
Technical Reports

Proposed Update Unicode® Standard Annex #9

UNICODE BIDIRECTIONAL ALGORITHM
Version Unicode 16.0.0 (draft 1)

Editors Manish Goregaokar मनीष गोरेगांवकर (manish@unicode.org),
Robin Leroy (eggrobin@unicode.org)

Date 2024-04-05

This Version https://www.unicode.org/reports/tr9/tr9-49.html

Previous
Version

https://www.unicode.org/reports/tr9/tr9-48.html

Latest Version https://www.unicode.org/reports/tr9/

Latest
Proposed
Update

https://www.unicode.org/reports/tr9/proposed.html

Revision 49

Summary

This annex describes specifications for the positioning of characters in text containing
characters flowing from right to left, such as Arabic or Hebrew.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as other
than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,
but is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in the
Conformance chapter of that version of the Unicode Standard. The version number of
a UAX document corresponds to the version of the Unicode Standard of which it
forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version
of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports,
see [Reports]. For more information about versions of the Unicode Standard, see
[Versions]. For any errata which may apply to this annex, see [Errata].

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 1/47

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
mailto:manish@unicode.org
mailto:eggrobin@unicode.org
https://www.unicode.org/reports/tr9/tr9-49.html
https://www.unicode.org/reports/tr9/tr9-48.html
https://www.unicode.org/reports/tr9/
https://www.unicode.org/reports/tr9/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
https://www.unicode.org/errata/
rick
Text Box
L2/24-183

Contents

1 Introduction
2 Directional Formatting Characters

2.1 Explicit Directional Embeddings
2.2 Explicit Directional Overrides
2.3 Terminating Explicit Directional Embeddings and Overrides
2.4 Explicit Directional Isolates
2.5 Terminating Explicit Directional Isolates
2.6 Implicit Directional Marks
2.7 Markup and Formatting Characters

3 Basic Display Algorithm
3.1 Definitions

3.1.1 Basics: BD1, BD2, BD3, BD4, BD5, BD6, BD7
3.1.2 Matching Explicit Directional Formatting Characters: BD8,
BD9, BD10, BD11, BD12, BD13
3.1.3 Paired Brackets: BD14, BD15, BD16
3.1.4 Additional Abbreviations

3.2 Bidirectional Character Types
3.3 Resolving Embedding Levels

3.3.1 The Paragraph Level: P1, P2, P3
3.3.2 Explicit Levels and Directions: X1, X2, X3, X4, X5, X5a,
X5b, X5c, X6, X6a, X7, X8
3.3.3 Preparations for Implicit Processing: X9, X10
3.3.4 Resolving Weak Types: W1, W2, W3, W4, W5, W6, W7
3.3.5 Resolving Neutral and Isolate Formatting Types: N0, N1,
N2
3.3.6 Resolving Implicit Levels: I1, I2

3.4 Reordering Resolved Levels: L1, L2, L3, L4
3.5 Shaping

4 Bidirectional Conformance
4.1 Boundary Neutrals
4.2 Explicit Formatting Characters
4.3 Higher-Level Protocols: HL1, HL2, HL3, HL4, HL5, HL6

4.3.1 HL4 Example 1 for XML
4.3.2 HL4 Example 2 for Program Text
4.3.3 HL4 Example 3 for URLs

4.4 Bidirectional Conformance Testing
5 Implementation Notes

5.1 Reference Code
5.2 Retaining BNs and Explicit Formatting Characters

6 Usage
6.1 Joiners
6.2 Vertical Text
6.3 Formatting
6.4 Separating Punctuation Marks
6.5 Conversion to Plain Text

7 Mirroring
Migration Issues

Section Reorganization
Acknowledgments
References
Modifications

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 2/47

1 Introduction

The Unicode Standard prescribes a memory representation order known as logical order.
When text is presented in horizontal lines, most scripts display characters from left to right.
However, there are several scripts (such as Arabic or Hebrew) where the natural ordering
of horizontal text in display is from right to left. If all of the text has a uniform horizontal
direction, then the ordering of the display text is unambiguous.

However, because these right-to-left scripts use digits that are written from left to right, the
text is actually bidirectional: a mixture of right-to-left and left-to-right text. In addition to
digits, embedded words from English and other scripts are also written from left to right,
also producing bidirectional text. Without a clear specification, ambiguities can arise in
determining the ordering of the displayed characters when the horizontal direction of the
text is not uniform.

This annex describes the algorithm used to determine the directionality for bidirectional
Unicode text. The algorithm extends the implicit model currently employed by a number of
existing implementations and adds explicit formatting characters for special circumstances.
In most cases, there is no need to include additional information with the text to obtain
correct display ordering.

However, in the case of bidirectional text, there are circumstances where an implicit
bidirectional ordering is not sufficient to produce comprehensible text. To deal with these
cases, a minimal set of directional formatting characters is defined to control the ordering
of characters when rendered. This allows exact control of the display ordering for legible
interchange and ensures that plain text used for simple items like filenames or labels can
always be correctly ordered for display.

The directional formatting characters are used only to influence the display ordering of text.
In all other respects they should be ignored—they have no effect on the comparison of text
or on word breaks, parsing, or numeric analysis.

Each character has an implicit bidirectional type. The bidirectional types left-to-right and
right-to-left are called strong types, and characters of those types are called strong
directional characters. The bidirectional types associated with numbers are called weak
types, and characters of those types are called weak directional characters. With the
exception of the directional formatting characters, the remaining bidirectional types and
characters are called neutral. The algorithm uses the implicit bidirectional types of the
characters in a text to arrive at a reasonable display ordering for text.

When working with bidirectional text, the characters are still interpreted in logical order—
only the display is affected. The display ordering of bidirectional text depends on the
directional properties of the characters in the text. Note that there are important security
issues connected with bidirectional text: for more information, see [UTR36].

2 Directional Formatting Characters

Three types of explicit directional formatting characters are used to modify the standard
implicit Unicode Bidirectional Algorithm (UBA). In addition, there are implicit directional
formatting characters, the right-to-left and left-to-right marks. The effects of all of these
formatting characters are limited to the current paragraph; thus, they are terminated by a
paragraph separator.

These formatting characters all have the property Bidi_Control, and are divided into three
groups:

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 3/47

https://www.unicode.org/reports/tr41/tr41-32.html#UTR36

Implicit Directional Formatting Characters LRM, RLM, ALM

Explicit Directional Embedding and Override Formatting
Characters

LRE, RLE, LRO, RLO,
PDF

Explicit Directional Isolate Formatting Characters LRI, RLI, FSI, PDI

Although the term embedding is used for some explicit formatting characters, the text
within the scope of the embedding formatting characters is not independent of the
surrounding text. Characters within an embedding can affect the ordering of characters
outside, and vice versa. This is not the case with the isolate formatting characters,
however. Characters within an isolate cannot affect the ordering of characters outside it, or
vice versa. The effect that an isolate as a whole has on the ordering of the surrounding
characters is the same as that of a neutral character, whereas an embedding or override
roughly has the effect of a strong character.

Directional isolate characters were introduced in Unicode 6.3 after it became apparent that
directional embeddings usually have too strong an effect on their surroundings and are
thus unnecessarily difficult to use. The new characters were introduced instead of
changing the behavior of the existing ones because doing so might have had an
undesirable effect on those existing documents that do rely on the old behavior.
Nevertheless, the use of the directional isolates instead of embeddings is encouraged in
new documents – once target platforms are known to support them.

On web pages, the explicit directional formatting characters (of all types – embedding,
override, and isolate) should be replaced by other mechanisms suitable for HTML and
CSS. For information on the correspondence between explicit directional formatting
characters and equivalent HTML5 markup and CSS properties, see Section 2.7, Markup
and Formatting Characters.

2.1 Explicit Directional Embeddings

The following characters signal that a piece of text is to be treated as embedded. For
example, an English quotation in the middle of an Arabic sentence could be marked as
being embedded left-to-right text. If there were a Hebrew phrase in the middle of the
English quotation, that phrase could be marked as being embedded right-to-left text.
Embeddings can be nested one inside another, and in isolates and overrides.

Abbr. Code Point Name Description

LRE U+202A LEFT-TO-RIGHT
EMBEDDING

Treat the following text as embedded
left-to-right.

RLE U+202B RIGHT-TO-LEFT
EMBEDDING

Treat the following text as embedded
right-to-left.

The effect of right-left line direction, for example, can be accomplished by embedding the
text with RLE...PDF. (PDF will be described in Section 2.3, Terminating Explicit Directional
Embeddings and Overrides.)

2.2 Explicit Directional Overrides

The following characters allow the bidirectional character types to be overridden when
required for special cases, such as for part numbers. They are to be avoided wherever

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 4/47

possible, because of security concerns. For more information, see [UTR36]. Directional
overrides can be nested one inside another, and in embeddings and isolates.

Abbr. Code Point Name Description

LRO U+202D LEFT-TO-RIGHT
OVERRIDE

Force following characters to be treated as
strong left-to-right characters.

RLO U+202E RIGHT-TO-LEFT
OVERRIDE

Force following characters to be treated as
strong right-to-left characters.

The precise meaning of these characters will be made clear in the discussion of the
algorithm. The right-to-left override, for example, can be used to force a part number made
of mixed English, digits and Hebrew letters to be written from right to left.

2.3 Terminating Explicit Directional Embeddings and Overrides

The following character terminates the scope of the last LRE, RLE, LRO, or RLO whose
scope has not yet been terminated.

Abbr. Code Point Name Description

PDF U+202C POP DIRECTIONAL
FORMATTING

End the scope of the last LRE, RLE,
RLO, or LRO.

The precise meaning of this character will be made clear in the discussion of the algorithm.

2.4 Explicit Directional Isolates

The following characters signal that a piece of text is to be treated as directionally isolated
from its surroundings. They are very similar to the explicit embedding formatting
characters. However, while an embedding roughly has the effect of a strong character on
the ordering of the surrounding text, an isolate has the effect of a neutral like U+FFFC
OBJECT REPLACEMENT CHARACTER, and is assigned the corresponding display
position in the surrounding text. Furthermore, the text inside the isolate has no effect on the
ordering of the text outside it, and vice versa.

In addition to allowing the embedding of strongly directional text without unduly affecting
the bidirectional order of its surroundings, one of the isolate formatting characters also
offers an extra feature: embedding text while inferring its direction heuristically from its
constituent characters.

Isolates can be nested one inside another, and in embeddings and overrides.

Abbr. Code Point Name Description

LRI U+2066 LEFT‑TO‑RIGHT ISOLATE Treat the following text as isolated and
left-to-right.

RLI U+2067 RIGHT‑TO‑LEFT ISOLATE Treat the following text as isolated and
right-to-left.

FSI U+2068 FIRST STRONG ISOLATE Treat the following text as isolated and
in the direction of its first strong
directional character that is not inside a
nested isolate.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 5/47

https://www.unicode.org/reports/tr41/tr41-32.html#UTR36

The precise meaning of these characters will be made clear in the discussion of the
algorithm.

2.5 Terminating Explicit Directional Isolates

The following character terminates the scope of the last LRI, RLI, or FSI whose scope has
not yet been terminated, as well as the scopes of any subsequent LREs, RLEs, LROs, or
RLOs whose scopes have not yet been terminated.

Abbr. Code Point Name Description

PDI U+2069 POP DIRECTIONAL ISOLATE End the scope of the last LRI, RLI,
or FSI.

The precise meaning of this character will be made clear in the discussion of the algorithm.

2.6 Implicit Directional Marks

These characters are very light-weight formatting. They act exactly like right-to-left or left-
to-right characters, except that they do not display or have any other semantic effect. Their
use is more convenient than using explicit embeddings or overrides because their scope is
much more local.

Abbr. Code Point Name Description

LRM U+200E LEFT-TO-RIGHT MARK Left-to-right zero-width character

RLM U+200F RIGHT-TO-LEFT MARK Right-to-left zero-width non-Arabic
character

ALM U+061C ARABIC LETTER
MARK

Right-to-left zero-width Arabic character

There is no special mention of the implicit directional marks in the following algorithm. That
is because their effect on bidirectional ordering is exactly the same as a corresponding
strong directional character; the only difference is that they do not appear in the display.

2.7 Markup and Formatting Characters

The explicit formatting characters introduce state into the plain text, which must be
maintained when editing or displaying the text. Processes that are modifying the text
without being aware of this state may inadvertently affect the rendering of large portions of
the text, for example by removing a PDF.

The Unicode Bidirectional Algorithm is designed so that the use of explicit formatting
characters can be equivalently represented by out-of-line information, such as stylesheet
information or markup. Conflicts can arise if markup and explicitly formatting characters are
both used in the same paragraph. Where available, markup should be used instead of the
explicit formatting characters: for more information, see [UnicodeXML]. However, any
alternative representation is only to be defined by reference to the behavior of the
corresponding explicit formatting characters in this algorithm, to ensure conformance with
the Unicode Standard.

