretation of this field by a virtual machine.

rex
This is a very vague sentence.

12

nTotalPackageCount
The total number of unique packages referenced in the file (for the internal classes and the
external classes).

nInternalClassCount
The number of classes in the file (internal classes).

nTotalClassCount
The total number of the classes referenced in the file (internal classes and external classes).

nTotalFieldCount
The total number of field symbolic names used in the file.

nTotalMethodCount
The total number of method symbolic names used in the file.

dofAttributeSection
Offset of the Optional Attribute Section, a VMAttributeSection structure. This field is set to
null if no optional attributes are stored in the file.

dofSymbolicData
Offset of the symbolic data section, a VMSymbolicDataSection structure.

dofConstantDataPool
Offset of the constant data pool, a VMConstantDataPool structure.

dofFileSignature
Offset of the file signature defined in a VMFileSignature structure. This value is set to null if
the file is not signed.

dofClassHeader
Offsets of the VMClassHeader structures for all internal classes. The entries of this table
follow the class index order and the class areas are stored in the same order.

3.3.2 Class Area
For each class included in the file, a class area contains the information specific to the class.
Within the class area, the references to other elements are given by 16-bit unsigned offsets
(VMOFFSET) relative to the beginning of the class header.

The first element of this area is the class header pointed to from the dofClassHeader array in
the file header. The other structures in the class area are stored one after the other without
overlapping and without any intermediate data other than padding bytes required for
alignment.

rex
Section 3.3 calls this the Class Section.

13

The ten sections of the class area must be ordered as follows:

Section Description
Class Header Class identification and directory
Interface Table List of the interfaces implemented by the current class
Referenced Class Table List of the classes referenced by the current class
Internal Field Table List of the fields of the current class
Internal Method Table List of the methods of the current class
Referenced Field Table List of the fields of other classes used by the current class
Referenced Method Table List of the methods of other classes used by the current class
Bytecode Area List List of the bytecode areas for the methods of the current class
Exception Table List List of the exception handler tables for the methods of the

current class
Constant Data Section Set of constant data used by the current class

3.3.2.1 Class Header

The class header is always located at the beginning of the class representation. In the class
file structure, some sections have a variable length. The directory is used as a redirector to
have a quick access to these sections.

VMClassHeader {
 VMOFFSET ofThisClassIndex;
 VMPINDEX pidPackage;
 VMACCESS aAccessFlag;
 TU2 nClassData;
 VMOFFSET ofClassConstructor;

 VMOFFSET ofInterfaceTable;
 VMOFFSET ofFieldTable;
 VMOFFSET ofMethodTable;
 VMOFFSET ofReferencedFieldTable;
 VMOFFSET ofReferencedMethodTable;
 VMOFFSET ofReferencedClassTable;
 VMOFFSET ofConstantDataSection;

 VMOFFSET ofSuperClassIndex;
 TU2 nInstanceData;
 VMOFFSET ofInstanceConstructor;
}

The items of the VMClassHeader structure are as follows:

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

pidPackage
The current class package index.

aAccessFlag
Class access flags. The possible values are:

ACC_PUBLIC Is public; may be accessed from outside its package.
ACC_FINAL Is final; no subclasses allowed.

14

ACC_SUPER Treat superclass methods specially in invokespecial.
ACC_INTERFACE Is an interface.
ACC_ABSTRACT Is abstract; may not be instantiated.

nClassData
This value is the total size, in bytes, of the class fields. The algorithm used to compute the
value is given in 3.1.5 Field Position. The size is null if there is no class field in the class.

ofClassConstructor
Offset of the class constructor "<clinit>". Offset of the corresponding VMMethodInfo
structure. Null if there is no class constructor.

ofInterfaceTable
Offset of the interface table, a VMInterfaceTable structure. This value is null if the current
class implements no interfaces.

ofFieldTable
Offset of the internal field table, a VMFieldInfoTable structure. This value is null if the current
class has no field.

ofMethodTable
Offset of the internal method table, a VMMethodInfoTable structure. This value is null if the
current class has no method.

ofReferencedFieldTable
Offset of the referenced field table, a VMReferencedFieldTable structure. This value is null if
the bytecode uses no field.

ofReferencedMethodTable
Offset of the referenced method table, a VMReferencedMethodTable structure. This value is
null if the bytecode uses no method.

ofReferencedClassTable
Offset of the referenced class table, a VMReferencedClassTable structure.

ofConstantDataSection
Offset of the constant data section, a VMConstantDataSection structure. This value is null if
the class does not contain any constants.

ofSuperClassIndex
Offset of the super class index, a VMCINDEX value stored in the “referenced class table” of
the current class. If the current class is java.lang.Object, the offset value is zero. This value is
not present for an interface.

nInstanceData
This value is the total size, in bytes, of the instance fields. The algorithm used to compute the
value is given in 3.1.5 Field Position. The size is null if there is no instance field in the class.
This value is not present for an interface

ofInstanceConstructor
Offset of the default instance constructor "<init> ()V". Offset of the corresponding
VMMethodInfo structure. The value is null if there is no default instance constructor. This
value is not present for an interface.

15

3.3.2.2 Interface Table

This structure is the list of the interfaces implemented by this class or interface.

VMInterfaceTable {
 TU2 nInterfaceCount;
 VMOFFSET ofInterfaceIndex [nInterfaceCount];
}

The items of the VMInterfaceTable structure are as follows:

nInterfaceCount
The number of interfaces implemented.

ofInterfaceIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. The corresponding class is a super interface implemented by the current class
or interface.

3.3.2.3 Referenced Class Table

Every class, internal or external, referenced by the current class is represented in the following
table:

VMReferencedClassTable {
 TU2 nReferencedClassCount;
 VMCINDEX cidReferencedClass [nReferencedClassCount];
}

The current class is also represented in this table.

The items of the VMReferenceClassTable structure are as follows:

nReferencedClassCount
The number of referenced classes.

cidReferencedClass
The class index (VMCINDEX value) of a class referenced by the current class.

3.3.2.4 Internal Field Table

Every field member of the defined class is described by a field information structure located in
a table:

VMFieldInfoTable {
 TU2 nFieldCount;
 {
 VMFINDEX fidFieldIndex;
 VMOFFSET ofThisClassIndex;
 VMTYPE tFieldType;
 TU1 nTypeDimension;
 VMACCESS aAccessFlag;
 TU2 nFieldDataOffset;
 } VMFieldInfo [nFieldCount];
}

16

The instance fields are always stored first in the table. The class fields follow them. Instance
fields and class fields are stored following the crescent order of their index. The items of the
VMFieldInfoTable structure are as follows:

nFieldCount
The number of fields in the class.

fidFieldIndex
The field index.

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

tFieldType
The field type. By definition, the field type gives the size of the value stored by the field.

nTypeDimension
The array dimension associated with the type. This value is always present.

aAccessFlag
Field access flag. The possible values are:

ACC_PUBLIC Is public; may be accessed from outside its package.
ACC_PRIVATE Is private; usable only within the defined class.
ACC_PROTECTED Is protected; may be accessed within subclasses.
ACC_STATIC Is static.
ACC_FINAL Is final; no further overriding or assignment after initialization.
ACC_VOLATILE Is volatile; cannot be cached.
ACC_TRANSIENT Is transient; not written or read by a persistent object manager.

nFieldDataOffset
This value is an offset, in bytes, of the field data in the class field value area or in the instance
value area. The algorithm used to compute the value is given in 3.1.5 Field Position. The total
size of the instance field data area is given by nInstanceData. The total size of the class field
data area is given by nClassData.

3.3.2.5 Internal Method Table

Every method of the defined class, including the special internal methods, <init> or <clinit>,
is described by a method information structure located in a table:

VMMethodInfoTable {
 TU2 nMethodCount;
 {
 VMMINDEX midMethodIndex;
 VMOFFSET ofThisClassIndex;
 VMNCELL ncStackArgument;
 VMACCESS aAccessFlag;
 VMOFFSET ofCode;
 } VMMethodInfo [nMethodCount];

 TU4 nNativeReference[];
}

17

The instance methods are always stored first in the table. The class methods follow them.
Instance methods and class methods are stored following the crescent order of their index.
The items of the VMMethodInfoTable structure are as follows:

nMethodCount
The number of method in the class.

midMethodIndex
The method index.

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

ncStackArgument
Size of the method arguments in the stack. The size includes the reference to the instance
used for calling an instance method. This size does not include the return value of the method.
The bytecode interpreter uses ncStackArgument to clean the stack after the method return.
The size, in cells, is computed during the class translation.

aAccessFlag
Method access flag. The possible values are:

ACC_PUBLIC Is public; may be accessed from outside its package.
ACC_PRIVATE Is private; usable only within the defined class.
ACC_PROTECTED Is protected; may be accessed within subclasses.
ACC_STATIC Is static.
ACC_FINAL Is final; no overriding is allowed.
ACC_SYNCHRONIZED Is synchronized; wrap use in monitor lock.
ACC_NATIVE Is native; implemented in a language other than the source language.
ACC_ABSTRACT Is abstract; no implementation is provided.
ACC_STRICT The VM is required to perform strict floating-point operations.

ofCode
For a non-native non-abstract method, this value is the offset of the bytecode block, a
VMBytecodeBlock structure. For an abstract method, the offset value is null. For a native
method, the value is the offset of one of the nNativeReference values. Each native method
must refer to a separate nNativeReference value.

nNativeReference
This array of undefined TU4 values must contain as many elements as the class has native
methods. These values are reserved for future use.

