UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

1of 10

Proposed Draft
Unicode Technical Report #29

TEXT BOUNDARIES

Version 1

Authors Mark Davis (mark.davis@us.ibm.com)

Date 2001-03-11

This Version http://www.unicode.org/reports/tr29/tr29-1.html
Previous Version n/a

Latest Version http://www.unicode.org/reports/tr29

Tracking Number 1

Summary

This document describes guidelines for determining default boundaries between certain significant text
elements: grapheme clusters (“user characters”), words, and sentences. For the related line-break
boundaries, see UAX #14. Line Breaking Properties.

Status

This document is a proposed draft Unicode Technical Report. Publication does not imply endorsement
by the Unicode Consortium. This is a draft document which may be updated, replaced, or superseded by
other documents at any time. This s not a stable document, it is inappropriate to cite this document as
other than a work in progress.

A list of current Unicode Technical Reports is found on http.//www.unicode.org/unicode/reports/. For
more information about versions of the Unicode Standard and how to reference this document, see
http.//www.unicode.org/unicode/standard/versions/.

Contents

e 1 Introduction

o 1.1 Notation
2 Grapheme Cluster Boundaries
3 Word Boundaries
4 Sentence Boundaries
References
Modifications

1 Introduction

This document describes guidelines for determining default boundaries between certain significant text
elements: grapheme clusters ("user characters”), words, and sentences. It updates most of 5.15 Locating
Text Element Boundaries, except for the line-break boundaries, which are covered in UAX #14: Line
Breaking Properties.

A string of Unicode-encoded text often needs to be broken up into text elements programmatically.
Common examples of text elements include what users think of as characters, words, lines, and
sentences. The precise determination of text elements may vary according to locale, even as to what
constitutes a character. The goal of matching user perceptions cannot always be met because the text

8/14/2003 2:44 PM

UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

2 of 10

alone does not always contain enough information to unambiguously decide boundaries. For example,
the period (U+002E FULL STOP) is used ambiguously, sometimes for end-of-sentence purposes,
sometimes for abbreviations, and sometimes for numbers. In most cases, however, programmatic text
boundaries can match user perceptions quite closely, or at least not surprise the user.

Rather than concentrate on algorithmically searching for text elements themselves, a simpler and more
useful computation looks instead at detecting the boundaries between those text elements. The
determination of those boundaries is often critical to the performance of general software, so it is
important to be able to make such a determination as quickly as possible.

The following boundary determination mechanism provides a straightforward and efficient way to
determine certain default significant boundaries in text. It builds upon the uniform character
representation of the Unicode Standard, while handling the large number of characters and special
features such as combining marks and surrogates in an effective manner. As this boundary
determination mechanism lends itself to a completely data-driven implementation, it can be tailored to
particular locales or user preferences without recoding.

For some languages, this basic mechanism is not sufficient. For example, Thai line-break or word-break
boundaries requires the use of dictionary lookup, analogous to English hyphenation. An implementation
therefore may need to provide means to override or subclass the default mechanism described in this
document.

The large character set of the Unicode Standard and its representational power place requirements on
both the specification of text element boundaries and the underlying implementation. The specification
needs to allow for the designation of large sets of characters sharing the same characteristics (for
example, uppercase letters), while the implementation must provide quick access and matches to those
large sets. The mechanism also must handle special features of the Unicode Standard, such as
combining or nonspacing marks, conjoining jamo, and surrogate characters.

1.1 Notation

A boundary specification defines different classes, then lists the rules for boundaries in terms of those
classes. The character classes are specified as a list, where each element of the list is

e A literal character

e A range of characters

e A property of a Unicode character, as defined in the Unicode Character Database
e Boolean combinations of the above

For more information, see UTR #18: Unicode Regular Expression Guidelines.

The rules are numbered for reference and are applied in order. That is, there is an implicit “otherwise” at
the front of each rule following the first.

Additional notational conventions used in the rules are as follows:

+|Allow break here.
X|Do not allow break here.

