
Technical Reports

Proposed Update Unicode® Standard Annex #15

UNICODE NORMALIZATION FORMS
Version Unicode 16.0.0

Editors Ken Whistler (ken@unicode.org)

Date 2024-05-20

This Version https://www.unicode.org/reports/tr15/tr15-55.html

Previous
Version

https://www.unicode.org/reports/tr15/tr15-54.html

Latest Version https://www.unicode.org/reports/tr15/

Latest
Proposed
Update

https://www.unicode.org/reports/tr15/proposed.html

Revision 55

Summary

This annex describes normalization forms for Unicode text. When implementations keep
strings in a normalized form, they can be assured that equivalent strings have a unique binary
representation. This annex also provides examples, additional specifications regarding
normalization of Unicode text, and information about conformance testing for Unicode
normalization forms.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode Consortium.
This is not a stable document; it is inappropriate to cite this document as other than a work in
progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but
is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in the
Conformance chapter of that version of the Unicode Standard. The version number of a
UAX document corresponds to the version of the Unicode Standard of which it forms a
part.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version of
the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see
[Reports]. For more information about versions of the Unicode Standard, see [Versions]. For
any errata which may apply to this annex, see [Errata].

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 1/33

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
mailto:ken@unicode.org
https://www.unicode.org/reports/tr15/tr15-55.html
https://www.unicode.org/reports/tr15/tr15-54.html
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
https://www.unicode.org/errata/
rick
Text Box
L2/24-187

Contents

1 Introduction
1.1 Canonical and Compatibility Equivalence
1.2 Normalization Forms
1.3 Description of the Normalization Process
1.4 Concatenation of Normalized Strings

2 Notation
3 Versioning and Stability
4 Conformance
5 Composition Exclusion

5.1 Composition Exclusion Types
5.2 Composition Exclusion Data Files

6 Examples and Charts
7 Design Goals
8 Legacy Encodings
9 Detecting Normalization Forms

9.1 Stable Code Points
9.2 Normalization Contexts Requiring Care in Optimization

10 Respecting Canonical Equivalence
11 Stability Prior to Unicode 4.1

11.1 Stability of Normalized Forms
11.2 Stability of the Normalization Process
11.3 Guaranteeing Process Stability
11.4 Forbidding Characters
11.5 Corrigendum 5 Sequences

12 Stabilized Strings
12.1 Normalization Process for Stabilized Strings

13 Stream-Safe Text Format
13.1 Buffering with Unicode Normalization

14 Implementation Notes
14.1 Optimization Strategies
14.2 Code Samples

Appendix A: Intellectual Property Considerations
Acknowledgments
References
Modifications

1 Introduction

This annex provides subsidiary information about Unicode normalization. It describes
canonical and compatibility equivalence and the four normalization forms, providing examples,
and elaborates on the formal specification of Unicode normalization, with further explanations
and implementation notes.

This document also provides the formal specification of the Stream-Safe Text Format and of
the Normalization Process for Stabilized Strings.

For the formal specification of the Unicode Normalization Algorithm, see Section 3.11,
Normalization Forms in [Unicode].

For a general introduction to the topic of equivalent sequences for Unicode strings and the
need for normalization, see Section 2.12, Equivalent Sequences and Normalization in
[Unicode].

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 2/33

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

1.1 Canonical and Compatibility Equivalence

The Unicode Standard defines two formal types of equivalence between characters: canonical
equivalence and compatibility equivalence. Canonical equivalence is a fundamental
equivalency between characters or sequences of characters which represent the same
abstract character, and which when correctly displayed should always have the same visual
appearance and behavior. Figure 1 illustrates this type of equivalence with examples of
several subtypes.