3.3.2.6 Referenced Field Table

The referenced field table describes the internal or external class fields that are not members
of the current class but are used by this class. If an instruction refers to such a field, the
bytecode gives the offset of the corresponding VMReferencedField structure.

rex
Is it the number of elements in this array that is undefined or each element's contents, or both?

18

VMReferencedFieldTable {
 TU2 nFieldCount;
 {
 VMFINDEX fidFieldIndex;
 VMOFFSET ofClassIndex;
 VMTYPE tFieldType;
 TU1 nTypeDimension;
 } VMReferencedField [nFieldCount];
}

The items of the VMReferencedFieldTable structure are as follows:

nFieldCount
The number of fields in the table.

fidFieldIndex
The field index.

ofClassIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class containing the field.

tFieldType
The field type. By definition, the field type gives the size of the value stored by the field. This
information is used to retrieve in the operand stack the reference of the object instance (for an
instance field).

nTypeDimension
The array dimension associated with the type. This value is always present.

3.3.2.7 Referenced Method Table

The referenced method table describes the internal or external class methods that are not
members of the current class but are used by this class. If an instruction refers to such a
method, the bytecode gives the offset of the corresponding VMReferencedMethod structure.

VMReferencedMethodTable {
 TU2 nMethodCount;
 {
 VMMINDEX midMethodIndex;
 VMOFFSET ofClassIndex;
 VMNCELL ncStackArgument;
 } VMReferencedMethod [nMethodCount];
}

The items of the VMReferencedMethodTable structure are as follows:

nMethodCount
The number of methods in the table.

midMethodIndex
The method index.

ofClassIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class containing the method.

19

ncStackArgument
Size of the method arguments in the stack. The size includes the reference to the instance
used for calling an instance method. This size does not include the return value of the method.
The bytecode interpreter uses ncStackArgument to clean the stack after the method return.
The size, in cells, is computed during the class translation.

3.3.2.8 Bytecode Block Structure

This part is a block of bytecode corresponding to the method body:

VMBytecodeBlock {
 VMNCELL ncMaxStack;
 VMNCELL ncMaxLocals;
 VMOFFSET ofExceptionCatchTable;
 TU2 nByteCodeSize;
 TU1 bytecode[nByteCodeSize];
}

The items of the VMBytecodeBlock structure are as follows:

ncMaxStack
The value of the ncMaxStack item gives the maximum number of cells on the operand stack
at any point during execution of this method.

ncMaxLocals
The value of the ncMaxLocals item gives the number of local variables used by this method,
including the parameters passed to the method on invocation. The index of the first local
variable is 0. The greatest local variable index for a one-word value is ncMaxLocals-1. The
greatest local variable index for a two-word value is ncMaxLocals-2.

ofExceptionCatchTable
Offset of the caught exception table, a VMExceptionCatchTable structure. Null if no
exception is caught in this method.

nByteCodeSize
The size of the bytecode block in bytes. The value of nByteCodeSize must be greater than
zero; the code array must not be empty.

bytecode
The bytecode area contains the instructions for the method. All branching instructions included
in a bytecode area must specify addresses within the same bytecode area. All exception
handlers defined for a bytecode area must reference addresses within that bytecode area. The
bytecode area may only contain bytecodes defined in this specification, their arguments and
padding bytes (if needed for alignment).

Note for the class initializer

Since the initialization values of the static fields are not included in JEFF, a piece of code
must be added at the beginning of the class initializer “<clinit>” to perform the initialization of
these fields (if needed).

rex
3.3.2 calls this Bytecode Area List

20

3.3.2.9 Caught Exception Table

This structure gives the exception handling information for a method. It describes exception
handlers semantically equivalent and in the same order as the exception_table item of the
Code_attribute structure defined in the Virtual Machine Specification [1].

VMExceptionCatchTable {
 TU2 nCatchCount;
 {
 VMOFFSET ofStartPc;
 VMOFFSET ofEndPc;
 VMOFFSET ofHandlerPc;
 VMOFFSET ofExceptionIndex;
 } VMExceptionCatch [nCatchCount];
}

The items of the VMExceptionCatchTable structure are as follows:

nCatchCount
The value of the nCatchCount item indicates the number of element in the table.

ofStartPc
Offset of the first byte of the first bytecode in the range where the exception handler is active.

ofEndPc
Offset of the first byte following the last byte of the last bytecode in the range where the
exception handler is active.

ofHandlerPc
Offset of the first byte of the first bytecode of the exception handler.

ofExceptionIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class of the caught exception. The offset value is null if
the exception handler has to be called for any kind of exception.

3.3.2.10 Constant Data Section

This section contains the constant data values of the class. They are always referred through
an offset.

Single values of type JINT, JLONG, JFLOAT or JDOUBLE can be referred by the bytecodes
ildc, lldc, fldc and dldc. The VMConstUtf8 structures are referred by the sldc bytecode.

The newconstarray bytecode refers contiguous set of values of type JDOUBLE, JLONG,
JFLOAT, JINT, JSHORT and JBYTE. This bytecode also uses the Utf8 strings stored in
VMConstUtf8 structures to create character arrays.

rex
3.3.2 calls this Exception table List

rex
Change two occurances of `referred' to `referred to'

rex
Isn't UTF spelled in all caps in regular verbage?

21

VMConstantDataSection {
 TU2 nConstFlags;
 TU2 nDoubleNumber;
 TU2 nLongNumber;
 TU2 nFloatNumber;
 TU2 nIntNumber;
 TU2 nShortNumber;
 TU2 nByteNumber;
 TU2 nStringNumber;
 JDOUBLE nDoubleValue[nDoubleNumber];
 JLONG nLongValue[nLongNumber];
 JFLOAT nFloatValue[nFloatNumber];
 JINT nIntValue[nIntNumber];
 JSHORT nShortValue[nShortNumber];
 JBYTE nByteValue[nByteNumber];
 VMConstUtf8 strConstString[nStringNumber];
}

The items of the VMConstantDataSection structure are as follows:

nConstFlags
The nConstFlags value is a set of flags giving the content of the section as follows:

VM_CONST_DOUBLE 0x0001 The section contains values of type double
VM_CONST_LONG 0x0002 The section contains values of type long
VM_CONST_FLOAT 0x0004 The section contains values of type float
VM_CONST_INT 0x0008 The section contains values of type int
VM_CONST_SHORT 0x0010 The section contains values of type short
VM_CONST_BYTE 0x0020 The section contains values of type byte
VM_CONST_STRING 0x0040 The section contains constant strings

nDoubleNumber
The number of JDOUBLE values. This non-null value is only present if the
VM_CONST_DOUBLE flag is set in nConstFlags.

nLongNumber
The number of JLONG values. This non-null value is only present if the VM_CONST_LONG
flag is set in nConstFlags.

nFloatNumber
The number of JFLOAT values. This non-null value is only present if the VM_CONST_FLOAT
flag is set in nConstFlags.

nIntNumber
The number of JINT values. This non-null value is only present if the VM_CONST_INT flag is
set in nConstFlags.

nShortNumber
The number of JSHORT values. This non-null value is only present if the
VM_CONST_SHORT flag is set in nConstFlags.

nByteNumber
The number of JBYTE values. This non-null value is only present if the VM_CONST_BYTE
flag is set in nConstFlags.

22

nStringNumber
The number of VMConstUtf8 structures. This non-null value is only present if the
VM_CONST_STRING flag is set in nConstFlags.

nDoubleValue
A value of type double.

nLongValue
A value of type long.

nFloatValue
A value of type float.

nIntValue
A value of type int.

nShortValue
A value of type short.

nByteValue
A value of type byte.

strConstString
A constant string value (See the definition of the VMConstUtf8 structure).

nStringValue
The string value encoded with the Utf8 format as defined in the Virtual Machine Specification
(see [1]).

3.3.3 Attribute Section
This optional section contains the optional attributes for the file, the classes, the methods and
the fields. The format for the translation of the attributes described in the Virtual Machine
Specification (see [1]) will be included in an Annex of the JEFF specification.

VMAttributeSection {
 VMDOFFSET dofFileAttributeList;
 VMDOFFSET dofClassAttributes[nInternalClassCount];
 TU2 nAttributeTypeCount;
 TU2 nClassAttributeCount;
 VMAttributeType sAttributeType[nAttributeTypeCount];
 VMClassAttributes sClassAttributes[nClassAttributeCount]
 TU2 nAttributeTableCount;
 VMAttributeTable sAttributeTable[nAttributeTableCount];
 }

The nInternalClassCount value is defined in the file header.

The items of the VMAttributeSection structure are as follows:

dofFileAttributeList
This value is the offset of a VMAttributeTable structure. This structure defines the attribute
list of the file. The offset value is zero if and only if the JEFF file has no file attributes.

rex
3.3 calls this Attributes Section

23

dofClassAttributes
The index in this table is the class index. Each entry value is the offset of a
VMClassAttributes structure. This structure defines the attributes for the internal class of
same index. The offset value iszero if and only if the corresponding class has no attributes.

nAttributeTypeCount
This value is the number of attribute types used in the file.

nClassAttributeCount
This value is the number of VMClassAttributes structures used in the file.

nAttributeTableCount
This value is the number of attribute lists (VMAttributeTable structures) used in the file.