An underscore (“_") is used to indicate a space in examples.

As in other cases, these are a /ogical descriptions of the processes: implementations can achieve the
same results without following these rules precisely. In particular, most production-grade
implementations will use a state-table approach. In that case, the performance does not depend on the
complexity or number of rules. The only feature that does affect performance is the number of
characters that may match after the boundary position in a rule that is matched.

Some additional constraints are reflected in the specification. These constraints make the
implementation significantly simpler and more efficient and have not been found to be limitations for
natural language use.

8/14/2003 2:44 PM

UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

1. Single boundaries. Each rule has exactly one boundary position. Because of constraint (1), this
restriction is more a limitation on the specification methods, because a rule with two boundaries
could generally be expressed as two rules. For example, “ab+cd-+ef” could be broken into “ab+cd”
and “cd+ef”.

2. /gnore degenerates. No special provisions are made to get marginally better behavior for
degenerate cases that never occur in practice, such as an A followed by an Indic combining mark.

Different issues are present with different types of boundaries, as the following discussion and
examples should make clear.

2 Grapheme Cluster Boundaries

One or more Unicode characters may make up what the user thinks of as a character or basic unit of the
language. To avoid ambiguity with the computer use of the term character, this is called a grapheme
cluster. For example, “G” + acute-accentis a grapheme cluster: it is thought of as a single character by
users, yet is actually represented by two Unicode code points. For more information on the ambiguity in
the term character, see Unicode Technical Report #17, “Character Encoding Model”.

Grapheme clusters include, but are not limited to, combining character sequences such as (g + °),
digraphs such as Slovak “ch”, and sequences with letter modifiers such as kW. Grapheme cluster
boundaries are important for collation, regular-expressions, and counting “character” positions within
text. Word breaks, line breaks and sentence breaks do not occur within a grapheme cluster. In this
section, the Unicode Standard provides a determination of where the default grapheme boundaries fall
in a string of characters. This algorithm can be tailored for specific locales or other customizations,
which is what is done in providing contracting characters in collation tailoring tables.

Note: In previous documentation, default grapheme clusters were previously referred to as
"locale-independent graphemes". The term c/uster has been added to emphasize that the term
grapheme as used differently in linguistics. For simplicity and to align with UTS #10: Unicode
Collation Algorithm, the terms default and tailored are used in preference to /ocale-independent
and /ocale-dependent, respectively.

As far as a user is concerned, the underlying representation of text is not important, but it is paramount
that an editing interface present a uniform implementation of what the user thinks of as characters.
Grapheme clusters commonly behave as units in terms of mouse selection, arrow key movement,
backspacing, and so on. When this is done, for example, and an accented character is represented by a
combining character sequence, then using the right arrow key would skip from the start of the base
character to the end of the last combining character. In some cases, particularly for spacing combining
marks, editing a grapheme cluster element by element may be the preferred way. In those rare
circumstances where end-users need character counts, the counts need to correspond to the grapheme
cluster boundaries.

The principal requirements for default grapheme cluster boundaries are the handling of combining
marks, Hangul conjoining jamo, and Indic and Tibetan character clusters. Boundaries may be further
tailored for requirements of different languages, such as the addition of “ch” for Slovak. For the rules
defining the default boundaries, see Table 1, Default Grapheme Cluster Boundaries below.

Table 1. Default Grapheme Cluster Boundaries

30f10 8/14/2003 2:44 PM

UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

Character Classes

sot Start of Text

eot End of Text

CR Carriage Return

LF Line Feed

Control Line Separator, Paragraph Separator or General Category = Control

caJ Combining Grapheme Joiner

Link Grapheme Link, as determined by the UCD. Includes most viramas but not the CGJ.

Extend Grapheme Extend, as determined by the UCD. Includes combining marks (except for the CGJ
and Link) and format controls.

Base Grapheme Base, as determined by the UCD. Note: includes L, V, T, LV, LVT.