Figure 1. Examples of Canonical Equivalence

Subtype Examples

Combining sequence Ç ↔ C+◌̧
Ordering of combining marks q+◌̇ +◌̣ ↔ q+◌̣+◌̇
Hangul & conjoining jamo

가 ↔ ᄀ +ᅡ
Singleton equivalence Ω ↔ Ω

Compatibility equivalence is a weaker type of equivalence between characters or sequences
of characters which represent the same abstract character (or sequence of abstract
characters), but which may have distinct visual appearances or behaviors. The visual
appearances of the compatibility equivalent forms typically constitute a subset of the expected
range of visual appearances of the character (or sequence of characters) they are equivalent
to. However, these variant forms may represent a visual distinction that is significant in some
textual contexts, but not in others. As a result, greater care is required to determine when use
of a compatibility equivalent is appropriate. If the visual distinction is stylistic, then markup or
styling could be used to represent the formatting information. However, some characters with
compatibility decompositions are used in mathematical notation to represent a distinction of a
semantic nature; replacing the use of distinct character codes by formatting in such contexts
may cause problems. Figure 2 provides examples of compatibility equivalence.

Figure 2. Examples of Compatibility Equivalence

Subtype Examples

Font variants ℌ → H
ℍ → H

Linebreaking differences [NBSP] → [SPACE]
Positional variant forms ع → ‌‌ع

ع → ‌‌ع

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 3/33

ع → ‌‌ع
ع → ‌‌ع

Circled variants ① → 1
Width variants ｶ → カ
Rotated variants ︷ → {

︸ → }
Superscripts/subscripts i⁹ → i9

i₉ → i9
Squared characters ㌀ → アパート
Fractions ¼ → 1/4
Other ǆ → dž

Both canonical and compatibility equivalences are explained in more detail in Chapter 2,
General Structure, and Chapter 3, Conformance, in [Unicode].

1.2 Normalization Forms

Unicode Normalization Forms are formally defined normalizations of Unicode strings which
make it possible to determine whether any two Unicode strings are equivalent to each other.
Depending on the particular Unicode Normalization Form, that equivalence can either be a
canonical equivalence or a compatibility equivalence.

Essentially, the Unicode Normalization Algorithm puts all combining marks in a specified order,
and uses rules for decomposition and composition to transform each string into one of the
Unicode Normalization Forms. A binary comparison of the transformed strings will then
determine equivalence.

The four Unicode Normalization Forms are summarized in Table 1.

Table 1. Normalization Forms

Form Description

Normalization Form D (NFD) Canonical Decomposition

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 4/33

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

Normalization Form C (NFC) Canonical Decomposition,
followed by Canonical Composition

Normalization Form KD (NFKD) Compatibility Decomposition

Normalization Form KC (NFKC) Compatibility Decomposition,
followed by Canonical Composition

There are two forms of normalization that convert to composite characters: Normalization
Form C and Normalization Form KC. The difference between these depends on whether the
resulting text is to be a canonical equivalent to the original unnormalized text or a compatibility
equivalent to the original unnormalized text. (In NFKC and NFKD, a K is used to stand for
compatibility to avoid confusion with the C standing for composition.) Both types of
normalization can be useful in different circumstances.

Figures 3 through 6 illustrate different ways in which source text can be normalized. In the first
three figures, the NFKD form is always the same as the NFD form, and the NFKC form is
always the same as the NFC form, so for simplicity those columns are omitted. Examples like
these can be found in many scripts.

Figure 3. Singletons

Certain characters are known as singletons. They never remain in the text after normalization.
Examples include the angstrom and ohm symbols, which map to their normal letter
counterparts a-with-ring and omega, respectively.

Figure 4. Canonical Composites

Many characters are known as canonical composites, or precomposed characters. In the D
forms, they are decomposed; in the C forms, they are usually precomposed. (For exceptions,
see Section 5, Composition Exclusion Table.)

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 5/33

Normalization provides a unique order for combining marks, with a uniform order for all D and
C forms. Even when there is no precomposed character, as with the “q” with accents in Figure
5, the ordering may be modified by normalization.