3.3.3.1 Attribute Type

This structure defines an attribute type.

VMAttributeType {
 VMDOFFSET dofTypeName;
 TU2 nTypeFlags;
 TU2 nTypeLength;
 }

The items of the VMAttributeType structure are as follows:

dofTypeName
Offset of a VMConstUtf8 structure stored in the constant data pool. The string value is the
attribute type name. The type name format follows the rules defined in the Virtual Machine
Specification (See [1]).

nTypeFlags
This value is a set of flags defining the attribute type. The flag values are the following:

VM_ATTR_INDEXES 0x0001 The attribute contains some index values of type
VMPINDEX, VMCINDEX, VMMINDEX or VMFINDEX.

VM_ATTR_VMOFFSETS 0x0002 The attribute contains some values of type
VMOFFSET.

VM_ATTR_VMDOFFSETS 0x0004 The attribute contains some values of type
VMDOFFSET.

VM_ATTR_BYTE_ORDER 0x0008 The elements stored in nData (See the
VMAttributeTable structure) contain byte ordered
values.

VM_ATTR_CST_LENGTH 0x0010 The length of the attribute is constant and given by
the nTypeLength item. This flag can only be used if
the length of the attribute structure is not subject to
variations caused by the type alignment.

nTypeLength
This value is the fixed length of the attribute in bytes, not including the type index (See the
VMAttributeTable structure). This value is null if the VM_ATTR_CST_LENGTH flag is not set
in nTypeFlags.

24

3.3.3.2 Class Attributes

The attributes used by a class such as the class attributes, the method attribute and the field
attributes are defined in this structure.

 VMClassAttributes {
 VMDOFFSET dofClassAttributeList;
 VMDOFFSET dofFieldAttributeList[nFieldCount];
 VMDOFFSET dofMethodAttributeList[nMethodCount];
 }

The items of the VMClassAttribute structure are as follows:

dofClassAttributeList
This value is the offset of a VMAttributeTable structure. This structure defines the attribute
list of the class.

dofFieldAttributeList
This item defines the attribute list of a field. The value is the offset of a VMAttributeTable
structure. The position of the offset in the list is equal to the position of the field in the internal
field list of the corresponding class. The value of the offset is null if the field has no attributes.
The value of nFieldCount is given by the internal field table structure of the corresponding
class.

dofMethodAttributeList
This item defines the attribute list of a method. The value is the offset of a VMAttributeTable
structure. The position of the offset in the list is equal to the position of the method in the
internal method list of the corresponding class. The value of the offset is null if the method has
no attributes. The value of nMethodCount is given by the internal method table structure of
the corresponding class.

3.3.3.3 Attribute Table

This structure is used to store each attribute list.

VMAttributeTable {
 TU2 nAttributeCount;
 {
 TU2 nAttributeType;
 TU4 nTypeLength;
 TU1 nData[nTypeLength];
 } VMAttribute[nAttributeCount]
 }

The items of the VMAttributeTable structure are as follows:

nAttributeType
This value is the index of a VMAttributeType structure in the attribute type table. The
structure defines the type of the attribute.

nTypeLength
This value is the length, in bytes, of the nData array. This value is only present if the
VM_ATTR_CST_LENGTH flag is not set in nTypeFlags item of the VMAttributeType
structure pointed to by dofAttributeType. The value must take in account variations of length
due to type alignment in the structure of the attribute.

25

nData
The structure presented is a generic structure that all the attributes must follow. The nData
byte array stands for the true attribute data.

3.3.4 Symbolic Data Section
This section contains the symbolic information used to identify the elements of the internal and
external classes. The reflection feature also uses this section.

VMSymbolicDataSection {
 VMPINDEX pidExtClassPackage[nTotalClassCount-nInternalClassCount];
 VMDOFFSET dofPackageName[nTotalPackageCount];
 VMDOFFSET dofClassName[nTotalClassCount];

 {
 VMDOFFSET dofFieldName;
 VMDOFFSET dofFieldDescriptor;
 } VMFieldSymbolicInfo[nTotalFieldCount]

 {
 VMDOFFSET dofMethodName;
 VMDOFFSET dofMethodDescriptor;
 } VMMethodSymbolicInfo[nTotalMethodCount]
 }

The nTotalPackageCount, nTotalClassCount, nInternalClassCount, nTotalFieldCount
and nTotalMethodCount values are defined in the file header.

The items of the VMSymbolicDataSection structure are as follows:

pidExtClassPackage
This table gives the package of the corresponding external class. If n is a zero-based index in
this table, the corresponding entry pidExtClassPackage[n], gives the package index for the
external class with a class index value of n + nInternalClassCount.

dofPackageName
Offset of a VMConstUtf8 structure stored in the constant data pool. The string value is the
package fully qualified name. The index used in this table is the package index (a VMPINDEX
value). If the JEFF file references the “default package”, a package with no name, the
corresponding dofPackageName value is the offset of a VMConstUtf8 structure with a null
length.

dofClassName
Offset of a VMConstUtf8 structure stored in the constant data pool. The string value is the
simple (not fully qualified) class name. The index of an entry in this table is the class index (a
VMCINDEX value).

 VMFieldSymbolicInfo
 Table of field symbolic information. The index of an entry in this table is the field index (a
VMFINDEX value).

 dofFieldName
 Offset of a VMConstUtf8 structure stored in the constant data pool. The string value is the
simple (not fully qualified) field name.

rex
I think you adequately defined the term simple class name earlier. Im any event you don;t want to qualify each usage of that term with a perenthetical comment as is done here and below, and over the page.

26

 dofFieldDescriptor
 Offset of a VMDescriptor structure stored in the constant data pool. The descriptor value
gives the field type.

 VMMethodSymbolicInfo
 Table of method symbolic information. The index of an entry in this table is the method index
(a VMMINDEX value).

 dofMethodName
 The value is an offset of a VMConstUtf8 structure stored in the constant data pool
representing either one of the special internal method names, either <init> or <clinit>, or a
method name, stored as a simple (not fully qualified) name.

 dofMethodDescriptor
 Offset of a VMMethodDescriptor structure stored in the constant data pool. The descriptor
gives the type of the method arguments and the type of return value.

3.3.5 Constant Data Pool
This structure stores the constant strings and the descriptors used by the Optional Attribute
Section and the Symbolic Data Section.

3.3.5.1 Constant Data Pool Structure
VMConstantDataPool {
 TU4 nStringCount;
 TU4 nDescriptorCount;
 TU4 nMethodDescriptorCount;
 VMConstUtf8 strConstantString[nStringCount];
 VMDescriptor sDescriptor[nDescriptorCount];
 VMMethodDescriptor sMethodDescriptor[nMethodDescriptorCount];
}

The items of the VMConstantDataPool structure are as follows:

nStringCount
The number of constant strings stored in the structure.

nDescriptorCount
The number of individual descriptors stored in the structure. This number does not take in
account the descriptors included in the method descriptors.

nMethodDescriptorCount
The number of method descriptors stored in the structure.

strConstantString
A constant string value (See the definition of the VMConstUtf8 structure).

sDescriptor
A descriptor value as defined below.

sMethodDescriptor
A method descriptor value as defined below.

27

3.3.5.2 Descriptor
VMDescriptor
{
 VMTYPE tDataType;
 TU1 nDataTypeDimension;
 VMCINDEX cidDataTypeIndex;
}

The items of the VMDescriptor structure are as follows:

tDataType
The data type. It must be associated to the nDataTypeDimension and cidDataTypeIndex
items to have the full field descriptor.

nDataTypeDimension
The array dimension associated with the type. This value is only present if the type is a n-
dimensional array, where n >= 2.

cidDataTypeIndex
The class index associated with the data type. This item is present only if the tDataType is not
a primitive type or an array of primitive types.

3.3.5.3 Method Descriptor
VMMethodDescriptor {
 TU2 nArgCount;
 VMDescriptor sArgumentType[nArgCount];
 VMDescriptor sReturnType;
}

The items of the VMMethodDescriptor structure are as follows:

nArgCount
The number of argument. 0 for a method without argument.

sArgumentType
The descriptor of an argument type.

sReturnType
The descriptor of the type returned by the method.

3.3.6 File Signature
The VMFileSignature structure is not defined.

rex
Replace `The number of argument. 0 for a method without argument.'

with

`The number of arguments, which for a method without any arguments is zero.'

rex
3.3 calls this Digital Signature

rex
That's it? You say nothing at all about it!

28

4 Bytecodes
This chapter describes the instruction set used in JEFF. The operational semantics of the
instruction is not provided, as it does not impact the structural description of the JEFF format.

An instruction is an opcode followed by its arguments. An opcode itself is coded on one byte.
A <n>-bytes instruction is an instruction of which arguments take <n-1> bytes. A one-byte
instruction is an instruction without argument. A two-bytes instruction is an instruction with one
argument coded on one byte.

4.1 Principles
The section 4.2 describes only the differences between the class file bytecodes and the JEFF
bytecodes. The two instruction sets are equivalent in term of functionalities. The main purpose
of the bytecode translation is to create an efficient instruction set adapted to the structure of
the file.