LetterBase | General Category = Letter

L Hangul leading jamo: U+1100..U+115F

Y Hangul vowel jamo: U+1160..U+11A2

T Hangul trailing jamo: U+11A8..U+11F9

Lv Precomposed Hangul syllable that is canonically equivalent to a sequence of <L,V>

LvVT Precomposed Hangul syllable that is canonically equivalent to a sequence of <L,V,T>

Any Any character (includes all of the above except sot and eot)

4 of 10 8/14/2003 2:44 PM

UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

50f10

Rules
Break before the start of text and after the end.
+ |sot m
eot| =+ (2
Do not break between a CR and LF. Otherwise break before and after controls.
CR| X |[LF (3)
Control| =+ 4
+ |Control (5)
Do not break Hangul syllable sequences.
Ll x |(L|V]|LV]|LVT) ®)
(LVIV)| x [(VIT) (7)
(LVT|T)| x |T €))
Don't break before extending characters.
x |Extend 9
Do not break around a CGJ.
CGJ| x |Base (10)
X |CGJ amn
Do not break between linking characters and letters, or before linking characters. This provides for
Indic graphemes, where virama (halant) will link character clusters together.
Link Extend* X |LetterBase (12)
X |Link 13)
Otherwise break after all characters.
Any| = (14)

A default grapheme cluster normally begins with a base character. Exceptions include when a combining
mark is at the start of text, or it is preceded by a control or format character. Except for the Extend
characters, the boundary of a default grapheme cluster can be determined by just the adjacent
characters. As in LineBreak, it only requires a minor modification for programs to skip over the Extend
characters where required.

For more information on the composition of Hangul Syllables (with L, V, or T) see 3.11 Conjoining Jamo
Behavior (revision) in UAX #28: Unicode Version 3.2.

Degenerate Cases. As with other definitions in Chapter 5 and elsewhere, such definitions are designed
to be simple to implement. They need to provide an algorithmic determination of the valid, default
grapheme clusters, and exclude sequences that are normally not considered default grapheme clusters.
However, they do not have to catch edge cases that will not occur in practice. Mismatched sequences
SUCh dS <DEVANAGARI KA, COMBINING GRAPHEME JOINER, HANGUL JONGSEONG YEORINHIEUH, COMBINING ACUTE> Mmay
end up being characterized as a single default grapheme cluster, but it is not worth the extra
complications in the definition that would be required to catch all of these cases, because they will not
occur in practice.

The definition of default grapheme clusters is not meant to exclude the use of more sophisticated
definitions of tailored grapheme clusters where appropriate: definitions that more precisely match the
user expectations within individual languages. For example, “ch” may be considered a grapheme cluster
in Slovak. It is, however, designed to provide a much more accurate match to overall user expectations
for characters than is provided by individual Unicode code points.

Display of Grapheme Clusters. Grapheme clusters are not the same as ligatures. For example, the
grapheme cluster “ch” in Slovak is not normally a ligature, and conversely, the ligature “fi” is not

8/14/2003 2:44 PM

UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

normally a grapheme cluster. Default grapheme clusters do not necessarily reflect text display. For
example, the sequence <f, i> may be displayed as a single glyph on the screen, but would still be two
grapheme clusters.

For more information on the use of grapheme clusters, see Unicode Technical Report #18, “Unicode
Reqular Expression Guidelines”.

Issue: Should we add Thai/Lao clusters, by adding a rule:

Logical_Order_Exception X Base

and adding additional characters to the Extend class?

3 Word Boundaries

Word boundaries are used in a number of different contexts. The most familiar ones are double-click
mouse selection, “move to next word,” and "Whole Word Search" (WWS) for search and replace. They are
also used in database queries, to determine whether elements are within a certain number of words of
one another.

Word boundaries can also be used in so-called /ntelligent cut and paste. With this feature, if the user
cuts a piece of text on word boundaries, adjacent spaces are collapsed to a single space. For example,
cutting “quick” from “The_quick_fox” would leave “The_ _fox”. Intelligent cut and paste collapses this
text to “The_fox”.