HTML5 [HTML5] and CSS3 [CSS3Writing] provide support for bidi markup as follows:

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 6/47

https://www.unicode.org/reports/tr41/tr41-32.html#UnicodeXML
https://www.unicode.org/reports/tr41/tr41-32.html#HTML5
https://www.unicode.org/reports/tr41/tr41-32.html#CSS3Writing

Unicode Equivalent
Markup

Equivalent CSS Comment

RLI ... PDI dir = "rtl" direction:rtl; unicode-bidi:isolate dir attribute on any
element

LRI ... PDI dir = "ltr" direction:ltr; unicode-bidi:isolate dir attribute on any
element

FSI ... PDI <bdi>, dir =
"auto"

unicode-bidi:plaintext dir attribute on any
element

RLE ... PDF direction:rtl; unicode-bidi:embed markup not
available in HTML

LRE ... PDF direction:ltr; unicode-bidi:embed markup not
available in HTML

RLO ... PDF direction:rtl;
unicode-bidi:bidi-override

markup not
available in HTML

LRO ... PDF direction:ltr;
unicode-bidi:bidi-override

markup not
available in HTML

FSI RLO . . .
PDF PDI

<bdo dir =
"rtl">

direction:rtl;
unicode-bidi:isolate-override

FSI LRO . . .
PDF PDI

<bdo dir =
"ltr">

direction:ltr;
unicode-bidi:isolate-override

Unlike HTML4.0, HTML5 does not provide exact equivalents for LRE, RLE, LRO, and RLO,
although the dir attribute and the BDO element as outlined above should in most cases
work as well or better than those formatting characters. When absolutely necessary, CSS
can be used to get exact equivalents for LRE, RLE, LRO, and RLO, as well as for LRI, RLI,
and FSI.

Whenever plain text is produced from a document containing markup, the equivalent
formatting characters should be introduced, so that the correct ordering is not lost. For
example, whenever cut and paste results in plain text this transformation should occur.

3 Basic Display Algorithm

The Unicode Bidirectional Algorithm (UBA) takes a stream of text as input and proceeds in
four main phases:

Separation into paragraphs. The rest of the algorithm is applied separately to the
text within each paragraph.
Initialization. A list of bidirectional character types is initialized, with one entry for
each character in the original text. The value of each entry is the Bidi_Class property
value of the respective character. A list of embedding levels, with one level per
character, is then initialized. Note that the original characters are referenced in
Section 3.3.5, Resolving Neutral and Isolate Formatting Types.
Resolution of the embedding levels. A series of rules is applied to the lists of
embedding levels and bidirectional character types. Each rule operates on the
current values of those lists, and can modify those values. The original characters
and their Bidi_Paired_Bracket and Bidi_Paired_Bracket_Type property values are

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 7/47

referenced in the application of certain rules. The result of this phase is a modified list
of embedding levels; the list of bidirectional character types is no longer needed.
Reordering. The text within each paragraph is reordered for display: first, the text in
the paragraph is broken into lines, then the resolved embedding levels are used to
reorder the text of each line for display.

The algorithm reorders text only within a paragraph; characters in one paragraph have no
effect on characters in a different paragraph. Paragraphs are divided by the Paragraph
Separator or appropriate Newline Function (for guidelines on the handling of CR, LF, and
CRLF, see Section 4.4, Directionality, and Section 5.8, Newline Guidelines of [Unicode]).
Paragraphs may also be determined by higher-level protocols: for example, the text in two
different cells of a table will be in different paragraphs.

Combining characters always attach to the preceding base character in the memory
representation. Even after reordering for display and performing character shaping, the
glyph representing a combining character will attach to the glyph representing its base
character in memory. Depending on the line orientation and the placement direction of
base letterform glyphs, it may, for example, attach to the glyph on the left, or on the right,
or above.

This annex uses the numbering conventions for normative definitions and rules in Table 1.

Table 1. Normative Definitions and Rules

Numbering Section

BDn Definitions

Pn Paragraph levels

Xn Explicit levels and directions

Wn Weak types

Nn Neutral types

In Implicit levels

Ln Resolved levels

3.1 Definitions

3.1.1 Basics

BD1. The bidirectional character types are values assigned to each Unicode character,
including unassigned characters. The formal property name in the Unicode Character
Database [UCD] is Bidi_Class.

BD2. Embedding levels are numbers that indicate how deeply the text is nested, and the
default direction of text on that level. The minimum embedding level of text is zero, and the
maximum explicit depth is 125, a value referred to as max_depth in the rest of this
document.

As rules X1 through X8 will specify, embedding levels are set by explicit formatting
characters (embedding, isolate, and override); higher numbers mean the text is more
deeply nested. The reason for having a limitation is to provide a precise stack limit for
implementations to guarantee the same results. A maximum explicit level of 125 is far more

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 8/47

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

than sufficient for ordering, even with mechanically generated formatting; the display
becomes rather muddied with more than a small number of embeddings.

For implementation stability, this specification now guarantees that the value of 125 for
max_depth will not be increased (or decreased) in future versions. Thus, it is safe for
implementations to treat the max_depth value as a constant. The max_depth value has
been 125 since UBA Version 6.3.0.

BD3. The default direction of the current embedding level (for the character in question) is
called the embedding direction. It is L if the embedding level is even, and R if the
embedding level is odd.

For example, in a particular piece of text, level 0 is plain English text. Level 1 is plain Arabic
text, possibly embedded within English level 0 text. Level 2 is English text, possibly
embedded within Arabic level 1 text, and so on. Unless their direction is overridden,
English text and numbers will always be an even level; Arabic text (excluding numbers) will
always be an odd level. The exact meaning of the embedding level will become clear when
the reordering algorithm is discussed, but the following provides an example of how the
algorithm works.

BD4. The paragraph embedding level is the embedding level that determines the default
bidirectional orientation of the text in that paragraph.

BD5. The direction of the paragraph embedding level is called the paragraph direction.

In some contexts the paragraph direction is also known as the base direction.

BD6. The directional override status determines whether the bidirectional type of
characters is to be reset. The directional override status is set by using explicit directional
formatting characters. This status has three states, as shown in Table 2.

Table 2. Directional Override Status

Status Interpretation

Neutral No override is currently active

Right-to-left Characters are to be reset to R

Left-to-right Characters are to be reset to L

BD7. A level run is a maximal substring of characters that have the same embedding level.
It is maximal in that no character immediately before or after the substring has the same
level (a level run is also known as a directional run).

As specified below, level runs are important at two different stages of the Bidirectional
Algorithm. The first stage occurs after rules X1 through X9 have assigned an explicit
embedding level to each character on the basis of the paragraph direction and the explicit
directional formatting characters. At this stage, in rule X10, level runs are used to build up
the units to which subsequent rules are applied. Those rules further adjust each
character’s embedding level on the basis of its implicit bidirectional type and those of other
characters in the unit – but not outside it. The level runs resulting from these resolved
embedding levels are then used in the actual reordering of the text by rule L2. The
following example illustrates level runs at this later stage of the algorithm.

Example

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 9/47

In this and the following examples, case is used to indicate different implicit character types
for those unfamiliar with right-to-left letters. Uppercase letters stand for right-to-left
characters (such as Arabic or Hebrew), and lowercase letters stand for left-to-right
characters (such as English or Russian).

Memory: car is THE CAR in arabic

Character types: LLL-LL-RRR-RRR-LL-LLLLLL

Paragraph level: 0

Resolved levels: 000000011111110000000000

Notice that the neutral character (space) between THE and CAR gets the level of the
surrounding characters. The level of the neutral characters could be changed by inserting
appropriate directional marks around neutral characters, or using explicit directional
formatting characters.

3.1.2 Matching Explicit Directional Formatting Characters

BD8. An isolate initiator is a character of type LRI, RLI, or FSI.

As rules X5a through X5c will specify, an isolate initiator raises the embedding level for the
characters following it when the rules enforcing the depth limit allow it.

BD9. The matching PDI for a given isolate initiator is the one determined by the following
algorithm:

Initialize a counter to one.
Scan the text following the isolate initiator to the end of the paragraph while
incrementing the counter at every isolate initiator, and decrementing it at every PDI.
Stop at the first PDI, if any, for which the counter is decremented to zero.
If such a PDI was found, it is the matching PDI for the given isolate initiator.
Otherwise, there is no matching PDI for it.

Note that all formatting characters except for isolate initiators and PDIs are ignored when
finding the matching PDI.

Note that this algorithm assigns a matching PDI (or lack of one) to an isolate initiator
whether the isolate initiator raises the embedding level or is prevented from doing so by the
depth limit rules.

As rule X6a will specify, a matching PDI returns the embedding level to the value it had
before the isolate initiator that the PDI matches. The PDI itself is assigned the new
embedding level. If it does not match any isolate initiator, or if the isolate initiator did not
raise the embedding level, it leaves the embedding level unchanged. Thus, an isolate
initiator and its matching PDI are always assigned the same explicit embedding level,
which is the one outside the isolate. In the later stages of the Bidirectional Algorithm, an
isolate initiator and its matching PDI function as invisible neutral characters, and their
embedding level then helps ensure that the isolate has the effect of a neutral character on
the display order of the text outside it, and is assigned the corresponding display position in
the surrounding text.

BD10. An embedding initiator is a character of type LRE, RLE, LRO, or RLO.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 10/47

Note that an embedding initiator initiates either a directional embedding or a directional
override; its name omits overrides only for conciseness.

As rules X2 through X5 will specify, an embedding initiator raises the embedding level for
the characters following it when the rules enforcing the depth limit allow it.

BD11. The matching PDF for a given embedding initiator is the one determined by the
following algorithm:

Initialize a counter to one.
Scan the text following the embedding initiator:

At an isolate initiator, skip past the matching PDI, or if there is no matching PDI,
to the end of the paragraph.
At the end of a paragraph, or at a PDI that matches an isolate initiator whose
text location is before the embedding initiator's location, stop: the embedding
initiator has no matching PDF.
At an embedding initiator, increment the counter.
At a PDF, decrement the counter. If its new value is zero, stop: this is the
matching PDF.

Note that this algorithm assigns a matching PDF (or lack of one) to an embedding initiator
whether it raises the embedding level or is prevented from doing so by the depth limit rules.

Although the algorithm above serves to give a precise meaning to the term “matching
PDF”, note that the overall Bidirectional Algorithm never actually calls for its use to find the
PDF matching an embedding initiator. Instead, rules X1 through X7 specify a mechanism
that determines what embedding initiator scope, if any, is terminated by a PDF, i.e. which
valid embedding initiator a PDF matches.

As rule X7 will specify, a matching PDF returns the embedding level to the value it had
before the embedding initiator that the PDF matches. If it does not match any embedding
initiator, or if the embedding initiator did not raise the embedding level, a PDF leaves the
embedding level unchanged.

As rule X9 will specify, once explicit directional formatting characters have been used to
assign embedding levels to the characters in a paragraph, embedding initiators and PDFs
are removed (or virtually removed) from the paragraph. Thus, the embedding levels
assigned to the embedding initiators and PDFs themselves are irrelevant. In this,
embedding initiators and PDFs differ from isolate initiators and PDIs, which continue to
play a part in determining the paragraph’s display order as mentioned above.

BD12. The directional isolate status is a Boolean value set by using isolate formatting
characters: it is true when the current embedding level was started by an isolate initiator.

BD13. An isolating run sequence is a maximal sequence of level runs such that for all level
runs except the last one in the sequence, the last character of the run is an isolate initiator
whose matching PDI is the first character of the next level run in the sequence. It is
maximal in the sense that if the first character of the first level run in the sequence is a PDI,
it must not match any isolate initiator, and if the last character of the last level run in the
sequence is an isolate initiator, it must not have a matching PDI.

The set of isolating run sequences in a paragraph can be computed by the following
algorithm:

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 11/47

Start with an empty set of isolating run sequences.
For each level run in the paragraph whose first character is not a PDI, or is a PDI that
does not match any isolate initiator:

Create a new level run sequence, and initialize it to contain just that level run.
While the level run currently last in the sequence ends with an isolate initiator
that has a matching PDI, append the level run containing the matching PDI to
the sequence. (Note that this matching PDI must be the first character of its
level run.)
Add the resulting sequence of level runs to the set of isolating run sequences.

Note that:

Each level run in a paragraph belongs to exactly one isolating run sequence.
In the absence of isolate initiators, each isolating run sequence in a paragraph
consists of exactly one level run, and each level run constitutes a separate isolating
run sequence.
For any two adjacent level runs in an isolating run sequence, since one ends with an
isolate initiator whose matching PDI starts the other, the two must have the same
embedding level. Thus, all the level runs in an isolating run sequence have the same
embedding level.
When an isolate initiator raises the embedding level, both the isolate initiator and its
matching PDI, if any, get the original embedding level, not the raised one. Thus, if the
matching PDI does not immediately follow the isolate initiator in the paragraph, the
isolate initiator is the last character in its level run, but the matching PDI, if any, is the
first character of its level run and immediately follows the isolate initiator in the same
isolating run sequence. On the other hand, the level run following the isolate initiator
in the paragraph starts a new isolating run sequence, and the level run preceding the
matching PDI (if any) in the paragraph ends its isolating run sequence.