Translation Rules

Several operations are applied to the bytecode:
• The replacement. A bytecode is replaced by another bytecode with the same behavior

but using another syntax for its arguments.
• The bytecode splitting. A single bytecode with a wide set of functionalities is replaced

by several bytecodes implementing a part of the original behavior. The choice of the
new bytecode depends on the context.

• The bytecode grouping. A group of bytecodes frequently used is replaced by a new
single bytecode performing the same task.

If an instruction is not described in section 4.2, its syntax shall be unchanged with respect to
the one assigned to the instruction of same opcode value in class file bytecode (the mnemonic
of the opcode is then the mnemonic of the original opcode as found in class file bytecode
prefixed by “jeff-“).

The instructions of JEFF bytecode that result from a particular translation are completely
defined in section 4.2.

All the instructions not described in section 4.2 are one-byte or two-bytes instructions and are
defined in section 4.3.

Section 4.4 provides the complete set of opcodes with their mnemonics used in JEFF
bytecode.

Alignment and Padding

The bytecodes and their arguments follow the rules of alignment and padding defined in 3.2.3
Alignment and Padding.

4.2 Translations
This chapter defines normatively all the instructions of JEFF bytecode that are not exactly the
same than those found in the class file format bytecode. This chapter describes also all the
translation operations from which these JEFF instructions result, but this description is not
necessary for the intrinsic definition of the JEFF instructions and the references to the
instruction set of class file format are here provided only for information purpose.

rex
Do instructions take arguments, or do they take operands? I don't know, I'm just asking.

rex
functionality

rex
close quote looks strange.

rex
In the 4.2.x examples an underscore is used instead of a hyphen. Should this be "jeff_" instead?

rex
You say normatively here. Is the other stuff non-normative? I don't understand the use of this word here.

29

4.2.1 The tableswitch Opcode
 If the original structure of class file bytecode contains the following sequence:

 TU1 tableswitch
 TU1 <0-3 byte pad>
 TS4 nDefault
 TS4 nLowValue
 TS4 nHighValue
 TS4 nOffset [nHighValue - nLowValue + 1]

Where immediately after the padding follow a series of signed 32-bit values: nDefault,
nLowValue, nHighValue and then nHighValue - nLowValue + 1 further signed 32-bit
offsets.

The translated structure shall be the following sequence:

 If the nLowValue and nHighValue values can be converted in 16-bit signed value, the
translated structure is:

 TU1 jeff_stableswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TS2 nLowValue
 TS2 nHighValue
 VMOFFSET ofJump [nHighValue - nLowValue + 1]

Otherwise, the translated structure is:

 TU1 jeff_tableswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TU1 <0-2 byte pad>
 TS4 nLowValue
 TS4 nHighValue
 VMOFFSET ofJump [nHighValue - nLowValue + 1]

The ofDefault and ofJump values are the jump addresses in the current bytecode block
(offsets in bytes from the beginning of the class header structure).

4.2.2 The lookupswitch Opcode
 If the original instruction in class file format is:

 TU1 lookupswitch
 TU1 <0-3 byte pad>
 TS4 nDefault
 TU4 nPairs
 match-offset pairs...
 TS4 nMatch
 TS4 nOffset

Where immediately after the padding follow a series of signed 32-bit values: nDefault, nPairs,
and then nPairs pairs of signed 32-bit values. Each of the nPairs pairs consists of an int
nMatch and a signed 32-bit nOffset.

The translated structure shall be the following sequence:

30

If all of the nMatch values can be converted in 16-bit signed value, the translated structure is:

 TU1 jeff_slookupswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TU2 nPairs
 TS2 nMatch [nPairs]
 VMOFFSET ofJump [nPairs]

Otherwise, the translated structure is:

 TU1 jeff_lookupswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TU2 nPairs
 TU1 <0-2 byte pad>
 TS4 nMatch [nPairs]
 VMOFFSET ofJump [nPairs]

The ofDefault and ofJump values are the jump addresses in the current bytecode block
(offsets in bytes from the beginning of the class header structure).

4.2.3 The new Opcode
 If the original instruction in class file format is:

 TU1 new
 TU2 nIndex

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Class.

The translated structure shall be the following sequence:

 TU1 jeff_new
 TU1 <0-1 byte pad>
 VMOFFSET ofClassIndex

Where the ofClassIndex value is the offset of the class index, a VMCINDEX value stored in
the “referenced class table” of the current class.

4.2.4 Opcodes With Class Arguments
If the original instruction in class file format is:

 TU1 <opcode>
 TU2 nIndex

Where <opcode> is anewarray, checkcast or instanceof. The nIndex value is an index into
the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Class.

The translated structure shall be a variable-length instruction:

31

 TU1 <jeff_opcode>
 VMTYPE tDescriptor
 TU1 nDimension (optional)
 TU1 <0-1 byte pad>
 VMOFFSET ofClassIndex (optional)

The opcode translation array is:

classfile opcode jeff opcode
anewarray jeff_newarray
checkcast jeff_checkcast
instanceof jeff_instanceof

The tDescriptor value reflects the CONSTANT_Class information. The descriptor associated
with the jeff_newarray bytecode has an array dimension equal to the array dimension of
CONSTANT_Class structure plus one. The nDimension value is the array dimension
associated with the descriptor. This value is only present if the VM_TYPE_MULTI is set in the
tDescriptor value. The ofClassIndex value is only present if tDescriptor describes a class or
an array of classes. It's the offset of the class index, a VMCINDEX value stored in the
“referenced class table” of the current class.

4.2.5 The newarray Opcode
If the original instruction in class file format is:

 TU1 newarray
 TU1 nType

Where the nType is a code that indicates the type of array to create.

The translated structure shall be the following sequence:

 TU1 jeff_newarray
 VMTYPE tDescriptor

The tDescriptor value reflects the nType information. The VM_TYPE_MONO flag is always
set in this value.

4.2.6 The multianewarray Opcode
If the original instruction in class file format is:

 TU1 multianewarray
 TU2 nIndex
 TU1 nDimensions

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Class. The nDimensions value represents the
number of dimensions of the array to be created.

The translated structure shall be a variable-length instruction:

rex
Shouldn't jeff be JEFF in table column headers?

32

 TU1 jeff_multianewarray
 TU1 nDimensions
 VMTYPE tDescriptor
 TU1 nArrayDimension
 TU1 <0-1 byte pad>
 VMOFFSET ofClassIndex (optional)

The tDescriptor value reflects the CONSTANT_Class information. The nArrayDimension
value is the array dimension associated with the descriptor. This value is only present if the
VM_TYPE_MULTI is set in the tDescriptor value. The ofClassIndex value is only present if
tDescriptor describes a class or an array of classes. It's the offset of the class index, a
VMCINDEX value stored in the “referenced class table” of the current class.

4.2.7 Field Opcodes
If the original instruction in class file format is:

 TU1 <opcode>
 TU2 nIndex

Where <opcode> is getfield, getstatic, putfield or putstatic. The nIndex value is an index
into the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Fieldref.

The translated structure shall be the following sequence:

 TU1 <jeff opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofFieldInfo

The opcode translation array is:

classfile opcode jeff opcode
getfield jeff_getfield
getstatic jeff_getstatic
putfield jeff_putfield
putstatic jeff_putstatic

If the instruction points to a field of the current class, the ofFieldInfo value is the offset of a
VMFieldInfo structure in the field list of the current class. If the field belongs to another class,
the value of ofFieldInfo is the offset of a VMReferencedField structure in the “referenced
field table” of the current class.

4.2.8 Method Opcodes
If the original instruction in class file format is:

 TU1 <opcode>
 TU2 nIndex

Where <opcode> is invokespecial, invokevirtual, or invokestatic. The nIndex value is an
index into the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Methodref structure.

or

33

 TU1 invokeinterface
 TU2 nIndex
 TU1 nArgs
 TU1 0

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_InterfaceMethodref structure. The nArgs value is
the size in words of the method's arguments in the stack.

The translated structure shall be the following sequence:

 TU1 <jeff opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofMethodInfo

The opcode translation array is:

classfile opcode jeff opcode
invokespecial jeff_invokespecial
invokevirtual jeff_invokevirtual
invokestatic jeff_invokestatic
invokeinterface jeff_invokeinterface

If the instruction points to a method of the current class, the ofMethodInfo value is the offset
of a VMMethodInfo structure in the method list of the current class. If the method belongs to
another class, the value of ofMethodInfo is the offset of a VMReferencedMethod structure in
the “referenced method table” of the current class.

4.2.9 The ldc Opcodes
If the original instruction in class file format is:

 TU1 ldc
 TU1 nIndex

or

 TU1 ldc_w
 TU2 nIndex

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Integer, a CONSTANT_Float, or a
CONSTANT_String.

or

 TU1 ldc2_w
 TU2 nIndex

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Long, or a CONSTANT_Double.

The translated structure shall be the following sequence:

34

 TU1 <jeff opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofConstant

Where <jeff opcode> depends of the constant type. The ofConstant value is the offset of a
data value stored in the constant data section. The type of the value depends of the constant
type.

constant type jeff opcode type of the value pointed to by ofConstant
CONSTANT_String jeff_sldc VMConstUtf8
CONSTANT_Integer jeff_ildc JINT
CONSTANT_Float jeff_fldc JFLOAT
CONSTANT_Long jeff_lldc JLONG
CONSTANT_Double jeff_dldc JDOUBLE

4.2.10 The wide <opcode> Opcodes
If the original instruction in class file format is:

 TU1 wide
 TU1 <opcode>
 TU2 nIndex

Where <opcode> is aload, astore, dload, dstore, fload, fstore, iload, istore, lload, lstore,
or ret. The nIndex value is an index to a local variable in the current frame.