The word boundaries are related to the line boundaries, but are distinct. Here is an example of word
boundaries.

Example 1: Word Boundaries

The|lquick|[(Torown])| [fox|can't| jump|[32.3| feet|| [right}|

There is a boundary, for example, on either side of the word brown. These are the boundaries that users
would expect, for example, if they chose WWS. Matching brown with WWS works, since there is a
boundary on either side. Matching brow doesn't. Matching "brown"also works, since there are
boundaries between the parentheses and the quotation marks.

For proximity tests, one sees whether, for example, "monster" is within 3 words of "truck”. That is done
with the above boundaries by ignoring any words that contain a letter (or digit: whether or not digits are
included is task-specific). Thus for proximity we get the following, so "fox" is within three words of
"quick".

Example 2: Extracted Words

[The|quicklbrown[fox|can'tjump|32.3ffeetlright|

There are other cases where the characters between given boundaries are ignored, based on the types
of characters.

Note: As with the other default specifications, implementations are free to override (tailor) the
results to meet the requirements of different environments or particular languages.

Table 5-4. Default Word Boundaries

6 of 10 8/14/2003 2:44 PM

UTR #29: Text Boundaries

7 of 10

Character Classes

http://www.unicode.org/reports/tr29/tr29-1d1.html

AND

sot Start of Text

eot End of Text

Hiragana |General_Category = Letter AND Script = HIRAGANA

Katakana |General_Category = Letter AND Script = KATAKANA

Letter (General_Category = Letter OR General_Category = Modifier_Symbol)

— (Line_Break = Ideographic OR Hiragana OR Katakana)

MidLetter |U+0027 (') apostrophe, U+2019 () curly apostrophe, U+003A (:) colon (used in Swedish),
U+0029 (.) period, U+00AD (=) soft hyphen, U+05F3 (') geresh, U+05F4 () gershayim

other

Other categories are from Line_Break (using the long names from PropertyAliases

Rules

Treat a grapheme cluster as if it were a single character: the first base character, if there is one;

otherwise the first character.

GC=> FB

| (1)

Don't break between most letters

Lette r| X |Letter

|)

Don’t break letters across certain punctuation

Letter|

X

MidLetter Letter

(3)

Letter MidLetter

X

Letter

4)

Don’t break within sequences of digits, or digits adjacent to letters.

Numeric

X

Numeric

(5)

Letter|

X

Numeric

(6)

Numeric

X

Letter

@)

Don’t break within sequences like: '-3.2'

Hyphen

Numeric

(8)

Numeric Infix_Numeric

Numeric

9

Numeric

Infix_Numeric Numeric

(10)

Prefix_Numeric

Numeric

amn

Numeric

XX | X|X[X

Postfix_Numeric

a2

Don't break between Hiragana or Katakana

Hiragana

X

Hiragana

(13)

Katakana

X

Katakana

a4

Otherwise, break everywhere (including around ideographs)

Any

as)

Any

(16)

Notes:

e Unfortunately we cannot resolve all of the issues across languages (or even within a language,
since there are ambiguities). The goal is to have as workable a default as we can; tailored engines
can be more sophisticated about these matters.

Thai is a case where, as in LineBreak, a good implementation should not just depend on the default
word boundary specification, but should use a more sophisticated mechanism. There must be
some default, however, in the absence of such a mechanism. The above treats any sequence of
Thai letters as a single word, depending on the (logical or physical) insertion of ZWSP to break up

8/14/2003 2:44 PM

UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

8 of 10

the words.

The hard hyphen is a tricky case. It is quite common for separate words to be connected with a
hyphen: out-of-the-box, under-the-table, Anglo-american, etc. A significant number are
hyphenated names: Smith-Hawkins, etc. When people do a "Whole Word" search or query, they
expect to find the word within those hyphens. While there are some cases where they are separate
words (usually to resolve some ambiguity such as re-sort vs resort) it's better overall to keep the
hard hyphen out of the default definition.