In the following examples, assume that:

The paragraph embedding level is 0.
No character sequence texti contains explicit formatting characters or paragraph
separators.
The dots are used only to improve the example's visual clarity; they are not part of
the text.
The characters in the paragraph text are assigned embedding levels as loosely
described above such that they form the set of level runs given in each example.

Example 1

Paragraph text: text1·RLE ·text2·PDF ·RLE ·text3·PDF ·text4

Level runs:

text1 – level 0
text2·text3 – level 1
text4 – level 0

Resulting isolating run sequences:

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 12/47

text1 – level 0
text2·text3 – level 1
text4 – level 0

Example 2

Paragraph text: text1·RLI ·text2·PDI ·RLI ·text3·PDI ·text4

Level runs:

text1·RLI – level 0
text2 – level 1
PDI ·RLI – level 0
text3 – level 1
PDI ·text4 – level 0

Resulting isolating run sequences:

text1·RLI PDI ·RLI PDI ·text4 – level 0
text2 – level 1
text3 – level 1

Example 3

Paragraph text: text1·RLI ·text2·LRI ·text3·RLE ·text4·PDF ·text5·PDI ·text6·PDI ·text7

Level runs:

text1·RLI – level 0
text2·LRI – level 1
text3 – level 2
text4 – level 3
text5 – level 2
PDI ·text6 – level 1
PDI ·text7 – level 0

Resulting isolating run sequences:

text1·RLI PDI ·text7 – level 0
text2·LRI PDI ·text6 – level 1
text3 – level 2
text4 – level 3
text5 – level 2

As rule X10 will specify, an isolating run sequence is the unit to which the rules following it
are applied, and the last character of one level run in the sequence is considered to be
immediately followed by the first character of the next level run in the sequence during this

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 13/47

phase of the algorithm. Since those rules are based on the characters' implicit bidirectional
types, an isolate really does have the same effect on the ordering of the text surrounding it
as a neutral character – or, to be more precise, a pair of neutral characters, the isolate
initiator and the PDI, which behave in those rules just like neutral characters.

3.1.3 Paired Brackets

The following definitions utilize the normative properties Bidi_Paired_Bracket and
Bidi_Paired_Bracket_Type defined in the BidiBrackets.txt file [Data9] of the Unicode
Character Database [UCD].

BD14. An opening paired bracket is a character whose Bidi_Paired_Bracket_Type property
value is Open and whose current bidirectional character type is ON.

BD15. A closing paired bracket is a character whose Bidi_Paired_Bracket_Type property
value is Close and whose current bidirectional character type is ON.

BD16. A bracket pair is a pair of characters consisting of an opening paired bracket and a
closing paired bracket such that the Bidi_Paired_Bracket property value of the former or its
canonical equivalent equals the latter or its canonical equivalent and which are
algorithmically identified at specific text positions within an isolating run sequence. The
following algorithm identifies all of the bracket pairs in a given isolating run sequence:

Create a fixed-size stack for exactly 63 elements each consisting of a bracket
character and a text position. Initialize it to empty.
Create a list of resulting bracket pairs for elements each consisting of two text
positions, one for an opening paired bracket and the other for a corresponding
closing paired bracket. Initialize it to empty.
Inspect each character in the isolating run sequence in logical order.

If an opening paired bracket is found and there is room in the stack, push its
Bidi_Paired_Bracket property value and its text position onto the stack.
If an opening paired bracket is found and there is no room in the stack, stop
processing BD16 for the remainder of the isolating run sequence and return an
empty list.
If a closing paired bracket is found, do the following:

1. Declare a variable that holds a reference to the current stack element and
initialize it with the top element of the stack. If the stack is empty, skip to
step 5.

2. Compare the closing paired bracket being inspected to the bracket in the
current stack element, where U+3009 and U+232A are treated as
equivalent.

Note that although bracket pairs are defined under canonical equivalence,
canonical equivalents only exist between U+3008/U+3009, and
U+2329/U+232A, and the Unicode Consortium will not add more such
pairs.

3. If the values match, meaning the two characters form a bracket pair, then
Append the text position in the current stack element together with
the text position of the closing paired bracket to the list of resulting
bracket pairs.
Pop the stack through the current stack element inclusively.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 14/47

https://www.unicode.org/reports/tr41/tr41-32.html#Data9
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

4. Else, if the current stack element is not at the bottom of the stack,
advance it to the next element deeper in the stack and go back to step 2.

5. Else, continue with inspecting the next character without popping the
stack.

Sort the list of resulting bracket pairs in ascending order based on the text position of
the opening paired bracket.

Note that bracket pairs can only occur in an isolating run sequence because they are
processed in rule N0 after explicit level resolution. See Section 3.3.2, Explicit Levels and
Directions.

Examples of bracket pairs

Text Pairings
1 2 3 4 5 6 7 8
a) b (c None
a (b] c None
a (b) c 2-4
a (b [c) d] 2-6
a (b] c) d 2-6
a (b) c) d 2-4
a (b (c) d 4-6
a (b (c) d) 2-8, 4-6
a (b { c } d) 2-8, 4-6

3.1.4 Additional Abbreviations

Table 3 lists additional abbreviations used in the examples and internal character types
used in the algorithm.

Table 3. Abbreviations for Examples and Internal Types

Symbol Description

NI Neutral or Isolate formatting character (B, S, WS, ON, FSI, LRI, RLI, PDI).

e The text ordering type (L or R) that matches the embedding level direction
(even or odd).

o The text ordering type (L or R) that matches the direction opposite the
embedding level direction (even or odd).
Note that o is the opposite of e.

sos The text ordering type (L or R) assigned to the virtual position before an
isolating run sequence.

eos The text ordering type (L or R) assigned to the virtual position after an isolating
run sequence.

3.2 Bidirectional Character Types

The normative bidirectional character types for each character are specified in the Unicode
Character Database [UCD] and are summarized in Table 4. This is a summary only: there
are exceptions to the general scope. For example, certain characters such as U+0CBF

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 15/47

https://www.unicode.org/Public/UNIDATA/
https://www.unicode.org/Public/UNIDATA/
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

KANNADA VOWEL SIGN I are given Type L (instead of NSM) to preserve canonical
equivalence.

The term European digits is used to refer to decimal forms common in Europe and
elsewhere, and Arabic-Indic digits to refer to the native Arabic forms. (See Section
9.2, Arabic of [Unicode], for more details on naming digits.)
Unassigned characters are given strong types in the algorithm. This is an explicit
exception to the general Unicode conformance requirements with respect to
unassigned characters. As characters become assigned in the future, these
bidirectional types may change. For assignments to character types, see
DerivedBidiClass.txt [DerivedBIDI] in the [UCD].
Private-use characters can be assigned different values by a conformant
implementation.
For the purpose of the Bidirectional Algorithm, inline objects (such as graphics) are
treated as if they are an U+FFFC OBJECT REPLACEMENT CHARACTER.
As of Unicode 4.0, the Bidirectional Character Types of a few Indic characters were
altered so that the Bidirectional Algorithm preserves canonical equivalence. That is,
two canonically equivalent strings will result in equivalent ordering after applying the
algorithm. This invariant will be maintained in the future.

Note: The Bidirectional Algorithm does not preserve compatibility equivalence.

Table 4. Bidirectional Character Types

Category Type Description General Scope

Strong L Left-to-Right LRM, most alphabetic, syllabic, Han
ideographs, non-European or non-Arabic
digits, ...

R Right-to-Left RLM, Hebrew alphabet, and related
punctuation

AL Right-to-Left Arabic ALM, Arabic, Thaana, and Syriac alphabets,
most punctuation specific to those scripts,
...

Weak EN European Number European digits, Eastern Arabic-Indic digits,
...

ES European Number
Separator

PLUS SIGN, MINUS SIGN

ET European Number
Terminator

DEGREE SIGN, currency symbols, ...

AN Arabic Number Arabic-Indic digits, Arabic decimal and
thousands separators, ...

CS Common Number
Separator

COLON, COMMA, FULL STOP, NO-BREAK
SPACE, ...

NSM Nonspacing Mark Characters with the General_Category
values: Mn (Nonspacing_Mark) and Me
(Enclosing_Mark)

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 16/47

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Props
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

BN Boundary Neutral Default ignorables, non-characters, and
control characters, other than those
explicitly given other types.

Neutral B Paragraph Separator PARAGRAPH SEPARATOR, appropriate
Newline Functions, higher-level protocol
paragraph determination

S Segment Separator Tab

WS Whitespace SPACE, FIGURE SPACE, LINE
SEPARATOR, FORM FEED, General
Punctuation spaces, ...

ON Other Neutrals All other characters, including OBJECT
REPLACEMENT CHARACTER

Explicit
Formatting

LRE Left-to-Right
Embedding

LRE

LRO Left-to-Right
Override

LRO

RLE Right-to-Left
Embedding

RLE

RLO Right-to-Left
Override

RLO

PDF Pop Directional
Format

PDF

LRI Left-to-Right Isolate LRI

RLI Right-to-Left Isolate RLI

FSI First Strong Isolate FSI

PDI Pop Directional
Isolate

PDI

3.3 Resolving Embedding Levels

The body of the Bidirectional Algorithm uses bidirectional character types, explicit
formatting characters, and bracket pairs to produce a list of resolved levels. This resolution
process consists of the following steps:

Applying rule P1 to split the text into paragraphs, and for each of these:
Applying rules P2 and P3 to determine the paragraph level.
Applying rule X1 (which employs rules X2–X8) to determine explicit embedding
levels and directions.
Applying rule X9 to remove many control characters from further consideration.
Applying rule X10 to split the paragraph into isolating run sequences and for
each of these:

Applying rules W1–W7 to resolve weak types.
Applying rules N0–N2 to resolve neutral types.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 17/47

Applying rules I1–I2 to resolve implicit embedding levels.

3.3.1 The Paragraph Level

P1. Split the text into separate paragraphs. A paragraph separator (type B) is kept with the
previous paragraph. Within each paragraph, apply all the other rules of this algorithm.

P2. In each paragraph, find the first character of type L, AL, or R while skipping over any
characters between an isolate initiator and its matching PDI or, if it has no matching PDI,
the end of the paragraph.

Note that:

Because paragraph separators delimit text in this algorithm, the character found by
this rule will generally be the first strong character after a paragraph separator or at
the very beginning of the text.
The characters between an isolate initiator and its matching PDI are ignored by this
rule because a directional isolate is supposed to have the same effect on the
ordering of the surrounding text as a neutral character, and the rule ignores neutral
characters.
The characters between an isolate initiator and its matching PDI are ignored by this
rule even if the depth limit (as defined in rules X5a through X5c below) prevents the
isolate initiator from raising the embedding level. This is meant to make the rule
easier to implement.
Embedding initiators (but not the characters within the embedding) are ignored in this
rule.

P3. If a character is found in P2 and it is of type AL or R, then set the paragraph
embedding level to one; otherwise, set it to zero.

Whenever a higher-level protocol specifies the paragraph level, rules P2 and P3 may be
overridden: see HL1.

3.3.2 Explicit Levels and Directions

This phase of the algorithm determines explicit embedding levels: levels introduced by
explicit directional formatting characters (embedding, override, and isolate). This phase
tracks how they nest, eventually producing a tagging of different ranges of text with their
embedding levels, the levels increasing with deeper nesting.

All explicit embedding levels are determined from explicit directional formatting characters
(embedding, override, and isolate), This is done by applying the explicit level rule X1.
This , which performs a logical pass over the paragraph, applying rules X2–X8 to each
characters in turn. The following variables are used during this pass:

A directional status stack of max_depth+2 entries where each entry consists of:
An embedding level, which is at least zero and at most max_depth.
A directional override status.
A directional isolate status.