The translated structure shall be the following sequence:

 TU1 <jeff opcode>
 TU1 <0-1 byte pad>
 TU2 nIndex

Where the opcode translation array is:

classfile opcode jeff opcode
wide aload jeff_aload_w
wide astore jeff_astore_w
wide dload jeff_dload_w
wide dstore jeff_dstore_w
wide fload jeff_fload_w
wide fstore jeff_fstore_w
wide iload jeff_iload_w
wide istore jeff_istore_w
wide lload jeff_lload_w
wide lstore jeff_lstore_w
wide ret jeff_ret_w

4.2.11 The wide iinc Opcode
If the original instruction in class file format is:

 TU1 wide
 TU1 iinc
 TU2 nIndex
 TS2 nConstant

35

Where the nIndex value is an index to a local variable in the current frame. The nConstant
value is a signed 16-bit constant.

The translated structure shall be the following sequence:

 TU1 jeff_iinc_w
 TU1 <0-1 byte pad>
 TU2 nIndex
 TS2 nConstant

4.2.12 Jump Opcodes
If the original instruction in class file format is:

 TU1 <opcode>
 TS2 nOffset

Where <opcode> is goto, if_acmpeq, if_acmpne, if_icmpeq, if_icmpne, if_icmplt,
if_icmpge, if_icmpgt, if_icmple, ifeq, ifne, iflt, ifge, ifgt, ifle, ifnonnull, ifnull or jsr.
Execution proceeds at the offset nOffset from the address of the opcode of this instruction.

The translated structure shall be the following sequence:

 TU1 <jeff opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofJump

Where the opcode translation array is:

classfile opcode jeff opcode
goto jeff_goto
if_acmpeq jeff_if_acmpeq
if_acmpne jeff_if_acmpne
if_icmpeq jeff_if_icmpeq
if_icmpne jeff_if_icmpne
if_icmplt jeff_if_icmplt
if_icmpge jeff_if_icmpge
if_icmpgt jeff_if_icmpgt
if_icmple jeff_if_icmple
ifeq jeff_ifeq
ifne jeff_ifne
iflt jeff_iflt
ifge jeff_ifge
ifgt jeff_ifgt
ifle jeff_ifle
ifnonnull jeff_ifnonnull
ifnull jeff_ifnull
jsr jeff_jsr

The ofJump value is the address of the jump in the current bytecode block. It's an offset (in
bytes) from the beginning of the class header structure.

4.2.13 Long Jump Opcodes
If the original instruction in class file format is:

36

 TU1 <opcode>
 TS4 nOffset

Where <opcode> is goto_w or jsr_w. Execution proceeds at the offset nOffset from the
address of the opcode of this instruction.

The translated structure shall be the following sequence:

 TU1 <jeff opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofJump

Where the opcode translation array is:

classfile opcode jeff opcode
goto_w jeff_goto
jsr_w jeff_jsr

The ofJump value is the address of the jump in the current bytecode block. It's an offset (in
bytes) from the beginning of the class header structure.

4.2.14 The sipush Opcode
If the original instruction in class file format is:

 TU1 sipush
 TU1 nByte1
 TU1 nByte2

The translated structure shall be the following sequence:

 TU1 jeff_sipush
 TU1 <0-1 byte pad>
 TS2 nValue

Where nValue is a TS2 with the value (nByte1 << 8) | nByte2.

4.2.15 The newconstarray Opcode
This bytecode creates a new array with the initial values specified in the constant pool. This
instruction replaces a sequence of bytecodes creating an empty array and filling it cell by cell.

 TU1 jeff_newconstarray
 VMTYPE tArrayType
 TU1 <0-1 byte pad>
 TU2 nLength
 VMOFFSET ofConstData

The tArrayType is a code that indicates the type of array to create. It must take one of the
following values: char[], byte[], short[], boolean[], int[], long[], float[] or double[]. The
VM_TYPE_MONO and VM_TYPE_REF flags are always set in this value.

The nLength value is the length, in elements, of the new array.

The ofConstData value is the offset of an array of values in the constant data section. The
type of the array depends of the tArrayType value.

37

Type of
Array

tArrayType
Value

Structure pointed to by ofConstData

short[] 0x61 An array of nLength JSHORT values.
int[] 0x62 An array of nLength JINT values.
long[] 0x63 An array of nLength JLONG values.
byte[] 0x64 An array of nLength JBYTE values.
char[] 0x65 An Utf8 string of nLength characters (not prefixed by the

length)
float[] 0x66 An array of nLength JFLOAT values.
double[] 0x67 An array of nLength JDOUBLE values.
boolean[] 0x68 An array of nLength JBYTE values. Where a zero value

means false and a non-zero value means true.

A new mono-dimensional array of nLength elements is allocated from the garbage-collected
heap. All of the elements of the new array are initialized with the values stored in the constant
structure. A reference to this new array object is pushed into the operand stack.

4.3 Unchanged Instructions
This section defines all the other instruction of JEFF bytecode not previously described in
section 4.2. As already noticed, these instructions are kept unchanged in the translation from
class file bytecode. In order for this document to be self-contained, they are defined here.

4.3.1 One-Byte Instructions

These instructions have no argument. Here is their list (the mnemonic name of the opcode is
preceded here by its value):

(0x00) jeff_nop
(0x01) jeff_aconst_null
(0x02) jeff_iconst_ml
(0x03) jeff_iconst_0
(0x04) jeff_iconst_1
(0x05) jeff_iconst_2
(0x06) jeff_iconst_3
(0x07) jeff_iconst_4
(0x08) jeff_iconst_5
(0x09) jeff_lconst_0
(0x0a) jeff_lconst_1
(0x0b) jeff_fconst_0
(0x0c) jeff_fconst_1
(0x0d) jeff_fconst_2
(0x0e) jeff_dconst_0
(0x0f) jeff_dconst_1
(0x1a) jeff_iload_0
(0x1b) jeff_iload_1
(0x1c) jeff_iload_2
(0x1d) jeff_iload_3
(0x1e) jeff_lload_0
(0x1f) jeff_lload_1
(0x20) jeff_lload_2
(0x21) jeff_lload_3

38

(0x22) jeff_fload_0
(0x23) jeff_fload_1
(0x24) jeff_fload_2
(0x25) jeff_fload_3
(0x26) jeff_dload_0
(0x27) jeff_dload_1
(0x28) jeff_dload_2
(0x29) jeff_dload_3
(0x2a) jeff_aload_0
(0x2b) jeff_aload_1
(0x2c) jeff_aload_2
(0x2d) jeff_aload_3
(0x2e) jeff_iaload
(0x2f) jeff_laload
(0x30) jeff_faload
(0x31) jeff_daload
(0x32) jeff_aaload
(0x33) jeff_baload
(0x34) jeff_caload
(0x35) jeff_saload
(0x3b) jeff_istore_0
(0x3c) jeff_istore_1
(0x3d) jeff_istore_2
(0x3e) jeff_istore_3
(0x3f) jeff_lstore_0
(0x40) jeff_lstore_1
(0x41) jeff_lstore_2
(0x42) jeff_lstore_3
(0x43) jeff_fstore_0
(0x44) jeff_fstore_1
(0x45) jeff_fstore_2
(0x46) jeff_fstore_3
(0x47) jeff_dstore_0
(0x48) jeff_dstore_1
(0x49) jeff_dstore_2
(0x4a) jeff_dstore_3
(0x4b) jeff_astore_0
(0x4c) jeff_astore_1
(0x4d) jeff_astore_2
(0x4e) jeff_astore_3
(0x4f) jeff_iastore
(0x50) jeff_lastore
(0x51) jeff_fastore
(0x52) jeff_dastore
(0x53) jeff_aastore
(0x54) jeff_bastore
(0x55) jeff_castore
(0x56) jeff_sastore
(0x57) jeff_pop
(0x58) jeff_pop2
(0x59) jeff_dup
(0x5a) jeff_dup_x1
(0x5b) jeff_dup_x2
(0x5c) jeff_dup2
(0x5d) jeff_dup2_x1
(0x5e) jeff_dup2_x2
(0x5f) jeff_swap
(0x60) jeff_iadd
(0x61) jeff_ladd
(0x62) jeff_fadd