Figure 5. Multiple Combining Marks

The example of the letter “d” with accents shows a situation where a precomposed character
plus another accent changes in NF(K)C to a different precomposed character plus a different
accent.

Figure 6. Compatibility Composites

In the NFKC and NFKD forms, many formatting distinctions are removed, as shown in Figure
6. The “fi” ligature changes into its components “f” and “i”, the superscript formatting is
removed from the “5”, and the long “s” is changed into a normal “s”.

Normalization Form KC does not attempt to map character sequences to compatibility
composites. For example, a compatibility composition of “office” does not produce
“o\uFB03ce”, even though “\uFB03” is a character that is the compatibility equivalent of the
sequence of three characters “ffi”. In other words, the composition phase of NFC and NFKC

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 6/33

are the same—only their decomposition phase differs, with NFKC applying compatibility
decompositions.

Normalization Form C uses canonical composite characters where possible, and maintains
the distinction between characters that are compatibility equivalents. Typical strings of
composite accented Unicode characters are already in Normalization Form C.
Implementations of Unicode that restrict themselves to a repertoire containing no combining
marks are already typically using Normalization Form C. (Implementations need to be aware
of versioning issues—see Section 3, Versioning and Stability.)

The W3C Character Model for the World Wide Web 1.0: Normalization [CharNorm] and other
W3C Specifications (such as XML 1.0 5th Edition) recommend using Normalization Form C
for all content, because this form avoids potential interoperability problems arising from the
use of canonically equivalent, yet different, character sequences in document formats on the
Web. See the W3C Character Model for the Word Wide Web: String Matching and Searching
[CharMatch] for more background.

Normalization Form KC additionally folds the differences between compatibility-equivalent
characters that are inappropriately distinguished in many circumstances. For example, the
halfwidth and fullwidth katakana characters will normalize to the same strings, as will Roman
numerals and their letter equivalents. More complete examples are provided in Section 6,
Examples and Charts.

Normalization Forms KC and KD must not be blindly applied to arbitrary text. Because they
erase many formatting distinctions, they will prevent round-trip conversion to and from many
legacy character sets, and unless supplanted by formatting markup, they may remove
distinctions that are important to the semantics of the text. It is best to think of these
Normalization Forms as being like uppercase or lowercase mappings: useful in certain
contexts for identifying core meanings, but also performing modifications to the text that may
not always be appropriate. They can be applied more freely to domains with restricted
character sets. (See Unicode Standard Annex #31, "Unicode Identifier and Pattern Syntax"
[UAX31] for examples.)

To summarize the treatment of compatibility composites that were in the source text:

Both NFD and NFC maintain compatibility composites.
Neither NFKD nor NFKC maintains compatibility composites.
None of the forms generate compatibility composites that were not in the source text.

For a list of all characters that may change in any of the Normalization Forms (aside from
reordering), see the Normalization Charts [Charts15].

1.3 Description of the Normalization Process

This section provides a short summary of how the Unicode Normalization Algorithm works.

To transform a Unicode string into a given Unicode Normalization Form, the first step is to fully
decompose the string. The decomposition process makes use of the Decomposition_Mapping
property values defined in UnicodeData.txt. There are also special rules to fully decompose
Hangul syllables. Full decomposition involves recursive application of the
Decomposition_Mapping values, because in some cases a complex composite character may
have a Decomposition_Mapping into a sequence of characters, one of which may also have
its own non-trivial Decomposition_Mapping value.

The type of full decomposition chosen depends on which Unicode Normalization Form is
involved. For NFC or NFD, one does a full canonical decomposition, which makes use of only

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 7/33

https://www.unicode.org/reports/tr41/tr41-32.html#CharNorm
https://www.unicode.org/reports/tr41/tr41-32.html#CharMatch
https://www.unicode.org/reports/tr41/tr41-32.html#UAX31
https://www.unicode.org/reports/tr41/tr41-32.html#Charts15

canonical Decomposition_Mapping values. For NFKC or NFKD, one does a full compatibility
decomposition, which makes use of canonical and compatibility Decomposition_Mapping
values.