In addition to supporting the usual destructive “pop” operation, the stack also allows
read access to its last (i.e. top) entry without popping it. For efficiency, that last entry
can be kept in a separate variable instead of on the directional status stack, but it is
easier to explain the algorithm without that optimization. At the start of the pass, the
directional status stack is initialized to an entry reflecting the paragraph embedding

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 18/47

level, with the directional override status neutral and the directional isolate status
false; this entry is not popped off until the end of the paragraph. During the pass, the
directional status stack always contains entries for all the directional embeddings,
overrides, and isolates within which the current position lies – except those that
would overflow the depth limit – in addition to the paragraph level entry at the start of
the stack. The last entry reflects the innermost valid scope within which the pass's
current position lies. Implementers may find it useful to include more information in
each stack entry. For example, in an isolate entry, the location of the isolate initiator
could be used to create a mapping from the location of each valid isolate initiator to
the location of the matching PDI, or vice versa. However, such optimizations are
beyond the scope of this specification.
A counter called the overflow isolate count.
This reflects the number of isolate initiators that were encountered in the pass so far
without encountering their matching PDIs, but were invalidated by the depth limit and
thus are not reflected in the directional status stack. They are nested one within the
other and the stack's last scope. This count is used to determine whether a newly
encountered PDI matches and terminates the scope of an overflow isolate initiator,
thus decrementing the count, as opposed to possibly matching and terminating the
scope of a valid isolate initiator, which should result in popping its entry off the
directional status stack. It is also used to determine whether a newly encountered
PDF falls within the scope of an overflow isolate initiator and can thus be completely
ignored (regardless of whether it matches an embedding initiator within the same
overflow isolate or nothing at all).
A counter called the overflow embedding count.
This reflects the number of embedding initiators that were encountered in the pass so
far without encountering their matching PDF, or encountering the PDI of an isolate
within which they are nested, but were invalidated by the depth limit, and thus are not
reflected in the directional status stack. They are nested one within the other and the
stack's last scope. This count is used to determine whether a newly encountered
PDF matches and terminates the scope of an overflow embedding initiator, thus
decrementing the count, as opposed to possibly matching and terminating the scope
of a valid embedding initiator, which should result in popping its entry off the
directional status stack. However, this count does not include embedding initiators
encountered within the scope of an overflow isolate (i.e. encountered when the
overflow isolate count above is greater than zero). The scopes of those overflow
embedding initiators fall within the scope of an overflow isolate and are terminated
when the overflow isolate count turns zero. Thus, they do not need to be counted. In
fact, if they were counted in the overflow embedding count, there would be no way to
properly update that count when a PDI matching an overflow isolate initiator is
encountered: without a stack of the overflow scopes, there would be no way to know
how many (if any) overflow embedding initiators fall within the scope of that overflow
isolate.
A counter called the valid isolate count.
This reflects the number of isolate initiators that were encountered in the pass so far
without encountering their matching PDIs, and have been judged valid by the depth
limit, i.e. all the entries on the stack with a true directional isolate status. It ignores all
embeddings and overrides, and is used to determine without having to look through
the directional status stack whether a PDI encountered by the pass when the
overflow isolate count is zero matches some valid isolate initiator or nothing at all. A
PDI encountered when this counter is above zero terminates the scope of the isolate
initiator it matches, as well as the embeddings and overrides nested within it – which
appear above it on the stack, or are reflected in the overflow embedding count.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 19/47

Note that there is no need for a valid embedding count in order to tell whether a PDF
encountered by the pass matches a valid embedding initiator or nothing at all. That can be
decided by checking the directional isolate status of the last entry on the directional status
stack and the number of entries on the stack. If the last entry has a true directional isolate
status, it is for a directional isolate within whose scope the PDF lies. Since the PDF cannot
match an embedding initiator outside that isolate, and there are no embedding entries
within the isolate, it matches nothing at all. And if the last entry has a false directional
isolate status, but is also the only entry on the stack, it belongs to paragraph level, and
thus once again the PDF matches nothing at all.

As each character is processed, these variables’ values are modified and the character’s
explicit embedding level is set as defined by rules X2 through X8 on the basis of the
character’s bidirectional type and the variables’ current values.

X1. At the beginning of a paragraph, perform the following steps:

Set the stack to empty.
Push onto the stack an entry consisting of the paragraph embedding level, a neutral
directional override status, and a false directional isolate status.
Set the overflow isolate count to zero.
Set the overflow embedding count to zero.
Set the valid isolate count to zero.
Process each character iteratively, applying rules X2 through X8. Only embedding
levels from 0 through max_depth are valid in this phase. (Note that in the resolution
of levels in rules I1 and I2, the maximum embedding level of max_depth+1 can be
reached.)

Explicit Embeddings

X2. With each RLE, perform the following steps:

Compute the least odd embedding level greater than the embedding level of the last
entry on the directional status stack.
If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this RLE is valid. Push an entry consisting of
the new embedding level, neutral directional override status, and false directional
isolate status onto the directional status stack.
Otherwise, this is an overflow RLE. If the overflow isolate count is zero, increment the
overflow embedding count by one. Leave all other variables unchanged.

For example, assuming the overflow counts are both zero, level 0 → 1; levels 1, 2 → 3;
levels 3, 4 → 5; and so on. At max_depth or if either overflow count is non-zero, the level
remains the same (overflow RLE).

X3. With each LRE, perform the following steps:

Compute the least even embedding level greater than the embedding level of the last
entry on the directional status stack.
If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this LRE is valid. Push an entry consisting of
the new embedding level, neutral directional override status, and false directional
isolate status onto the directional status stack.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 20/47

Otherwise, this is an overflow LRE. If the overflow isolate count is zero, increment the
overflow embedding count by one. Leave all other variables unchanged.

For example, assuming the overflow counts are both zero, levels 0, 1 → 2; levels 2, 3 → 4;
levels 4, 5 → 6; and so on. At max_depth or max_depth-1 (which, being even, would have
to go to max_depth+1) or if either overflow count is non-zero, the level remains the same
(overflow LRE).

Explicit Overrides

An explicit directional override sets the embedding level in the same way the explicit
embedding formatting characters do, but also changes the bidirectional character type of
affected characters to the override direction.

X4. With each RLO, perform the following steps:

Compute the least odd embedding level greater than the embedding level of the last
entry on the directional status stack.
If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this RLO is valid. Push an entry consisting of
the new embedding level, right-to-left directional override status, and false
directional isolate status onto the directional status stack.
Otherwise, this is an overflow RLO. If the overflow isolate count is zero, increment
the overflow embedding count by one. Leave all other variables unchanged.

X5. With each LRO, perform the following steps:

Compute the least even embedding level greater than the embedding level of the last
entry on the directional status stack.
If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this LRO is valid. Push an entry consisting of
the new embedding level, left-to-right directional override status, and false
directional isolate status onto the directional status stack.
Otherwise, this is an overflow LRO. If the overflow isolate count is zero, increment
the overflow embedding count by one. Leave all other variables unchanged.

Isolates

X5a. With each RLI, perform the following steps:

Set the RLI’s embedding level to the embedding level of the last entry on the
directional status stack.
If the directional override status of the last entry on the directional status stack is not
neutral, reset the current character type from RLI to L if the override status is left-to-
right, and to R if the override status is right-to-left.
Compute the least odd embedding level greater than the embedding level of the last
entry on the directional status stack.
If this new level would be valid and the overflow isolate count and the overflow
embedding count are both zero, then this RLI is valid. Increment the valid isolate
count by one, and push an entry consisting of the new embedding level, neutral
directional override status, and true directional isolate status onto the directional
status stack.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 21/47

Otherwise, this is an overflow RLI. Increment the overflow isolate count by one, and
leave all other variables unchanged.

X5b. With each LRI, perform the following steps:

Set the LRI’s embedding level to the embedding level of the last entry on the
directional status stack.
If the directional override status of the last entry on the directional status stack is not
neutral, reset the current character type from LRI to L if the override status is left-to-
right, and to R if the override status is right-to-left.
Compute the least even embedding level greater than the embedding level of the last
entry on the directional status stack.
If this new level would be valid and the overflow isolate count and the overflow
embedding count are both zero, then this LRI is valid. Increment the valid isolate
count by one, and push an entry consisting of the new embedding level, neutral
directional override status, and true directional isolate status onto the directional
status stack.
Otherwise, this is an overflow LRI. Increment the overflow isolate count by one, and
leave all other variables unchanged.

X5c. With each FSI, apply rules P2 and P3 to the sequence of characters between the FSI
and its matching PDI, or if there is no matching PDI, the end of the paragraph, as if this
sequence of characters were a paragraph. If these rules decide on paragraph embedding
level 1, treat the FSI as an RLI in rule X5a. Otherwise, treat it as an LRI in rule X5b.

Note that the new embedding level is not set to the paragraph embedding level determined
by P2 and P3. It goes up by one or two levels, as it would for an LRI or RLI.

Non-formatting characters

X6. For all types besides B, BN, RLE, LRE, RLO, LRO, PDF, RLI, LRI, FSI, and PDI:

Set the current character’s embedding level to the embedding level of the last entry
on the directional status stack.
Whenever the directional override status of the last entry on the directional status
stack is not neutral, reset the current character type according to the directional
override status of the last entry on the directional status stack.

In other words, if the directional override status of the last entry on the directional status
stack is neutral, then characters retain their normal types: Arabic characters stay AL, Latin
characters stay L, spaces stay WS, and so on. If the directional override status is right-to-
left, then characters become R. If the directional override status is left-to-right, then
characters become L.

Note that the current embedding level is not changed by this rule.

Terminating Isolates

A PDI terminates the scope of the isolate initiator it matches. It also terminates the scopes
of all embedding initiators within the scope of the matched isolate initiator for which a
matching PDF has not been encountered. If it does not match any isolate initiator, it is
ignored.

X6a. With each PDI, perform the following steps:

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 22/47

If the overflow isolate count is greater than zero, this PDI matches an overflow isolate
initiator. Decrement the overflow isolate count by one.
Otherwise, if the valid isolate count is zero, this PDI does not match any isolate
initiator, valid or overflow. Do nothing.
Otherwise, this PDI matches a valid isolate initiator. Perform the following steps:

Reset the overflow embedding count to zero. (This terminates the scope of
those overflow embedding initiators within the scope of the matched isolate
initiator whose scopes have not been terminated by a matching PDF, and which
thus lack a matching PDF.)
While the directional isolate status of the last entry on the stack is false, pop the
last entry from the directional status stack. (This terminates the scope of those
valid embedding initiators within the scope of the matched isolate initiator
whose scopes have not been terminated by a matching PDF, and which thus
lack a matching PDF. Given that the valid isolate count is non-zero, the
directional status stack before this step is executed must contain an entry with
directional isolate status true, and thus after this step is executed the last entry
on the stack will indeed have a true directional isolate status, i.e. represent the
scope of the matched isolate initiator. This cannot be the stack's first entry,
which always belongs to the paragraph level and has a false directional status,
so there is at least one more entry below it on the stack.)
Pop the last entry from the directional status stack and decrement the valid
isolate count by one. (This terminates the scope of the matched isolate initiator.
Since the preceding step left the stack with at least two entries, this pop does
not leave the stack empty.)

In all cases, look up the last entry on the directional status stack left after the steps
above and:

Set the PDI’s level to the entry's embedding level.
If the entry's directional override status is not neutral, reset the current
character type from PDI to L if the override status is left-to-right, and to R if the
override status is right-to-left.

Note that the level assigned to an isolate initiator is always the same as that assigned to
the matching PDI.

Terminating Embeddings and Overrides

A PDF terminates the scope of the embedding initiator it matches. If it does not match any
embedding initiator, it is ignored.

X7. With each PDF, perform the following steps:

If the overflow isolate count is greater than zero, do nothing. (This PDF is within the
scope of an overflow isolate initiator. It either matches and terminates the scope of an
overflow embedding initiator within that overflow isolate, or does not match any
embedding initiator.)
Otherwise, if the overflow embedding count is greater than zero, decrement it by one.
(This PDF matches and terminates the scope of an overflow embedding initiator that
is not within the scope of an overflow isolate initiator.)
Otherwise, if the directional isolate status of the last entry on the directional status
stack is false, and the directional status stack contains at least two entries, pop the
last entry from the directional status stack. (This PDF matches and terminates the

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 23/47

scope of a valid embedding initiator. Since the stack has at least two entries, this pop
does not leave the stack empty.)
Otherwise, do nothing. (This PDF does not match any embedding initiator.)

End of Paragraph

X8. All explicit directional embeddings, overrides and isolates are completely terminated at
the end of each paragraph.

Explicit paragraph separators (bidirectional character type B) indicate the end of a
paragraph. As such, they are not included in any embedding, override or isolate.
They are simply assigned the paragraph embedding level.

3.3.3 Preparations for Implicit Processing

The explicit embedding levels that have been assigned to the characters by the preceding
rules will soon be further adjusted(in rules I1–I2) on the basis of the characters' implicit
bidirectional types (computed in rules W1–W7, N0–N2) . The adjustment made for a given
character will then depend on the characters around it. However, this dependency is limited
by logically dividing the paragraph into sub-units, and doing the subsequent implicit
processing on each unit independently, as shown in the next two steps.

X9. Remove all RLE, LRE, RLO, LRO, PDF, and BN characters.

Note that an implementation does not have to actually remove the characters; it just
has to behave as though the characters were not present for the remainder of the
algorithm. Conformance does not require any particular placement of these
characters as long as all other characters are ordered correctly.