39

(0x63) jeff_dadd
(0x64) jeff_isub
(0x65) jeff_lsub
(0x66) jeff_fsub
(0x67) jeff_dsub
(0x68) jeff_imul
(0x69) jeff_lmul
(0x6a) jeff_fmul
(0x6b) jeff_dmul
(0x6c) jeff_idiv
(0x6d) jeff_ldiv
(0x6e) jeff_fdiv
(0x6f) jeff_ddiv
(0x70) jeff_irem
(0x71) jeff_lrem
(0x72) jeff_frem
(0x73) jeff_drem
(0x74) jeff_ineg
(0x75) jeff_lneg
(0x76) jeff_fneg
(0x77) jeff_dneg
(0x78) jeff_ishl
(0x79) jeff_lshl
(0x7a) jeff_ishr
(0x7b) jeff_lshr
(0x7c) jeff_iushr
(0x7d) jeff_lushr
(0x7e) jeff_iand
(0x7f) jeff_land
(0x80) jeff_ior
(0x81) jeff_lor
(0x82) jeff_ixor
(0x83) jeff_lxor
(0x85) jeff_i2l
(0x86) jeff_i2f
(0x87) jeff_i2d
(0x88) jeff_l2i
(0x89) jeff_l2f
(0x8a) jeff_l2d
(0x8b) jeff_f2i
(0x8c) jeff_f2l
(0x8d) jeff_f2d
(0x8e) jeff_d2i
(0x8f) jeff_d2l
(0x90) jeff_d2f
(0x91) jeff_i2b
(0x92) jeff_i2c
(0x93) jeff_i2s
(0x94) jeff_lcmp
(0x95) jeff_fcmpl
(0x96) jeff_fcmpg
(0x97) jeff_dcmpl
(0x98) jeff_dcmpg
(0xa9) jeff_ret
(0xac) jeff_ireturn
(0xad) jeff_lreturn
(0xae) jeff_freturn
(0xaf) jeff_dreturn
(0xb0) jeff_areturn
(0xb1) jeff_return

40

(0xbe) jeff_arraylength
(0xbf) jeff_athrow
(0xc2) jeff_monitorenter
(0xc3) jeff_monitorexit
(0xca) jeff_breakpoint

4.3.2 Two-bytes Instructions
These instructions have a one byte argument. Here is their list (the mnemonic name of the
opcode is preceded here by its value):

(0x10) jeff_bipush
(0x15) jeff_iload
(0x16) jeff_lload
(0x17) jeff_fload
(0x18) jeff_dload
(0x19) jeff_aload
(0x36) jeff_istore
(0x37) jeff_lstore
(0x38) jeff_fstore
(0x39) jeff_dstore
(0x3a) jeff_astore

4.4 Complete Opcode Mnemonics by Opcode
This section is the list of all the mnemonics values used in JEFF.

(0x00) jeff_nop
(0x01) jeff_aconst_null
(0x02) jeff_iconst_ml
(0x03) jeff_iconst_0
(0x04) jeff_iconst_1
(0x05) jeff_iconst_2
(0x06) jeff_iconst_3
(0x07) jeff_iconst_4
(0x08) jeff_iconst_5
(0x09) jeff_lconst_0
(0x0a) jeff_lconst_1
(0x0b) jeff_fconst_0
(0x0c) jeff_fconst_1
(0x0d) jeff_fconst_2
(0x0e) jeff_dconst_0
(0x0f) jeff_dconst_1
(0x10) jeff_bipush
(0x11) jeff_sipush
(0x12) jeff_unused_0x12
(0x13) jeff_unused_0x13
(0x14) jeff_unused_0x14
(0x15) jeff_iload
(0x16) jeff_lload
(0x17) jeff_fload
(0x18) jeff_dload
(0x19) jeff_aload
(0x1a) jeff_iload_0

(0x1b) jeff_iload_1
(0x1c) jeff_iload_2
(0x1d) jeff_iload_3
(0x1e) jeff_lload_0
(0x1f) jeff_lload_1
(0x20) jeff_lload_2
(0x21) jeff_lload_3
(0x22) jeff_fload_0
(0x23) jeff_fload_1
(0x24) jeff_fload_2
(0x25) jeff_fload_3
(0x26) jeff_dload_0
(0x27) jeff_dload_1
(0x28) jeff_dload_2
(0x29) jeff_dload_3
(0x2a) jeff_aload_0
(0x2b) jeff_aload_1
(0x2c) jeff_aload_2
(0x2d) jeff_aload_3
(0x2e) jeff_iaload
(0x2f) jeff_laload
(0x30) jeff_faload
(0x31) jeff_daload
(0x32) jeff_aaload
(0x33) jeff_baload
(0x34) jeff_caload
(0x35) jeff_saload

41

(0x36) jeff_istore
(0x37) jeff_lstore
(0x38) jeff_fstore
(0x39) jeff_dstore
(0x3a) jeff_astore
(0x3b) jeff_istore_0
(0x3c) jeff_istore_1
(0x3d) jeff_istore_2
(0x3e) jeff_istore_3
(0x3f) jeff_lstore_0
(0x40) jeff_lstore_1
(0x41) jeff_lstore_2
(0x42) jeff_lstore_3
(0x43) jeff_fstore_0
(0x44) jeff_fstore_1
(0x45) jeff_fstore_2
(0x46) jeff_fstore_3
(0x47) jeff_dstore_0
(0x48) jeff_dstore_1
(0x49) jeff_dstore_2
(0x4a) jeff_dstore_3
(0x4b) jeff_astore_0
(0x4c) jeff_astore_1
(0x4d) jeff_astore_2
(0x4e) jeff_astore_3
(0x4f) jeff_iastore
(0x50) jeff_lastore
(0x51) jeff_fastore
(0x52) jeff_dastore
(0x53) jeff_aastore
(0x54) jeff_bastore
(0x55) jeff_castore
(0x56) jeff_sastore
(0x57) jeff_pop
(0x58) jeff_pop2
(0x59) jeff_dup
(0x5a) jeff_dup_x1
(0x5b) jeff_dup_x2
(0x5c) jeff_dup2
(0x5d) jeff_dup2_x1
(0x5e) jeff_dup2_x2
(0x5f) jeff_swap
(0x60) jeff_iadd
(0x61) jeff_ladd
(0x62) jeff_fadd
(0x63) jeff_dadd
(0x64) jeff_isub
(0x65) jeff_lsub
(0x66) jeff_fsub
(0x67) jeff_dsub
(0x68) jeff_imul
(0x69) jeff_lmul
(0x6a) jeff_fmul
(0x6b) jeff_dmul
(0x6c) jeff_idiv
(0x6d) jeff_ldiv
(0x6e) jeff_fdiv
(0x6f) jeff_ddiv
(0x70) jeff_irem
(0x71) jeff_lrem

(0x72) jeff_frem
(0x73) jeff_drem
(0x74) jeff_ineg
(0x75) jeff_lneg
(0x76) jeff_fneg
(0x77) jeff_dneg
(0x78) jeff_ishl
(0x79) jeff_lshl
(0x7a) jeff_ishr
(0x7b) jeff_lshr
(0x7c) jeff_iushr
(0x7d) jeff_lushr
(0x7e) jeff_iand
(0x7f) jeff_land
(0x80) jeff_ior
(0x81) jeff_lor
(0x82) jeff_ixor
(0x83) jeff_lxor
(0x84) jeff_iinc
(0x85) jeff_i2l
(0x86) jeff_i2f
(0x87) jeff_i2d
(0x88) jeff_l2i
(0x89) jeff_l2f
(0x8a) jeff_l2d
(0x8b) jeff_f2i
(0x8c) jeff_f2l
(0x8d) jeff_f2d
(0x8e) jeff_d2i
(0x8f) jeff_d2l
(0x90) jeff_d2f
(0x91) jeff_i2b
(0x92) jeff_i2c
(0x93) jeff_i2s
(0x94) jeff_lcmp
(0x95) jeff_fcmpl
(0x96) jeff_fcmpg
(0x97) jeff_dcmpl
(0x98) jeff_dcmpg
(0x99) jeff_ifeq
(0x9a) jeff_ifne
(0x9b) jeff_iflt
(0x9c) jeff_ifge
(0x9d) jeff_ifgt
(0x9e) jeff_ifle
(0x9f) jeff_if_icmpeq
(0xa0) jeff_if_icmpne
(0xa1) jeff_if_icmplt
(0xa2) jeff_if_icmpge
(0xa3) jeff_if_icmpgt
(0xa4) jeff_if_icmple
(0xa5) jeff_if_acmpeq
(0xa6) jeff_if_acmpne
(0xa7) jeff_goto
(0xa8) jeff_jsr
(0xa9) jeff_ret
(0xaa) jeff_tableswitch
(0xab) jeff_lookupswitch
(0xac) jeff_ireturn
(0xad) jeff_lreturn

42

(0xae) jeff_freturn
(0xaf) jeff_dreturn
(0xb0) jeff_areturn
(0xb1) jeff_return
(0xb2) jeff_getstatic
(0xb3) jeff_putstatic
(0xb4) jeff_getfield
(0xb5) jeff_putfield
(0xb6) jeff_invokevirtual
(0xb7) jeff_invokespecial
(0xb8) jeff_invokestatic
(0xb9) jeff_invokeinterface
(0xba) jeff_unused_0xba
(0xbb) jeff_new
(0xbc) jeff_newarray
(0xbd) jeff_unused_0xbd
(0xbe) jeff_arraylength
(0xbf) jeff_athrow
(0xc0) jeff_checkcast
(0xc1) jeff_instanceof
(0xc2) jeff_monitorenter
(0xc3) jeff_monitorexit
(0xc4) jeff_unused_0xc4
(0xc5) jeff_multianewarray
(0xc6) jeff_ifnull

(0xc7) jeff_ifnonnull
(0xc8) jeff_unused_0xc8
(0xc9) jeff_unused_0xc9
(0xca) jeff_breakpoint
(0xcb) jeff_newconstarray
(0xcc) jeff_slookupswitch
(0xcd) jeff_stableswitch
(0xce) jeff_ret_w
(0xcf) jeff_iinc_w
(0xd0) jeff_sldc
(0xd1) jeff_ildc
(0xd2) jeff_lldc
(0xd3) jeff_fldc
(0xd4) jeff_dldc
(0xd5) jeff_dload_w
(0xd6) jeff_dstore_w
(0xd7) jeff_fload_w
(0xd8) jeff_fstore_w
(0xd9) jeff_iload_w
(0xda) jeff_istore_w
(0xdb) jeff_lload_w
(0xdc) jeff_lstore_w
(0xdd) jeff_aload_w
(0xde) jeff_astore_w

43

5 Restriction
The only restriction of JEFF when compared with class file format is the maximum size of a
class area. Within a file, the size of a class area cannot exceed 64Kb. A class area is the block
of data included between the VMClassHeader structure and the last data specific to the class.
The JEFF syntax is very compact and the class area does not include any symbolic
information. This means that the corresponding class file can be much bigger than 64Kb.