Once a string has been fully decomposed, any sequences of combining marks that it contains
are put into a well-defined order. This rearrangement of combining marks is done according to
a subpart of the Unicode Normalization Algorithm known as the Canonical Ordering Algorithm.
That algorithm sorts sequences of combining marks based on the value of their
Canonical_Combining_Class (ccc) property, whose values are also defined in
UnicodeData.txt. Most characters (including all non-combining marks) have a
Canonical_Combining_Class value of zero, and are unaffected by the Canonical Ordering
Algorithm. Such characters are referred to by a special term, starter. Only the subset of
combining marks which have non-zero Canonical_Combining_Class property values are
subject to potential reordering by the Canonical Ordering Algorithm. Those characters are
called non-starters.

At this point, if one is transforming a Unicode string to NFD or NFKD, the process is complete.
However, one additional step is needed to transform the string to NFC or NFKC:
recomposition. The fully decomposed and canonically ordered string is processed by another
subpart of the Unicode Normalization Algorithm known as the Canonical Composition
Algorithm. That process logically starts at the front of the string and systematically checks it
for pairs of characters which meet certain criteria and for which there is a canonically
equivalent composite character in the standard. Each appropriate pair of characters which
meet the criteria is replaced by the composite character, until the string contains no further
such pairs. This transforms the fully decomposed string into its most fully composed but still
canonically equivalent sequence.

Figure 7 shows a sample of how the composition process works. The gray cubes represent
starters, and the white cubes represent non-starters. In the first step, the string is fully
decomposed and canonically reordered. This is represented by the downwards arrows. In the
second step, each character is checked against the last non-starter and starter, and combined
if all the appropriate conditions are met. This is represented by the curved arrows pointing to
the starters. Note that in each case, all of the successive white boxes (non-starters) are
examined plus one additional gray box (starter). Examples are provided in Section 6,
Examples and Charts.

Figure 7. Composition Process

Taken step-by-step, the Unicode Normalization Algorithm is fairly complex. However, it is
designed in such a way that it enables very efficient, highly-optimized implementations. For
example, checking whether a Unicode string is in NFC is a very quick process, and since
much text is already in NFC, an implementation that normalizes strings to NFC mostly
consists of quick verification checks, with only very occasional modifications of any pieces
which are not already in NFC. See Section 9, Detecting Normalization Forms.

Note: Text exclusively containing ASCII characters (U+0000..U+007F) is left unaffected
by all of the Normalization Forms. This is particularly important for programming

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 8/33

languages. (See Unicode Standard Annex #31, "Unicode Identifier and Pattern Syntax"
[UAX31].) Text exclusively containing Latin-1 characters (U+0000..U+00FF) is left
unaffected by NFC. This is effectively the same as saying that all Latin-1 text is already
normalized to NFC.

The complete formal specification of the Unicode Normalization Algorithm and of the Unicode
Normalization Forms can be found in Section 3.11, Normalization Forms in [Unicode]. See
that section for all of the formal definitions and for the details of the exact formulation of each
step in the algorithm.

1.4 Concatenation of Normalized Strings

In using normalization functions, it is important to realize that none of the Normalization Forms
are closed under string concatenation. That is, even if two strings X and Y are normalized,
their string concatenation X+Y is not guaranteed to be normalized. This even happens in NFD,
because accents are canonically ordered, and may rearrange around the point where the
strings are joined. Consider the string concatenation examples shown in Table 2.