See Section 5, Implementation Notes, for information on implementing the algorithm
without removing the formatting characters.

The zero width joiner and non-joiner affect the shaping of the adjacent characters—
those that are adjacent in the original backing-store order, even though those
characters may end up being rearranged to be non-adjacent by the Bidirectional
Algorithm. For more information, see Section 6.1, Joiners.
Note that FSI, LRI, RLI, and PDI characters are not removed. As indicated by the
rules below, they are used, in part, to determine the paragraph’s isolating run
sequences, within which they are then treated as neutral characters. Nevertheless,
they are of course zero-width characters and, like LRM and RLM, should not be
visible in the final output.

X10. Perform the following steps:

Compute the set of isolating run sequences as specified by BD13, based on the
bidirectional types of the characters and the embedding levels assigned by the rules
above (X1–X9).
Determine the start-of-sequence (sos) and end-of-sequence (eos) types, either L or
R, for each isolating run sequence. These depend on the higher of the two levels on
either side of the sequence boundary:

For sos, compare the level of the first character in the sequence with the level
of the character preceding it in the paragraph (not counting characters removed
by X9), and if there is none, with the paragraph embedding level.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 24/47

For eos, compare the level of the last character in the sequence with the level
of the character following it in the paragraph (not counting characters removed
by X9), and if there is none or the last character of the sequence is an isolate
initiator (lacking a matching PDI), with the paragraph embedding level.
If the higher level is odd, the sos or eos is R; otherwise, it is L.
Note that these computations must use the embedding levels assigned by the
rules above, before any changes are made to them in the steps below.

Apply rules W1–W7, N0–N2, and I1–I2, in the order in which they appear below, to
each of the isolating run sequences, applying one rule to all the characters in the
sequence in the order in which they occur in the sequence before applying another
rule to any part of the sequence. The order that one isolating run sequence is treated
relative to another does not matter. When applying a rule to an isolating run
sequence, the last character of each level run in the isolating run sequence is treated
as if it were immediately followed by the first character in the next level run in the
sequence, if any.

Here are some examples, each of which is assumed to be a paragraph with base level 0
where no character sequence texti contains explicit directional formatting characters or
paragraph separators. The dots in the examples are intended to separate elements for
visual clarity; they are not part of the text.

Example 1: text1·RLE ·text2·LRE ·text3·PDF ·text4·PDF ·RLE ·text5·PDF ·text6

Isolating Run Sequence Embedding Level sos eos

text1 0 L R

text2 1 R L

text3 2 L L

text4·text5 1 L R

text6 0 R L

Example 2: text1·RLI ·text2·LRI ·text3·PDI ·text4·PDI ·RLI ·text5·PDI ·text6

Isolating Run Sequence Embedding Level sos eos

text1·RLI ·PDI ·RLI ·PDI ·text6 0 L L

text2·LRI ·PDI ·text4 1 R R

text3 2 L L

text5 1 R R

Example 3: text1·RLE ·text2·LRI ·text3·RLE ·text4·PDI ·text5·PDF ·text6

Isolating Run Sequence Embedding Level sos eos

text1 0 L R

text2·LRI ·PDI ·text5 1 R R

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 25/47

text3 2 L R

text4 3 R R

text6 0 R L

3.3.4 Resolving Weak Types

Weak types are now resolved one isolating run sequence at a time. At isolating run
sequence boundaries where the type of the character on the other side of the boundary is
required, the type assigned to sos or eos is used.

First, each nonspacing mark is resolved based on the character it follows.

W1. Examine each nonspacing mark (NSM) in the isolating run sequence, and change the
type of the NSM to Other Neutral if the previous character is an isolate initiator or PDI, and
to the type of the previous character otherwise. If the NSM is at the start of the isolating run
sequence, it will get the type of sos. (Note that in an isolating run sequence, an isolate
initiator followed by an NSM or any type other than PDI must be an overflow isolate
initiator.)

Assume in this example that sos is R:

AL NSM NSM → AL AL AL

sos NSM → sos R

LRI NSM → LRI ON

PDI NSM → PDI ON

The text is next parsed for numbers. This pass will change the directional types European
Number Separator, European Number Terminator, and Common Number Separator to be
European Number text, Arabic Number text, or Other Neutral text. The text to be scanned
may have already had its type altered by directional overrides. If so, then it will not parse
as numeric.

W2. Search backward from each instance of a European number until the first strong type
(R, L, AL, or sos) is found. If an AL is found, change the type of the European number to
Arabic number.

AL EN → AL AN

AL NI EN → AL NI AN

sos NI EN → sos NI EN

L NI EN → L NI EN

R NI EN → R NI EN

W3. Change all ALs to R.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 26/47

W4. A single European separator between two European numbers changes to a European
number. A single common separator between two numbers of the same type changes to
that type.

EN ES EN → EN EN EN

EN CS EN → EN EN EN

AN CS AN → AN AN AN

W5. A sequence of European terminators adjacent to European numbers changes to all
European numbers.

ET ET EN → EN EN EN

EN ET ET → EN EN EN

AN ET EN → AN EN EN

W6. All remaining separators and terminators (after the application of W4 and W5) change
to Other Neutral.

AN ET → AN ON

L ES EN → L ON EN

EN CS AN → EN ON AN

ET AN → ON AN

W7. Search backward from each instance of a European number until the first strong type
(R, L, or sos) is found. If an L is found, then change the type of the European number to L.

L NI EN → L NI L

R NI EN → R NI EN

3.3.5 Resolving Neutral and Isolate Formatting Types

In the next phase, neutral and isolate formatting (i.e. NI) characters are resolved one
isolating run sequence at a time. Its results are that all NIs become either R or L.
Generally, NIs take on the direction of the surrounding text. In case of a conflict, they take
on the embedding direction. At isolating run sequence boundaries where the type of the
character on the other side of the boundary is required, the type assigned to sos or eos is
used.

Bracket pairs within an isolating run sequence are processed as units so that both the
opening and the closing paired bracket in a pair resolve to the same direction.

N0. Process bracket pairs in an isolating run sequence sequentially in the logical order of
the text positions of the opening paired brackets using the logic given below. Within this
scope, bidirectional types EN and AN are treated as R.

Identify the bracket pairs in the current isolating run sequence according to BD16.

Note that BD14 and BD15 identify bracket characters based on the current
bidirectional character type of each paired bracket and not the original type, as this

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 27/47

could have changed under X6.
For each bracket-pair element in the list of pairs of text positions

a. Inspect the bidirectional types of the characters enclosed within the bracket
pair.

b. If any strong type (either L or R) matching the embedding direction is found, set
the type for both brackets in the pair to match the embedding direction.

Note that EN and AN should be treated as a strong R type when
searching within the brackets.

Note that the isolating run sequence may not be contiguous.
Implementations should take care to ignore characters not contained in
the isolating run sequence when processing neutral or weak characters.

o [e] o → o e e e o

o [o e] → o e o e e

o [NI e] → o e NI e e

c. Otherwise, if there is a strong type it must be opposite the embedding direction.
Therefore, test for an established context with a preceding strong type by
checking backwards before the opening paired bracket until the first strong type
(L or R) is found, using the value of sos if there is none.

Note that EN and AN should be treated as a strong R type when searching for
established context.

1. If the preceding strong type is also opposite the embedding direction,
context is established, so set the type for both brackets in the pair to that
direction.

o [o] e → o o o o e

o [o NI] o → o o o NI o o

2. Otherwise set the type for both brackets in the pair to the embedding
direction.

e [o] o → e e o e o

e [o] e → e e o e e

Note that taken together the two steps in item 2 are guaranteed to set the
type for both brackets to the preceding strong type, as there are only two
possible values (L and R).

d. Otherwise, there are no strong types within the bracket pair. Therefore, do not
set the type for that bracket pair.

e (NI) o → e (NI) o

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 28/47

Note that if the enclosed text contains no strong types the bracket pairs will
both resolve to the same level when resolved individually using rules N1 and
N2.

Any number of characters that had original bidirectional character type NSM prior to
the application of W1 that immediately follow a paired bracket which changed to L or
R under N0 should change to match the type of their preceding bracket.

Example 1. Bracket pairs are resolved sequentially in logical order of the opening paired
brackets.

(RTL paragraph direction)

Storage AB (CD [& ef] !) gh

Bidi_Class R ON R ON ON L ON ON ON L

N0 applied (first pair) N0b:
ON→R

N0b:
ON→R

N0 applied (second
pair)

N0c2:
ON→R

N0c2:
ON→R

Display gh(![ef&]DC)BA

Example 2. Bracket pairs enclosing mixed strong types take the paragraph direction.

(RTL paragraph direction)

Storage smith (fabrikam ARABIC) HEBREW

Bidi_Class L WS ON L WS R ON WS R

N0 applied N0b: ON→R N0b: ON→R

Display WERBEH (CIBARA fabrikam) smith

Note that in the above example, the resolution of the bracket pairs is stable if the order of
smith and HEBREW, or fabrikam and ARABIC, is reversed.

Example 3. Bracket pairs enclosing strong types opposite the embedding direction with
additional strong-type context take the direction opposite the embedding direction.

(RTL paragraph direction)

Storage ARABIC book (s)

Bidi_Class R WS L ON L ON

N0 applied N0c1: ON→L N0c1: ON→L

Display book(s) CIBARA

N1. A sequence of NIs takes the direction of the surrounding strong text if the text on both
sides has the same direction. European and Arabic numbers act as if they were R in terms
of their influence on NIs. The start-of-sequence (sos) and end-of-sequence (eos) types are
used at isolating run sequence boundaries.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 29/47

 L NI L → L L L

 R NI R → R R R

 R NI AN → R R AN

 R NI EN → R R EN

AN NI R → AN R R

AN NI AN → AN R AN

AN NI EN → AN R EN

EN NI R → EN R R

EN NI AN → EN R AN

EN NI EN → EN R EN

N2. Any remaining NIs take the embedding direction.

NI → e

The embedding direction for the given NI character is derived from its embedding level: L if
the character is set to an even level, and R if the level is odd. (See BD3.)

Assume in the following example that eos is L and sos is R. Then an application of N1 and
N2 yields the following:

L NI eos → L L eos

R NI eos → R e eos

sos NI L → sos e L

sos NI R → sos R R

Examples. A list of numbers separated by neutrals and embedded in a directional run will
come out in the run’s order.

Storage: he said "THE VALUES ARE 123, 456, 789, OK".

Display: he said "KO ,789 ,456 ,123 ERA SEULAV EHT".

In this case, both the comma and the space between the numbers take on the direction of
the surrounding text (uppercase = right-to-left), ignoring the numbers. The commas are not
considered part of the number because they are not surrounded on both sides by digits
(see Section 3.3.4, Resolving Weak Types). However, if there is a preceding left-to-right
sequence, then European numbers will adopt that direction:

Storage: IT IS A bmw 500, OK.

Display: .KO ,bmw 500 A SI TI

3.3.6 Resolving Implicit Levels

In the final phase, the embedding level of text may be increased, based on the resolved
character type. Right-to-left text will always end up with an odd level, and left-to-right and
numeric text will always end up with an even level. In addition, numeric text will always end

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 30/47

up with a higher level than the paragraph level. (Note that it is possible for text to end up at
level max_depth+1 as a result of this process.) This results in the following rules:

I1. For all characters with an even (left-to-right) embedding level, those of type R go up one
level and those of type AN or EN go up two levels.

I2. For all characters with an odd (right-to-left) embedding level, those of type L, EN or AN
go up one level.

Table 5 summarizes the results of the implicit algorithm.

Table 5. Resolving Implicit Levels

Type Embedding Level

Even Odd

L EL EL+1

R EL+1 EL

AN EL+2 EL+1

EN EL+2 EL+1

3.4 Reordering Resolved Levels

The following rules describe the logical process of finding the correct display order. As
opposed to resolution phases, these rules act on a per-line basis and are applied after any
line wrapping is applied to the paragraph.

Logically there are the following steps:

The levels of the text are determined according to the previous rules.
The characters are shaped into glyphs according to their context (taking the
embedding levels into account for mirroring).
The accumulated widths of those glyphs (in logical order) are used to determine line
breaks.
For each line, rules L1–L4 are used to reorder the characters on that line.
The glyphs corresponding to the characters on the line are displayed in that order.

L1. On each line, reset the embedding level of the following characters to the paragraph
embedding level:

1. Segment separators,
2. Paragraph separators,
3. Any sequence of whitespace characters and/or isolate formatting characters (FSI,

LRI, RLI, and PDI) preceding a segment separator or paragraph separator, and
4. Any sequence of whitespace characters and/or isolate formatting characters (FSI,

LRI, RLI, and PDI) at the end of the line.

The types of characters used here are the original types, not those modified by the
previous phase.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 31/47

Because a paragraph separator breaks lines, there will be at most one per line, at the
end of that line.