Apostrophe is another one. Usually considered part of one word ("can't", "aujourd'hui") it may also
be considered two ("I'objectif"). Also, one cannot easily distinguish the cases where it is used as a
guotation mark from those where it is used as an apostrophe, so one should not include leading or
trailing apostrophes. In some languages, such as French, tailoring it to break words may yield
better results in more cases.

Certain cases like colon in words (c:a) are included even though they may be specific to relatively
small user communities (Swedish) because they don't occur otherwise in normal text, and so don't

cause a problem for other languages.

Issue: Would a better default for Thai/Lao be treating them as breaking on grapheme cluster

boundaries?

4 Sentence Boundaries

Sentence boundaries are often used for triple-click or some other method of selecting or iterating

through blocks of text that are larger than single words. They is also used to determine whether words
occur within the same sentence in database queries.

Plain text provides inadequate information for determining good sentence boundaries. Periods, for

example, can either signal the end of a sentence, indicate abbreviations, or be used for decimal points.
Remember that these are, like the others, default boundaries, and may be tailored. One cannot, without
much more sophisticated analysis, distinguish between cases like:

He said, "Are you going?"|Mr. Smith shook his head.|

"Are you going?" Mr. Smith asked.|

Without analyzing the text semantically, it is impossible to be certain which of these usages is intended
(and sometimes ambiguities still remain).

Table 5-6. Default Sentence Boundaries

Character Classes

CR Carriage Return

LF Linefeed

Sep CR | LF | NEL | LS | PS

Sp Whitespace - Sep

Term |Terminal_Punctuation1 OR Terminal_Punctuation2

ATerm|Terminal_Punctuation?2

Lower |Lowercase OR General_Category = Letter OR General_Category = Modifier_Symbol
Upper |Uppercase | General_Category = Titlecase_Letter

Open |General_Category = Open_Punctuation

8/14/2003 2:44 PM

UTR #29: Text Boundaries

9 of 10

http://www.unicode.org/reports/tr29/tr29-1d1.html

Rules
Treat a grapheme cluster as if it were a single character: the first base character, if there is one;
otherwise the first character.
GC=> FB | 1)
Don't break CRLF; otherwise break after paragraph separators
CR| x |[LF (2)
Sep| =+ (3)
Don't break after ambiguous terminators like period If the first following letter is lowercase, or if the
preceding word is contains an uppercase letter. For example, a period may be an abbreviation or
numeric period, and not mark the end of a sentence.
ATerm Close* Sp* {Sep}| x |(—Letter)* Lowercase 4)
Upper Lower* ATerm Close* Sp* {Sep}| X (5)
Break after sentence terminators, but include closing punctuation, trailing spaces, and (optionally) a
paragraph separator.
Term Close* Sp* {Sep)| + | | (6)

0021
003F
037E
061F
06D4
203C
3002
2048

002E
0589
3001

002C
003A
0387
060C
061B

070C

17DA

0964..
OE5A. .
104A..
1361..
166D..
16EB..
17D4..

1802..
1808..

..203D

..2049

..003B

070A

0965
OES5SB
104B
1368
166E
16ED
17D6

1805
1809

’
;
7
;
i
’
i
7

Terminal Punctuation
Terminal_ Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation

Terminal Punctuationl: characters that

s

Terminal Punctuation2: characters that

; Terminal_ Punctuation #
; Terminal Punctuation #
; Terminal Punctuation #

7
;
7
7
i

7
i
’
;
7
’
i
’
i
7
;
7

Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation

Not yet determined
0700..

Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal_ Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation
Terminal Punctuation

#

#
#
#
#

S W e R R S S e SR R

Issue: We have to determine the contents of the different useful subsets of the Terminal_Punctuation
property in the Unicode Character Database . The following is a rough initial cut.

definitely ends sentences.