Otherwise, the following boundaries apply:
• The total size of a file cannot exceed 4Gb.
• The number of classes stored in a file cannot exceed 65,536.
• The number of packages stored in a file cannot exceed 65,536.
• The number of fields in a file cannot exceed 4Giga.
• The number of methods in a file cannot exceed 4Giga.

rex
Change Kb and Gb to KB and GB, respectively.

rex
Giga really isn't a standard term. perhasp you can say 2^32.

rex
Change `boundaries' to `limits'

rex
A cross-reference index would be helpful.

PAS (Publicly Available Specification) Submission

from J Consortium, Inc.

for JEFF™

11 April 2001

2

1. Introduction

This Explanatory Report is for J Consortium’s PAS submission for JEFF. JEFF is a file
format specification, which allows storing on-platform non pre-linked classes in a form
that does not require any modification for efficient execution. JEFF exhibits a large range
of benefits:

- The first of these benefits is that classes represented with JEFF can be executed
directly from storage memory, without requiring any loading into runtime memory in
order to be translated in a format adequate for execution. This results in a dramatic
economy of runtime memory: programs with a size of several hundreds of kilobytes
may then be executed with only a few kilobytes of dynamic runtime memory thanks
to JEFF.

- The second benefit of JEFF is the saving of the processing time usually needed at the
start of an execution to load into dynamic memory the stored Java™ classes.

- The third benefit is that JEFF does not require the classes to be pre-linked, hence fully
preserving the flexibility of Java technology. With JEFF, programs can be updated
on-platform by the mere replacement of some individual classes without requiring to
replace the complete program. This provides a decisive advantage over previously
proposed "ready-for-execution" formats providing only pre-linked programs.

- A last benefit of JEFF is that it allows a compact storage of programs, twice smaller
than usual class file format, and this without any compression.

This submission is being made in accordance with the criteria in JTC 1 N5746, “The
Transposition of Publicly Available Specifications into International Standards – A
Management Guide – Revision 1 of JTC 1 N3582”.

1.1 Executive Summary

JEFF is the product of J Consortium, a consortium formed in 1999, whose goal is to
promote and drive the development and adoption of open, accessible Java specifications
for real-time and embedded technologies. JEFF represents the synthesis of many ideas
and previous product experiences in defining a storage format for representing Java
classes. The goal of this new format, called JEFF, is to provide a publicly specified,
royalty-free, ready-for-execution format allowing Java programs to be executed directly
from static memory, thus avoiding the usual necessity to recopy classes into dynamic
runtime memory for execution. Consequently, with JEFF, the size of the dynamic
runtime memory needed for executing a Java program is no longer proportional to the
size of the program itself and large Java programs can be executed on devices providing a
dynamic runtime memory much smaller than these programs. This is especially crucial
for small Java-enabled devices that cannot afford to run most applications if not using a
ready-for-execution format to store Java classes. Contrary to so-called "romized" Java
code, JEFF is not a pre-linked format and preserves all the flexibility of Java related to

3

dynamic linking, which is fundamental for bringing the needed economy of memory
attached to ready-for-execution format without sacrificing the flexibility of Java related
to on-platform linking.

J Consortium released the JEFF specification for public review in October 2000. After
including minor corrections and clarifications to the October 2000 release, the JEFF
specification was finalized version 1.0, April 2001:
http://www.j-consortium.org/jeffwg/jeff_spec_1.0.pdf .

J Consortium makes all of its final specifications freely available on the Internet.

1.2 Background

The usual format for storing Java classes for use on desktop and servers is called “Class
File format” and is defined in published books. This is not a ready-for-execution format:
the information accompanying the bytecode is stored into what is called “constant-pool”.
The constant-pool is viewed as a table and the references made in the bytecode to the
constant-pool use indexes in this table. However, the entries of the constant-pool are of
variable length and the only way to deal efficiently with this representation is to load it
into dynamic memory at runtime in order to map the information into the data structures
allowing an efficient exploitation. In consequence, the size of runtime memory needed to
execute a Java program is always superior to the size of the stored program.

The need for a ready-for-execution format to store Java classes is obvious on small
devices that have a limited amount of runtime memory. This allows an execution in-place
of the code and allows to keep the runtime memory requirement very low as only the
execution stack and the object heap has to reside in the runtime memory, and not the
program itself.

The first kind of very small devices for which a particular idiom of Java language has
ever been defined is smart cards. Smart cards are mainly used as secure payment means
in many countries and are also used to secure devices such as cellular phones or set-top-
boxes. In order for Java programs to fit in the memory constraints imposed by current
smart card technology, a ready-for-execution format was needed and has been defined by
the smart card manufacturers. This format, which is free for examination but cannot be
deployed on a royalty-free basis, is called CAP File format.

The CAP File format has many interesting features and is only partially pre-linked.
However, the symbolic references between classes belonging to different files are
replaced by numeric tokens, which leads to reduce a part of the flexibility provided
usually with Java technologies by keeping symbolic references for on-platform
resolution. The CAP File format defines also numerous restrictions on the number of
classes, methods and fields that can be taken into consideration for the sake of
compactness of internal references.

4

For other kind of small devices that can support less restricted Java idioms, such as those
defined for embedded systems, various so-called “romized” or “compact” format have
been defined in order to provide ready-for-execution formats. However, these formats,
that are generally not publicly available on a royalty-free basis, are completely pre-linked
and do not provide any of the flexibility associated with the usual on-platform linking
associated with Java classes.

At the end of 1999, it was clear that a ready-for-execution format was needed to help in
the massive deployment of Java technologies on small devices. This format would
provide all the flexibility associated with the usual Class File format and would be
publicly available and deployable on a royalty-free basis.

Several small devices manufacturers had already defined, after several years of separate
efforts and in a proprietary way, such ready-for-execution formats that could provide part
of the flexibility provided by the usual Class File format. They decided to share their
expertise in a Working Group hosted by J Consortium, contributing their IP openly to
build a publicly available and royalty-free format. The best of their expertise solved the
remaining issues attached to each of their proprietary formats. The final synthesis was
achieved in September-October 2000 and the new format called “JEFF”.

The JEFF specification was submitted to an intensive public review and thoroughly
tested, via the creation of several Class File to JEFF converters and several Java virtual
machines exploiting JEFF format instead of the usual class file format. During this period
of review and testing it appeared that JEFF was fulfilling all the expectations of its
designers and provided even unexpected secondary benefits such as a gain of 50% on the
storage size of programs with respect to usual Class File format.

It is now thought that the interest of JEFF may go beyond the world of small devices and
that in fact any kind of Java virtual machine could benefit of the advantages provided by
JEFF even on the biggest platforms.

1.3 Document Organization

The remainder of this Explanatory Report provides the information requested in clauses 7
of JTC1 N5746. In addition, clause 2 of this document provides information on changes
to the specification during the transposition process plus a contact for questions, which
may arise during any stage of the transposition process.

2. Revisions and Questions

2.1 Revisions to the Specification during Transposition Process

As JEFF is a widely implemented specification, J Consortium wants to avoid technical
divergence between the transposed standard and the corresponding J Consortium
specification. Therefore, in accord with JTC1 N5746, 5.2.5, the J Consortium requests

5

that this document remain technically unchanged throughout the transposition process. If
this process should uncover defects, or identify enhancements and extensions (for
instance as comments accompanying ballot responses), these will be collected and
processed as stated in 3.1 below.

2.2 Questions During the Voting Period

J Consortium welcomes any questions NBs may have during the voting period for this
PAS submission and will endeavor to reply promptly. Questions should be addressed to:

Wendy Fong
Chairman, J Consortium
P.O. Box 1565
Cupertino, California 95015-1565.

or by e-mail to

wendy_fong@hp.com

3. Organization (J Consortium’s) Acceptance Criteria

As requested in N5746, 5.2.2, the conditions for J Consortium’s recognition as a PAS
submitter have not changed. This information is documented in J Consortium’s PAS
submitter application, document JTC1 N6088, “J Consortium’s Application to ISO/IEC
JTC 1 for recognition as a Submitter of a Publicly Available Specification (PAS)
(available on the JTC1 web site at http://www.jtc1.org). This application was approved
as documented in JTC1 N6316, “Notice of Approval of the Application from the J
Consortium for Recognition as a Submitter of Publicly Available Specifications”
following the response to the ballot comments submitted to JTC 1 in “J Consortium's
Response to ISO/IEC JTC 1 N 6178 for recognition as a Submitter of a Publicly
Available Specification (PAS)”.