In combination with the following rule, this means that trailing whitespace will appear at the
visual end of the line (in the paragraph direction). Tabulation will always have a consistent
direction within a paragraph.

L2. From the highest level found in the text to the lowest odd level on each line, including
intermediate levels not actually present in the text, reverse any contiguous sequence of
characters that are at that level or higher.

This rule reverses a progressively larger series of substrings.

The following examples illustrate the reordering, showing the successive steps in
application of Rule L2. The original text is shown in the "Storage" row in the example
tables. The invisible, zero-width formatting characters LRI, RLI, and PDI are represented
with the symbols > , < , and = , respectively. The application of the rules from Section 3.3,
Resolving Embedding Levels and of the Rule L1 results in the resolved levels listed in the
"Resolved Levels" row. (Since these examples only make use of the isolate formatting
characters, Rule X9 does not remove any characters. Note that Example 3 would not work
if it used embeddings instead because the two right-to-left phrases would have merged into
a single right-to-left run, together with the neutral punctuation in between.) Each
successive row thereafter shows one pass of reversal from Rule L2, such as "Reverse
levels 1-2". At each iteration, the underlining shows the text that has been reversed.

The paragraph embedding level for the first, second, and third examples is 0 (left-to-right
direction), and for the fourth example is 1 (right-to-left direction).

Example 1. (embedding level = 0)

Storage car means CAR.

Resolved levels 00000000001110

Reverse level 1 car means RAC.

Display car means RAC.

Example 2. (embedding level = 0)

Storage <car MEANS CAR.=

Resolved levels 0222111111111110

Reverse level 2 <rac MEANS CAR.=

Reverse levels 1-2 <.RAC SNAEM car=

Display .RAC SNAEM car

Example 3. (embedding level = 0)

Storage he said “<car MEANS CAR=.” “<IT DOES=,” she agreed.

Resolved levels 000000000022211111111110000001111111000000000000000

Reverse level 2 he said “<rac MEANS CAR=.” “<IT DOES=,” she agreed.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 32/47

Reverse levels 1-2 he said “<RAC SNAEM car=.” “<SEOD TI=,” she agreed.

Display he said “RAC SNAEM car.” “SEOD TI,” she agreed.

Example 4. (embedding level = 1)

Storage DID YOU SAY ’>he said “<car MEANS CAR=”=‘?

Resolved levels 111111111111112222222222444333333333322111

Reverse level 4 DID YOU SAY ’>he said “<rac MEANS CAR=”=‘?

Reverse levels 3-4 DID YOU SAY ’>he said “<RAC SNAEM car=”=‘?

Reverse levels 2-4 DID YOU SAY ’>”=rac MEANS CAR<“ dias eh=‘?

Reverse levels 1-4 ?‘=he said “<RAC SNAEM car=”>’ YAS UOY DID

Display ?‘he said “RAC SNAEM car”’ YAS UOY DID

L3. Combining marks applied to a right-to-left base character will at this point precede their
base character. If the rendering engine expects them to follow the base characters in the
final display process, then the ordering of the marks and the base character must be
reversed.

Many font designers provide default metrics for combining marks that support rendering by
simple overhang. Because of the reordering for right-to-left characters, it is common
practice to make the glyphs for most combining characters overhang to the left (thus
assuming the characters will be applied to left-to-right base characters) and make the
glyphs for combining characters in right-to-left scripts overhang to the right (thus assuming
that the characters will be applied to right-to-left base characters). With such fonts, the
display ordering of the marks and base glyphs may need to be adjusted when combining
marks are applied to “unmatching” base characters. See Section 5.13, Rendering
Nonspacing Marks of [Unicode], for more information.

L4. A character is depicted by a mirrored glyph if and only if (a) the resolved directionality
of that character is R, and (b) the Bidi_Mirrored property value of that character is Yes.

The Bidi_Mirrored property is defined by Section 4.7, Bidi Mirrored of [Unicode]; the
property values are specified in [UCD].
This rule can be overridden in certain cases; see HL6.

For example, U+0028 LEFT PARENTHESIS—which is interpreted in the Unicode Standard
as an opening parenthesis—appears as “(” when its resolved level is even, and as the
mirrored glyph “)” when its resolved level is odd. Note that for backward compatibility the
characters U+FD3E (﴾) ORNATE LEFT PARENTHESIS and U+FD3F (﴿) ORNATE
RIGHT PARENTHESIS are not mirrored.

3.5 Shaping

Cursively connected scripts, such as Arabic or Syriac, require the selection of positional
character shapes that depend on adjacent characters (see Section 9.2, Arabic of
[Unicode]). Shaping is logically applied after Rule I2 of the Bidirectional Algorithm and is
limited to characters within the same level run. (Note that there is no practical difference
between limiting shaping to a level run and an isolating run sequence because the isolate

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 33/47

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#UCD
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

initiator and PDI characters are defined to have joining type U, i.e. non-joining. Thus, the
characters before and after a directional isolate will not join across the isolate, even if the
isolate is empty or overflows the depth limit.) Consider the following example string of
Arabic characters, which is represented in memory as characters 1, 2, 3, and 4, and where
the first two characters are overridden to be LTR. To show both paragraph directions, the
next two are embedded, but with the normal RTL direction.

1 2 3 4

ج
062C
JEEM

ع
0639
AIN

ل
0644
LAM

م
0645
MEEM

L L R R

One can use explicit directional formatting characters to achieve this effect in plain text or
use markup in HTML, as in the examples below. (The bold text would be for the right-to-
left paragraph direction.)

LRM/RLM LRO JEEM AIN PDF RLO LAM MEEM PDF
<p dir="ltr"/"rtl">LRO JEEM AIN PDF RLO LAM MEEM PDF</p>
<p dir="ltr"/"rtl"><bdo dir="ltr">JEEM AIN</bdo>
 <bdo dir="rtl">LAM MEEM</bdo></p>

The resulting shapes will be the following, according to the paragraph direction:

Left-Right Paragraph Right-Left Paragraph

1 2 4 3

ج
JEEM-F

ع
AIN-I

م
MEEM-F

ل
LAM-I

4 3 1 2

م
MEEM-F

ل
LAM-I

ج
JEEM-F

ع
AIN-I

3.5.1 Shaping and Line Breaking

The process of breaking a paragraph into one or more lines that fit within particular bounds
is outside the scope of the Bidirectional Algorithm. Where character shaping is involved,
the width calculations must be based on the shaped glyphs.

Note that the soft-hyphen (SHY) works in cursively connected scripts as it does in other
scripts. That is, it indicates a point where the line could be broken in the middle of a word.
If the rendering system breaks at that point, the display—including shaping—should be
what is appropriate for the given language. For more information on this and other line
breaking issues, see Unicode Standard Annex #14, “Line Breaking Properties” [UAX14].

4 Bidirectional Conformance

The Bidirectional Algorithm specifies part of the intrinsic semantics of right-to-left
characters and is thus required for conformance to the Unicode Standard where any such
characters are displayed.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 34/47

https://www.unicode.org/reports/tr41/tr41-32.html#UAX14

A process that claims conformance to this specification shall satisfy the following clauses:

UAX9-C1. In the absence of a permissible higher-level protocol, a process that renders
text shall display all visible representations of characters (excluding formatting characters)
in the order described by Section 3, Basic Display Algorithm, of this annex. In particular,
this includes definitions BD1–BD16 and steps P1–P3, X1–X10, W1–W7, N0–N2, I1–I2,
and L1–L4.

As is the case for all other Unicode algorithms, this is a logical description—particular
implementations can have more efficient mechanisms as long as they produce the same
results. See C18 in Chapter 3, Conformance of [Unicode], and the notes following.

UAX9-C2. The only permissible higher-level protocols are those listed in Section 4.3,
Higher-Level Protocols. They are HL1, HL2, HL3, HL4, HL5, and HL6.

Note: The use of higher-level protocols introduces interchange problems, since the
text may be displayed differently as plain text; see Section 6.5, Conversion to Plain
Text. This can have security implications. Higher-level protocols are recommended
wherever the semantics of segment order are more significant than those of
displayed order, as is the case for source text. For detailed examples for which use of
HL4 would be recommended, see Section 4.3.1, HL4 Example 1 for XML and Section
4.3.2, HL4 Example 2 for Program Text. For more information, see Section 4.1,
Bidirectional Ordering, in Unicode Technical Standard #55, “Unicode Source Code
Handling” [UTS55], as well as Unicode Technical Report #36, “Unicode Security
Considerations” [UTR36].

4.1 Boundary Neutrals

The goal in marking a formatting or control character as BN is that it have no effect on the
rest of the algorithm. (ZWJ and ZWNJ are exceptions; see X9). Because conformance
does not require the precise ordering of formatting characters with respect to others,
implementations can handle them in different ways as long as they preserve the ordering
of the other characters.

4.2 Explicit Formatting Characters

As with any Unicode characters, systems do not have to support any particular explicit
directional formatting character (although it is not generally useful to include a terminating
character without including the initiator). Generally, conforming systems will fall into four
classes:

No bidirectional formatting. This implies that the system does not visually interpret
characters from right-to-left scripts.
Implicit bidirectionality. The implicit Bidirectional Algorithm and the directional marks
ALM, RLM and LRM are supported.
Non-isolate bidirectionality. The implicit Bidirectional Algorithm, the implicit directional
marks, and the explicit non-isolate directional formatting characters are supported:
ALM, RLM, LRM, LRE, RLE, LRO, RLO, PDF.
Full bidirectionality. The implicit Bidirectional Algorithm, the implicit directional marks,
and all the explicit directional formatting characters are supported: ALM, RLM, LRM,
LRE, RLE, LRO, RLO, PDF, FSI, LRI, RLI, PDI.

4.3 Higher-Level Protocols

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 35/47

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UTR36

The following clauses are the only permissible ways for systems to apply higher-level
protocols to the ordering of bidirectional text. Some of the clauses apply to segments of
structured text. This refers to the situation where text is interpreted as being structured,
whether with explicit markup such as XML or HTML, or internally structured such as in a
word processor or spreadsheet. In such a case, a segment is span of text that is
distinguished in some way by the structure.

HL1. Override P3, and set the paragraph embedding level explicitly. This does not apply
when deciding how to treat FSI in rule X5c.

A higher-level protocol may set any paragraph level. This can be done on the basis of
the context, such as on a table cell, paragraph, document, or system level. (P2 may
be skipped if P3 is overridden). Note that this does not allow a higher-level protocol to
override the limit specified in BD2.
A higher-level protocol may apply rules equivalent to P2 and P3 but default to level 1
(RTL) rather than 0 (LTR) to match overall RTL context.
A higher-level protocol may use an entirely different algorithm that heuristically auto-
detects the paragraph embedding level based on the paragraph text and its context.
For example, it could base it on whether there are more RTL characters in the text
than LTR. As another example, when the paragraph contains no strong characters,
its direction could be determined by the levels of the paragraphs before and after.

HL2. Override W2, and set EN or AN explicitly.

A higher-level protocol may reset characters of type EN to AN, or vice versa, and
ignore W2. For example, style sheet or markup information can be used within a
span of text to override the setting of EN text to be always be AN, or vice versa.

HL3. Emulate explicit directional formatting characters.

A higher-level protocol can impose a directional embedding, isolate or override on a
segment of structured text. The behavior must always be defined by reference to
what would happen if the equivalent explicit directional formatting characters as
defined in the algorithm were inserted into the text. For example, a style sheet or
markup can modify the embedding level on a span of text.

HL4. Apply the Bidirectional Algorithm to segments.

The Bidirectional Algorithm can be applied independently to one or more segments of
structured text. For example, when displaying a document consisting of textual data
and visible markup in an editor, a higher-level process can handle syntactic elements
in the markup separately from the textual data.

HL5. Provide artificial context.

Text can be processed by the Bidirectional Algorithm as if it were preceded by a
character of a given type and/or followed by a character of a given type. This allows a
piece of text that is extracted from a longer sequence of text to behave as it did in the
larger context.

HL6. Additional mirroring.

Certain characters that do not have the Bidi_Mirrored property can also be depicted
by a mirrored glyph in specialized contexts. Such contexts include, but are not limited
to, historic scripts and associated punctuation, private-use characters, and characters

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 36/47

in mathematical expressions. (See Section 7, Mirroring.) These characters are those
that fit at least one of the following conditions:

1. Characters with a resolved directionality of R
2. Characters with a resolved directionality of L and whose bidirectional type is R

or AL

Clauses HL1 and HL3 are specialized applications of the more general clauses HL4 and
HL5. They are provided here explicitly because they directly correspond to common
operations.

4.3.1 HL4 Example 1 for XML

As an example of the application of HL4, suppose an XML document contains the following
fragment. (Note: This is a simplified example for illustration: element names, attribute
names, and attribute values could all be involved.)