Po EXCLAMATION MARK

Po QUESTION MARK

Po GREEK QUESTION MARK

Po ARABIC QUESTION MARK

Po ARABIC FULL STOP

Po [2] DOUBLE EXCLAMATION MARK..INTERROBANG

Po IDEOGRAPHIC FULL STOP

Po [2] QUESTION EXCLAMATION MARK..EXCLAMATION QUESTION MARK
could be part of an abbreviation or end a sentence.
Po FULL STOP

Po ARMENIAN FULL STOP

Po IDEOGRAPHIC COMMA

Po
Po
Po
Po
Po

Po
Po
Po
Po
Po
Po
Po
Po
Po
Po
Po
Po

[

Terminal Punctuation3: characters irrelevant to

2]

sentence boundaries
COMMA
COLON. . SEMICOLON
GREEK ANO TELEIA
ARABIC COMMA
ARABIC SEMICOLON

SYRIAC END OF PARAGRAPH..SYRIAC CONTRACTION

SYRIAC HARKLEAN METOBELUS

DEVANAGARI DANDA..DEVANAGARI DOUBLE DANDA

THAI CHARACTER ANGKHANKHU..THAI CHARACTER KHOMUT

MYANMAR SIGN LITTLE SECTION..MYANMAR SIGN SECTION
ETHIOPIC WORDSPACE..ETHIOPIC PARAGRAPH SEPARATOR

CANADIAN SYLLABICS CHI SIGN..CANADIAN SYLLABICS FULL STOP
RUNIC SINGLE PUNCTUATION..RUNIC CROSS PUNCTUATION

KHMER SIGN KHAN..KHMER SIGN CAMNUC PII KUUH

KHMER SIGN KOOMUUT

] MONGOLIAN COMMA..MONGOLIAN FOUR DOTS
] MONGOLIAN MANCHU COMMA..MONGOLIAN MANCHU FULL STOP

5 Random Access

A further complication is introduced by random access. When iterating through a string from beginning
to end, the above mechanism works well. It guarantees a limited context, and it allows a fresh start at
each boundary to find the next boundary. By constructing a state table for the reverse direction from the
same specification of the rules, reverse searches are possible. However, suppose that the user wants to
iterate starting at a random point in the text. If the starting point does not provide enough context to

8/14/2003 2:44 PM

UTR #29: Text Boundaries http://www.unicode.org/reports/tr29/tr29-1d1.html

allow the correct set of rules to be applied, then one could fail to find a valid boundary point. For
example, suppose a user clicked after the first space in “?_ _A”. On a forward iteration searching for a
sentence boundary, one would fail to find the boundary before the “A”, because the “?” hadn’t been seen
yet.

A second set of rules to determine a “safe” starting point provides a solution. Iterate backward with this
second set of rules until a safe starting point is located, then iterate forward from there. Iterate forward
to find boundaries that were located between the safe point and the starting point; discard these. The
desired boundary is the first one that is not less than the starting point.

2%

. Al

v

This process would represent a significant performance cost if it had to be performed on every search.
However, this functionality could be wrapped up in an iterator object, which preserves the information
regarding whether it currently is at a valid boundary point. Only if it is reset to an arbitrary location in
the text is this extra backup processing performed.

References

[FAQ] Unicode Frequently Asked Questions
http://www.unicode.org/unicode/faq/
For answers to common questions on technical issues.
[Glossary] Unicode Glossary
http://www.unicode.org/glossary/
For explanations of terminology used in this and other documents.
[Reports] Unicode Technical Reports
http://www.unicode.org/unicode/reports/
For information on the status and development process for technical reports, and for a list of
technical reports.
[U3.1] Unicode Standard Annex #27: Unicode 3.1
http://www.unicode.org/unicode/reports/tr27/
[Versions] Versions of the Unicode Standard
http://www.unicode.org/unicode/standard/versions/
For details on the precise contents of each version of the Unicode Standard, and how to cite
them.

Modifications

The following summarizes modifications from the previous version of this document.

|6 Combined revision proposals into single document.

Copyright © 2000 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and
assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in connection with or arising
out of the use of the information or programs contained or accompanying this technical report.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

10 of 10 8/14/2003 2:44 PM