The material in these documents is not duplicated in this clause.

3.1 Comments Addressed from PAS Application

Many of the original ballot comments concerned the Document Related Criteria which
are addressed below in clause 4. Of course, the J Consortium’s “track record” is now one
year more mature than when the PAS application was originally delivered. And
J Consortium continues to have a cooperative attitude about any Working Arrangements
that may be proposed by JTC 1. Also, there are no third-party trademarks in the title of
this specification.

6

Enhancements, extensions, and major modifications to J Consortium specifications are
handled procedurally in J Consortium in much the same way they are in ISO, i.e., new
work. Any related new J Consortium specifications will be promptly submitted to JTC 1
using the PAS process to progress a new ISO standard. Again, this will maintain
alignment of the ISO standard and the J Consortium specification.

3.2 J Consortium’s By-laws, SD-2 Technical Committee Organization, Rules, and
Procedures and Membership Information

There have been no updates to J Consortium’s By-laws or SD-2 Technical Committee
Organization, Rules, and Procedures documents since the 2000 application in JTC 1
N6088 and the J Consortium Membership has grown. These documents are available for
viewing at: http://www.j-consortium.org

4. Document Related Criteria

The criteria requested in 7.4 of JTC 1 N5746 are addressed in the following subclauses.
The numbering is identical to that in 7.4 without the leading 7 and the items of
information requested are duplicated below with the items of information being requested
rendered in italics.

4.1 Quality

Within its scope the specification shall completely describe the functionality (in terms of
interfaces, protocols, formats, etc) necessary for an implementation of the PAS. If it is
based on a product, it shall include all the functionality necessary to achieve the stated
level of compatibility or interoperability in a product independent manner.

4.1.1) Completeness (M):

a) How well are all interfaces specified?

JEFF is a format that is clearly and completely specified in the specification
document provided by J Consortium. The specification document is self-contained
and can be read as a grammar specification. In addition, information is provided that
allows creation of a Class File to JEFF converter.

b) How easily can implementation take place without need of additional
 descriptions?

JEFF specification defines completely a format in a self-contained way. With no
additional description than those provided in the specification, it is possible to
implement a JEFF analyzer that can test the compliance of any file with the specified
format.

7

The way information is represented in JEFF and how to navigate in a JEFF file to
retrieve information is completely defined in a self-contained manner.

The specification provides in addition sufficient information to create a converter
translating sets of Class Files into JEFF files.

c) What proof exists for successful implementations (e.g. availability of test
 results for media standards)?

At present, there are at least three successful commercial tools from different vendors
that will be available in the market that support JEFF. These tools include a Class File
to JEFF converter and a virtual machine using exclusively JEFF for program
representation. Two of these virtual machines have already passed a very exhaustive
suite of more than 500 test programs made for virtual machines using the usual Class
File format.

4.1.2) Clarity:
a) What means are used to provide definitive descriptions beyond straight text?

The specification is a semi-formalized text with numerous tables that defines
completely the grammar of the format.

b) What tables, figures, and reference materials are used to remove ambiguity?

The specification uses numerous tables in addition to semi-formalized textual
definitions. The specification is made in such a way that no syntactic ambiguity can
remain. In addition, the specification provides all the information needed to create a
Class File to JEFF converter, which fixes any semantic ambiguity for the reader
aware of the domain.

c) What contextual material is provided to educate the reader?

An additional slide presentation is provided on the J Consortium web site, written by
some of the main designers of JEFF:

 http://www.j-consortium.org/jeffwg/jeffpres0201.pdf

On the public web site of one of the vendors of JEFF-related tools can be found a
white paper explaining the advantages of JEFF:

 http://www.cardsoft.com/html/products/CJKVM_WP_v1.11.PDF

and a slide presentation of various products using JEFF technology:
 http://www.cardsoft.com/html/events/presentations/RoadshowSlidesJPB.pdf .

8

4.1.3) Testability (M)

The extent and use of conformance/interoperability tests or means of implementation
verification (e.g. availability of reference material for magnetic media) shall be
described, as well as the provisions the specification has for testability.
The specification shall have had sufficient review over an extended time period to
characterize it as being stable.

Currently, there are no formal JEFF testing organizations such as The Open Group or
NIST. However, throughout the specification, is clearly and completely specified
what is necessary for an implementation to claim compliance or partial compliance to
the specification.

The initial draft was available for 6 months and has received extensive scrutiny and
feedback from a large user community.

Also, as noted earlier, there are over three commercial realizations of the standard,
one of them made by a company that was not involved in the design of JEFF, and
some academic and research realizations, which serve as confirmation of the validity
and feasibility of JEFF.

4.1.4) Stability (M):

a) How long has the specification existed, unchanged, since some form of
verification (e.g., prototype testing, paper analysis, full interoperability
tests) has been achieved?

b) To what extent and for how long have products been implemented using the
specification?

c) What mechanisms are in place to track versions, fixes, and addendums?

The initial specification was available for six months and has received extensive
scrutiny and feedback from a large user community.

As noted earlier, there are over three commercial realizations of the standard and, in
addition, many academic and research realizations, which serve as confirmation of
the validity and feasibility of JEFF.

Fixes and new versions are handled in accord with the J Consortium process
described briefly in 3.1 above and full detail in the J Consortium SD-2 Technical
Committee Organization, Rules and Procedures, see 3.2.

4.1.5) Availability (M):
a) Where is the specification available(e.g., one source, multinational locations,

9

what types of distributors)?

 This specification is available on the Internet from the J Consortium web site at
http://www.j-consoritum.org/jeffwg/index.html.

b) How long has the specification been available?

 The JEFF specification has been available since April 2001.

c) Has the distribution been widespread or restricted? (describe situation)

d) What are the costs associated with specification availability?

This specification is distributed with no restrictions and at no cost from the J
Consortium web site.

4.2 Consensus (M)

The accompanying report shall describe the extent of (inter)national consensus that the
document has already achieved.

4.2.1) Development Consensus:

a) Describe the process by which the specification was developed.
b) Describe the process by which the specification was approved.
c) What "levels" of approval have been obtained?

This, and all J Consortium specifications, are created under the open process set forth
in the J Consortium SD-2 Technical Committee Organization, Rules and Procedures,
see reference in 3.2. This specification was approved by J Consortium members from
all major industrialized countries and many developing countries. J Consortium
membership is open to all organizations.

4.2.2) Response to User Requirements:

a) How and when were user requirements considered and utilized?
b) To what extent have users demonstrated satisfaction?

Users are involved in the process throughout except for the portion of the process
requiring commercialization in products. During the review process of the JEFF
specification several implementations of Class File to JEFF converters and JEFF-
based virtual machines have been completed and have been reported to give entire
satisfaction to their implementers after small modifications were made to the specs to
correct minor inconsistencies detected during implementation.

4.2.3) Market Acceptance:

10

a) How widespread is the market acceptance today? Anticipated?
b) What evidence is there of market acceptance in the literature?

JEFF is a new format that provides incontestable and quite needed benefits with no
drawback. Being defined independently, JEFF has not yet received a massive
promotion. However, JEFF is already supported by independent non-profit
organizations that are publicly providing APIs for small devices, such as the STIP
Consortium (www.stip.org) or FINREAD, a workshop of CEN/ISS (final
specifications to be published on May 15).

4.2.4) Credibility:

a) What is the extent and use of conformance tests or means of implementation
verification?

Conformance tests can be fully implemented. In practice, existing converters provide
automatically tested JEFF files as a result of the strict application of a translation
conforming to the grammar defined in the specification.

b) What provisions does the specification have for testability?

Full testability is granted by the specification as it defines completely the format. In
practice, JEFF files are coming from a translation from a set of Class files resulting
from the application of a converter applying the grammar defined in the specification.
Such files resulting from a conversion are necessarily fully compliant with the
specification if the converter has been developed according to the specification,
which is the case of the existing commercial converters.

4.3 Alignment

The specification should be aligned with existing JTC1 standards or ongoing work and
thus complement existing standards, architectures and style guides. Any conflicts with
existing standards, architectures and style guides should be made clear and justified.

4.3.1) Relationship to Existing Standards:
a) What international standards are closely related to the specification and how?

There are none known.

b) To what international standards is the proposed specification a natural
extension?

There are none known.

c) How is the specification related to emerging and ongoing JTC 1 projects?

11

There are none known.

4.3.2) Adaptability and Migration:

a) What adaptations (migrations) of either the specification or international
standards would improve the relationship between the specification and
international standards?

b) How much flexibility do the proponents of the specification have?

 The specification can be readily adapted to a number of other standards through the
use of its specialization (extensibility) mechanisms. With these mechanisms, it is
possible to create refined versions of the general JEFF specifications for specific
purposes or specific domains.

c) What are the longer range plans for new/evolving specifications?

 J Consortium plans to submit new/evolving specifications to JTC 1.

4.3.3) Substitution and Replacement:

a) What needs exist, if any, to replace an existing international standard?
Rationale?

There are none known.

b) What is the need and feasibility of using only a portion of the specification as
an international standard?

There are none known.

a) What portions, if any, of the specification do not belong in an international
standard (e.g., too implementation specific)?

There are none known.

4.3.4) Document Format and Style

a) What plans, if any, exist to conform to JTC 1 document styles?

The document is in J Consortium’s document format, but we are unaware of any
substantive incompatibilities with ISO’s document format.