ARABICenglishARABIC<e1 type='ab'>ARABICenglish<e2 type='cd'>english

This can be analyzed as being five different segments:

a. ARABICenglishARABIC
b. <e1 type='ab'>
c. ARABICenglish
d. <e2 type='cd'>
e. english

To make the XML file readable as source text, the display in an editor could order these
elements all in a uniform direction (for example, all left-to-right) and apply the Bidirectional
Algorithm to each field separately. It could also choose to order the element names,
attribute names, and attribute values uniformly in the same direction (for example, all left-
to-right). For final display, the markup could be ignored, allowing all of the text (segments
a, c, and e) to be reordered together.

4.3.2 HL4 Example 2 for Program Text

Consider the following two lines:

(1) x + tav == 1

(2) x + 1 == תו

Internally, they are the same except that the ASCII identifier tav in line (1) is replaced by
the Hebrew identifier תו in line (2). However, with a plain text display (with left-to-right
paragraph direction) the user will be misled, thinking that line (2) is a comparison between
(x + 1) and תו, whereas it is actually a comparison between (x + תו) and 1. The misleading
rendering of (2) occurs because the directionality of the identifier תו influences subsequent
weakly-directional tokens, so that the entire sequence “1 == תו” is at a higher resolved level.

This is illustrated in the first row of the following table, wherein characters at a resolved
level higher than the embedding level are highlighted. Note that while the RTL display of
that expression (second row) is not misleading, as the left-to-right directionality of x does
not influence the subsequent text, a similar issue would arise if the terms were swapped
(third row).

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 37/47

Paragraph direction Underlying Representation Display

LTR x + ת ו = = 1 x + 1 == תו

RTL x + ת ו = = 1 x + תו == 1

RTL ת ו + x = = 1 x == 1 + תו

It would be better to apply protocol HL4 when displaying these expressions, treating each
identifier as a separate segment, thus isolating it from the rest of the source text, and then
ordering the segments in a consistent direction, as shown in the following table.

Segment order Segments Display

LTR x + תו == 1 x + 1 == תו

RTL x + תו == 1 x + תו == 1

RTL תו + x == 1 1 == x + תו

A specification for the application of protocol HL4 to program text is given in Section 4.1,
Bidirectional Ordering, in Unicode Technical Standard #55, “Unicode Source Code
Handling” [UTS55].

4.3.3 HL4 Example 3 for URLs

When a URL is displayed simply using the BIDI algorithm, the following results are
produced. As per convention, uppercase represents RTL letters:

Environment Display

LTR http://ab.cd.com/mn/op
http://ab.cd.HG.FE.com/LK/JI/mn/op
http://LK/JI/HG.FE

RTL http://ab.cd.com/mn/op
mn/op/LK/JI/com.HG.FE.http://ab.cd
LK/JI/HG.FE//:http

Note that the various fields of the URL can appear to the user in a jumbled order.
Moreover, if any of the fields contain mixed bidi text (including digits), part of the contents
of a field may flip around a delimiter, as in the following:

Memory positions

Memory pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Character / 0 א ב 1 a b 2 / 3 c d 4 ו ד 5 /

Display positions

Display pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Memory pos. 16 15 14 13 4 5 6 7 8 9 10 11 12 3 2 1 0

Character / 5 ד ו 1 a b 2 / 3 c d 4 ב א 0 /

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 38/47

https://www.unicode.org/reports/tr41/tr41-32.html#UTS55

The BIDI display process described in Section 4.1, Bidirectional Ordering, in Unicode
Technical Standard #55, “Unicode Source Code Handling” [UTS55], can be applied to
URLs to remedy this situation.

In applying the rules of that section, the atoms are both the delimiters and the text runs that
they delimit. The latter are referred to as literals in the following. Delimiters include both the
characters that separate the scheme, host, path, query, and fragment, plus any delimiters
within each of those parts, such as query operators. For example:

http : // foo . com / dir1 / dir2 ? hl = fr & rl = CA # fii

The atoms are then displayed in monotonic order (RTL or LTR), and each literal is
displayed with a paragraph direction equal to that monotonic order. This results in the
following orderings:

Environment Display

LTR http://ab.cd.com/mn/op
http://ab.cd.FE.HG.com/JI/LK/mn/op
http://FE.HG/JI/LK

RTL op/mn/com.cd.ab//:http
op/mn/LK/JI/com.HG.FE.cd.ab//:http
LK/JI/HG.FE//:http

Note: This display process is useful even when the labels follow the rule defined by
RFC 5893:

1. It applies to the entire URL, including the path, query, and fragment parts, which
are out of scope for that RFC.

2. Even within a domain name, the rule specified by RFC 5893 does not suffice to
make display order of the sequence of labels consistent with network order, as
documented in Section 2 of that RFC.

Being a display process, as opposed to a requirement on the text being displayed, it
does not conflict with that RFC.

4.4 Bidirectional Conformance Testing

The Unicode Character Database [UCD] includes two files that provide conformance tests
for implementations of the Bidirectional Algorithm [Tests9]. One of the test files,
BidiTest.txt, comprises exhaustive test sequences of bidirectional types up to a given
length, currently 4. The other test file, BidiCharacterTest.txt, contains test sequences of
explicit code points, including, for example, bracket pairs. The format of each test file is
described in the header of that file.

5 Implementation Notes

5.1 Reference Code

Reference implementations of the Bidirectional Algorithm written in C and in Java are
available. The source code can be downloaded from [Code9]. Implementers are
encouraged to use these resources to test their implementations.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 39/47

https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UCD
https://www.unicode.org/reports/tr41/tr41-32.html#Tests9
https://www.unicode.org/reports/tr41/tr41-32.html#Code9

The reference code is designed to follow the steps of the algorithm without applying any
optimizations. An example of an effective optimization is to first test for right-to-left
characters and invoke the Bidirectional Algorithm only if they are present. Another example
of optimization is in matching bracket pairs. The bidirectional bracket pairs (the characters
with Bidi_Paired_Bracket_Type property values Open and Close) constitute a subset of the
characters with bidirectional type ON. Conversely, the characters with a bidirectional type
distinct from ON have the Bidi_Paired_Bracket_Type property value None. Therefore,
lookup of Bidi_Paired_Bracket_Type property values for the identification of bracket pairs
can be optimized by restricting the processing to characters whose bidirectional type is
ON.

An online demo is also available at [Demo9], which shows the results of the Bidirectional
Algorithm, as well as the embedding levels and the rules invoked for each character.
Implementers are cautioned when using that online demo that it implements the rules for
UBA as of Version 6.2, and has not been updated for the major changes to UBA in Version
6.3 and subsequent versions. The online demo also does not handle supplemental
characters gracefully.

5.2 Retaining BNs and Explicit Formatting Characters

Some implementations may wish to retain the explicit directional embedding and override
formatting characters and BNs when running the algorithm. In fact, retention of these
formatting characters and BNs is important to users who need to display a graphic
representation of hidden characters, and who thus need to obtain their visual positions for
display.

The following describes how this may be done by implementations that do retain these
characters through the steps of the algorithm. Note that this description is an informative
implementation guideline; it should provide the same results as the explicit algorithm
above, but in case of any deviation the explicit algorithm is the normative statement for
conformance.

In rules X2 through X5, insert an initial step setting the explicit embedding or override
character's embedding level to the embedding level of the last entry on the directional
status stack. This applies to RLE, LRE, RLO, and LRO.
In rule X6, remove the exclusion of BN characters for the purposes of setting
embedding levels. Continue not updating the character types of these characters. In
other words, apply the first bullet point of the rule to all types except B, RLE, LRE,
RLO, LRO, PDF, RLI, LRI, FSI, and PDI.
In rule X7, add a final step setting the embedding level of the PDF to the embedding
level of the last entry on the directional status stack, in all cases.
In rule X9, do not remove any characters, but turn all RLE, LRE, RLO, LRO, and PDF
characters into BN.
In rule X10, when determining the sos and eos for an isolating run sequence, skip
over any BNs when looking for the character preceding the isolating run sequence's
first character and following its last character. Do the same when determining if the
last character of the sequence is an isolate initiator.
In rule W1, search backward from each NSM to the first character in the isolating run
sequence whose bidirectional type is not BN, and set the NSM to ON if it is an isolate
initiator or PDI, and to its type otherwise. If the NSM is the first non-BN character,
change the NSM to the type of sos.
In rule W4, scan past BN types that are adjacent to ES or CS.
In rule W5, change all appropriate sequences of ET and BN, not just ET.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 40/47

https://www.unicode.org/reports/tr41/tr41-32.html#Demo9

In rule W6, change all BN types adjacent to ET, ES, or CS to ON as well.
In rule W7, scan past BN.
In rules N0–N2, treat BNs that adjoin neutrals the same as those neutrals.
In rules I1 and I2, ignore BN.
In rule L1, include the embedding and override formatting characters and BNs
together with whitespace characters and isolate formatting characters in the
sequences whose level gets reset before a separator or line break. Resolve any LRE,
RLE, LRO, RLO, PDF, or BN to the level of the preceding character if there is one,
and otherwise to the base level.

6 Usage

6.1 Joiners

As described under X9, the zero width joiner and non-joiner affect the shaping of the
adjacent characters—those that are adjacent in the original backing-store order—even
though those characters may end up being rearranged to be non-adjacent by the
Bidirectional Algorithm. To determine the joining behavior of a particular character after
applying the Bidirectional Algorithm, there are two main strategies:

When shaping, an implementation can refer back to the original backing store to see
if there were adjacent ZWNJ or ZWJ characters.
Alternatively, the implementation can replace ZWJ and ZWNJ by an out-of-band
character property associated with those adjacent characters, so that the information
does not interfere with the Bidirectional Algorithm and the information is preserved
across rearrangement of those characters. Once the Bidirectional Algorithm has been
applied, that out-of-band information can then be used for proper shaping.

6.2 Vertical Text

In the case of vertical line orientation, there are multiple ways to display bidirectional text.
Some methods use the Bidirectional Algorithm, and some do not. The Unicode Standard
does not specify whether text is presented with horizontal or vertical layout, or for vertical
layout whether elements within the line are rotated. That is left up to higher-level protocols.
For example, one of the common approaches for vertical line orientation is to rotate all the
glyphs uniformly 90° clockwise. The Bidirectional Algorithm is used with this method. While
some characters end up ordered from bottom to top, this method can represent a mixture
of Arabic and Latin glyphs in the same way as occurs for horizontal line orientation.

Another possible approach is to render the text in a uniform single direction from top to
bottom. This method has multiple variations to determine the orientation of characters. One
variant uses the Bidirectional Algorithm to determine the level of the text, but then the
levels are not used to reorder the text. Instead, the levels are used to determine the
rotation of each segment of the text. Sometimes vertical lines follow a vertical baseline in
which each character is oriented as normal (with no rotation), with characters ordered from
top to bottom whether they are Hebrew, numbers, or Latin. When setting text using the
Arabic script in vertical lines, it is more common to employ a horizontal baseline that is
rotated by 90° counterclockwise so that the characters are ordered from top to bottom.
Latin text and numbers may be rotated 90° clockwise so that those characters are also
ordered from top to bottom.

6.3 Formatting

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 41/47

Because of the implicit character types and the heuristics for resolving neutral and numeric
directional behavior, the implicit bidirectional ordering will generally produce the correct
display without any further work. However, problematic cases may occur when a right-to-
left paragraph begins with left-to-right characters, or there are nested segments of
different-direction text, or there are weak characters on directional boundaries. In these
cases, embeddings or directional marks may be required to get the right display. Part
numbers may also require directional overrides.

The most common problematic case is that of neutrals on the boundary of an embedded
language. This can be addressed by setting the level of the embedded text correctly. For
example, with all the text at level 0 the following occurs:

Memory: he said "I NEED WATER!", and expired.

Display: he said "RETAW DEEN I!", and expired.

If the exclamation mark is to be part of the Arabic quotation, then the user can select the
text I NEED WATER! and explicitly mark it as embedded Arabic, which produces the
following result:

Memory: he said "RLII NEED WATER!PDI", and expired.

Display: he said "!RETAW DEEN I", and expired.

However, an often simpler and better method of doing this is to place a right directional
mark (RLM) after the exclamation mark. Because the exclamation mark is now not on a
directional boundary, this produces the correct result. This is the best approach when
manually editing text or programmatically generating text meant to be edited, or dealing
with an application that simply does not support explicit formatting characters.

Memory: he said "I NEED WATER!RLM", and expired.

Display: he said "!RETAW DEEN I", and expired.

This latter approach is preferred because it does not make use of the explicit formatting
characters, which can easily get out of sync if not fully supported by editors and other
string manipulation. Nevertheless, the explicit formatting characters are absolutely
necessary in cases where text of one direction contains text of the opposite direction which
itself contains text of the original direction. Such cases are not as rare as one might think,
because Latin-script brand names, technical terms, and abbreviations are often written in
their original Latin characters when used in non-Latin-script text, including right-to-left text,
as in the following:

Memory: it is called "RLIAN INTRODUCTION TO javaPDI" - $19.95 in hardcover.

Display: it is called "java OT NOITCUDORTNI NA" - $19.95 in hardcover.

Thus, when text is programmatically generated by inserting data into a template, and is not
intended for later manual editing, and a particular insert happens to be of the opposite
direction to the template's text, it is easiest to wrap the insert in explicit formatting
characters (or their markup equivalent) declaring its direction, without analyzing whether it
is really necessary to do so, or if the job could be done just with stateless directional
marks.

Furthermore, in this common scenario, it is highly recommended to use directional isolate
formatting characters as opposed to directional embedding formatting characters (once
targeted display platforms are known to support isolates). This is because embeddings

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 42/47

affect the surrounding text similarly to a strong character, whereas directional isolates have
the effect of a neutral. The embeddings' stronger effect is often difficult to anticipate and is
rarely useful. To demonstrate, here is the example above with embeddings instead of
isolates:

Memory: it is called "RLEAN INTRODUCTION TO javaPDF" - $19.95 in hardcover.

Display: it is called "$19.95 - "java OT NOITCUDORTNI NA in hardcover.

This, of course, is not the intended display, and is due to the number “sticking” to the
preceding RTL embedding (along with all the neutral characters in between), just as it
would “stick” to a preceding RTL character.

Directional isolates also offer a solution to the very common case where the direction of the
text to be programmatically inserted is not known. Instead of analyzing the characters of
the text to be inserted in order to decide whether to use an LRE or RLE (or LRI or RLI - or
nothing at all), the software can take the easy way out and always wrap each unknown-
direction insert in an FSI and PDI. Thus, an FSI instead of an RLI in the example above
would produce the same display. FSI's first-strong heuristic is not infallible, but it will work
most of the time even on mixed-script text.

Although wrapping inserts in isolates is a useful technique, it is best not to wrap text that is
known to contain no opposite-direction characters that are not already wrapped in an
isolate. Unnecessary layers of wrapping not only add bulk and complexity; they can also
wind up exceeding the depth limit and rendering ineffective the innermost isolates, which
can make the text display incorrectly. One very common case of an insert that does not
need wrapping is one known to be localized to the context locale, e.g. a translated
message with all its inserted values either themselves localized, or wrapped in an isolate.

6.4 Separating Punctuation Marks

A common problem case is where the text really represents a sequence of items with
separating punctuation marks, often programmatically concatenated. These separators are
often strings of neutral characters. For example, a web page might have the following at
the bottom:

advertising programs - business solutions - privacy policy - help - about

This might be built up on the server by concatenating a variable number of strings with " - "
as a separator, for example. If all of the text is translated into Arabic or Hebrew and the
overall page direction is set to be RTL, then the right result occurs, such as the following:

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS SSENISUB - SMARGORP
GNISITREVDA

However, suppose that in the translation, there remain some LTR characters. This is not
uncommon for company names, product names, technical terms, and so on. If one of the
separators is bounded on both sides by LTR characters, then the result will be badly
jumbled. For example, suppose that "programs" in the first term and "business" in the
second were left in English. Then the result would be

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS programs - business GNISITREVDA

The result is a jumble, with the apparent first term being "advertising business" and the
second being "programs solutions". The simplest solution for this problem is to include an

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 43/47

RLM character in each separator string. That will cause each separator to adopt a right-to-
left direction, and produce the correct output:

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS business - programs GNISITREVDA

The explicit formatting characters (LRE, RLE, and PDF or LRI, RLI, FSI, and PDI) can be
used to achieve the same effect; web pages would use spans with the attributes dir="ltr" or
dir="rtl". Each separate field would be embedded, excluding the separators. In general,
LRM and RLM are preferred to the explicit formatting characters because their effects are
more local in scope, and are more robust than the dir attributes when text is copied.
(Ideally programs would convert dir attributes to the corresponding explicit formatting
characters when converting to plain text, but that is not generally supported.)

6.5 Conversion to Plain Text

For consistent appearance, when bidirectional text subject to a higher-level protocol is to
be converted to Unicode plain text, formatting characters should be inserted to ensure that
the display order resulting from the application of the Unicode Bidirectional Algorithm
matches that specified by the higher-level protocol. The same principle should be followed
whenever text using a higher-level protocol is converted to marked-up text that is unaware
of the higher-level protocol. For example, if a higher-level protocol sets the paragraph
direction to 1 (R) based on the number of L versus R/AL characters, when converted to
plain text the paragraph would be embedded in a bracketing pair of RLE..PDF formatting
characters. If the same text were converted to HTML4.0 the attribute dir = "rtl" would be
added to the paragraph element.

The display of program text is subject to higher-lever protocols; see Section 4.3.2, HL4
Example 2 for Program Text, and Section 4.1, Bidirectional Ordering, in Unicode Technical
Standard #55, “Unicode Source Code Handling” [UTS55]. However, in addition to
preserving the appearance resulting from higher-level protocols, program text must be
converted to plain text in a semantics-preserving way, by inserting characters that are
ignored by the compiler. It is recommended that computer languages allow for the insertion
of some formatting characters in appropriate locations without changing the meaning of a
program; for computer languages that allow this insertion, a procedure is specified for
conversion to plain text. See Section 4.1, Whitespace, in Unicode Standard Annex #31,
“Unicode Identifiers and Syntax” [UAX31], and Section 5.2, Conversion to Plain Text, in
Unicode Technical Standard #55, “Unicode Source Code Handling” [UTS55].

7 Mirroring

The mirrored property is important to ensure that the correct characters are used for the
desired semantic. This is of particular importance where the name of a character does not
indicate the intended semantic, such as with U+0028 “(” LEFT PARENTHESIS. While the
name indicates that it is a left parenthesis, the character really expresses an open
parenthesis—the leading character in a parenthetical phrase, not the trailing one.

Some of the characters that do not have the Bidi_Mirrored property may be rendered with
mirrored glyphs, according to a higher level protocol that adds mirroring: see Section 4.3,
Higher-Level Protocols, especially HL6. Except in such cases, mirroring must be done
according to rule L4, to ensure that the correct character is used to express the intended
semantic, and to avoid interoperability and security problems.

Implementing rule L4 calls for mirrored glyphs. These glyphs may not be exact graphical
mirror images. For example, clearly an italic parenthesis is not an exact mirror image of

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 44/47

https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UAX31
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55

another— “(” is not the mirror image of “)”. Instead, mirror glyphs are those acceptable as
mirrors within the normal parameters of the font in which they are represented.

In implementation, sometimes pairs of characters are acceptable mirrors for one another—
for example, U+0028 “(” LEFT PARENTHESIS and U+0029 “)” RIGHT PARENTHESIS or
U+22E0 “⋠” DOES NOT PRECEDE OR EQUAL and U+22E1 “⋡” DOES NOT SUCCEED
OR EQUAL. Other characters such as U+2231 “∱” CLOCKWISE INTEGRAL do not have
corresponding characters that can be used for acceptable mirrors. The informative
BidiMirroring.txt data file [Data9], lists the paired characters with acceptable mirror glyphs.
The formal property name for this data in the Unicode Character Database [UCD] is
Bidi_Mirroring_Glyph. A comment in the file indicates where the pairs are “best fit”: they
should be acceptable in rendering, although ideally the mirrored glyphs may have
somewhat different shapes.

Migration Issues

There are two major enhancements in the Unicode 6.3 version of the UBA:

Directional isolates
Bracket Pairs

Implementations of the new directional isolates should see very few compatibility issues;
the UBA has been carefully modified to minimize differences for older text written without
them. There are a few edge cases near the limit of the number of levels where there are
some differences, but those are not likely to be encountered in practice.

With bracket pairs, there may be more changes. The problem is that without knowing (or
having good UI access to) the directional marks or embeddings, people have constructed
text with the correct visual appearance but incorrect underlying structure (eg …[…[…,
appearing as …[…]…). The new algorithm catches cases like these, because such
malformed sequences of brackets are not matched.

However, there are some cases where older implementations without rule N0 produced the
desired appearance, and newer implementations will not. The user feedback on
implementations was sufficiently positive that the decision was made to add N0.

There are also incompatibilities from some implementation's failing to updating correctly to
previous versions of Unicode, notably in the mishandling solidus such that "T 1/2" (T is an
Arabic character) appears incorrectly as "2/1 T".

To mitigate compatibility problems, it is strongly recommended that implementations take
the following steps:

Add appropriate directional formatting characters on both any parentheses that are
resolved with rule N0 so that they appear properly on older systems. This can be
done with directional marks (RLM or LRM) on both sides of each parenthesis. For
forward compatibility, text authored on older systems should use semantically correct
brackets (with directional formatting characters as necessary) to ensure correct
display on systems with implementations after Unicode 6.3.
Add the appropriate explicit embedding around any sequence of numbers + solidus +
numbers.

Section Reorganization

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 45/47

https://www.unicode.org/reports/tr41/tr41-32.html#Data9
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

In Unicode 6.3, there was significant reorganization of the text. The following table shows
the new and old section numbers.

Unicode 6.3 Unicode 6.2

2.4 Explicit Directional Isolates n/a

2.5 Terminating Explicit Directional Isolates n/a

2.6 Implicit Directional Marks 2.4

3.3.3 Preparations for Implicit Processing n/a

3.3.4 Resolving Weak Types
…3.3.6 Resolving Implicit Levels

3.3.3
…3.3.5

6.1 Joiners 5.3

6.2 Vertical Text 5.4

6.3 Formatting 5.5

6.4 Separating Punctuation Marks 5.6

6.5 Conversion to Plain Text n/a

Migration Issues 5.7

Acknowledgments

Mark Davis created the initial version of this annex and maintained the text until 2023. Ken
Whistler also maintained the text from 2022–2023. Aharon Lanin and Andrew Glass made
substantial additions to Revision 29 (Unicode 6.3.0). Robin Leroy made substantial
additions to Revision 46 (Unicode 15.0.0).

Thanks to the following people for their contributions to the Bidirectional Algorithm or for
their feedback on earlier versions of this annex: Ahmed Talaat (أحمد طلعت), Alaa Ghoneim
بھداد) Behdad Esfahbod ,(أیمن الدحلة) Asmus Freytag, Avery Bishop, Ayman Aldahleh ,(علاء غنیم)
גידי) Doug Felt, Dwayne Robinson, Eric Mader, Ernest Cline, Gidi Shalom-Bendor ,(اسفھبد
,(ישראל גידלי) Isai Scheinberg, Israel Gidali ,(גלעד אלמוסנינו) Gilead Almosnino ,(שלום-בן דור
Joe Becker, John McConnell, Jonathan Kew, Jonathan Rosenne (יונתן רוזן), Kamal
Mansour (كمال منصور), Kenneth Whistler, Khaled Sherif (خالد شریف), Koji Ishii, Laurențiu Iancu,
Maha Hassan (مھا حسن), Markus Scherer, Martin Dürst, Mati Allouche (מתתיהו אלוש), Michel
Suignard, Mike Ksar (میشیل قصار), Murray Sargent, Paul Nelson, Pedro Navarro, Peter
Constable, Rick McGowan, Robert Steen, Roozbeh Pournader (روزبھ پورنادر), Solra Bizna,
Steve Atkin, and Thomas Milo (ُتوُمَاسْ مِیلو).

References

For references for this annex, see Unicode Standard Annex #41, “Common References for
Unicode Standard Annexes.”

Modifications

The following summarizes modifications from the previous version of this annex.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 46/47

https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/reports/tr41/tr41-32.html

Revision 49

Proposed Update for Unicode 16.0.
Clarify when things get further adjusted in Preparations for Implicit Processing.
Provide some background on the algorithm in Explicit Levels and Directions.

Revision 48

Reissued for Unicode 15.1.0
Clarify variable names and initial control flow in BD16.
Clarify interaction of control flow between W4, W5, and W6.
Clarify use of sos and treatment of AN/EN within brackets in N0.
Amend modification of X6 in Retaining BNs and Explicit Formatting Characters.
Manish Goregaokar (मनीष गोरेगांवकर) and Robin Leroy are the new editors of this
annex.
Use of canonical equivalence in the algorithm (in BD16) restricted to U+3009 and
U+232A.
Added a reference to UTS #55 in Section 4.3.2, HL4 Example 2 for Program Text.
Added an example of use of HL4 for URLs in Section 4.3.3, HL4 Example 3 for
URLs.

Previous revisions can be accessed with the “Previous Version” link in the header.

© 2023 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind,
and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or accompanying this technical report.
The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

7/15/24, 1:33 PM UAX #9: Unicode Bidirectional Algorithm

https://www.unicode.org/reports/tr9/tr9-49.html 47/47

https://www.unicode.org/copyright.html