Table 2. String Concatenation

Form String1 String2 Concatenation Correct Normalization

NFD a ◌̂ ◌̣ a ◌̂ ◌̣ a ◌̣ ◌̂

NFC a ◌̂ a ◌̂ â

NFC ᄀ ᅡ ᆨ ᄀ ᅡ ᆨ 각

However, it is possible to produce an optimized function that concatenates two normalized
strings and does guarantee that the result is normalized. Internally, it only needs to normalize
characters around the boundary of where the original strings were joined, within stable code
points. For more information, see Section 9.1, Stable Code Points.

In contrast to their behavior under string concatenation, all of the Normalization Forms are
closed under substringing. For example, given a substring of a normalized string X, from
offsets 5 to 10, the resulting string will still be normalized.

2 Notation

Table 3 lists examples of the notational conventions used in this annex.

Table 3. Notational Conventions

Example Notation Description

"...\uXXXX..." The Unicode character U+XXXX embedded within a string

ki, am, and kf Conjoining jamo types (initial, medial, final) represented by subscripts

NFx Any Unicode Normalization Form: NFD, NFKD, NFC, or NFKC

toNFx(s) A function that produces the the normalized form of a string s according
to the definition of Unicode Normalization Form X

isNFx(s) A binary property of a string s, whereby:

isNFx(s) is true if and only if toNFX(s) is identical to s.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 9/33

https://www.unicode.org/reports/tr41/tr41-32.html#UAX31
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

See also Section 9, Detecting Normalization Forms.

X ≈ Y X is canonically equivalent to Y

X[i, j] The substring of X that includes all code units after offset i and before
offset j; for example, if X is “abc”, then X[1,2] is “b”

Additional conventions used in this annex:

1. A sequence of characters may be represented by using plus signs between the
character names or by using string notation.

2. An offset into a Unicode string is a number from 0 to n, where n is the length of the
string and indicates a position that is logically between Unicode code units (or at the
very front or end in the case of 0 or n, respectively).

3. Unicode names may be shortened, as shown in Table 4.

Table 4. Character Abbreviation

Abbreviation Full Unicode Name

E-grave LATIN CAPITAL LETTER E WITH GRAVE

ka KATAKANA LETTER KA

hw_ka HALFWIDTH KATAKANA LETTER KA

ten COMBINING KATAKANA-HIRAGANA VOICED SOUND MARK

hw_ten HALFWIDTH KATAKANA VOICED SOUND MARK

3 Versioning and Stability

It is crucial that Normalization Forms remain stable over time. That is, if a string that does not
have any unassigned characters is normalized under one version of Unicode, it must remain
normalized under all future versions of Unicode. This is the backward compatibility
requirement. To meet this requirement, a fixed version for the composition process is
specified, called the composition version. The composition version is defined to be Version
3.1.0 of the Unicode Character Database. For more information, see

Versions of the Unicode Standard [Versions]
Unicode 3.1 [Unicode3.1]
Unicode Character Database [UCD]

To see what difference the composition version makes, suppose that a future version of
Unicode were to add the composite Q-caron. For an implementation that uses that future
version of Unicode, strings in Normalization Form C or KC would continue to contain the
sequence Q + caron, and not the new character Q-caron, because a canonical composition
for Q-caron was not defined in the composition version. See Section 5, Composition Exclusion
Table, for more information.

It would be possible to add more compositions in a future version of Unicode, as long as the
backward compatibility requirement is met. It requires that for any new composition XY → Z,
at most one of X or Y was defined in a previous version of Unicode. That is, Z must be a new
character, and either X or Y must be a new character. However, the Unicode Consortium
strongly discourages new compositions, even in such restricted cases.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 10/33

https://www.unicode.org/reports/tr41/tr41-32.html#Versions
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode3.1
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

In addition to fixing the composition version, future versions of Unicode must be restricted in
terms of the kinds of changes that can be made to character properties. Because of this, the
Unicode Consortium has a clear policy to guarantee the stability of Normalization Forms.

The Unicode Consortium has well-defined policies in place to govern changes that affect
backward compatibility. According to the Unicode policy for Normalization Forms, applicable to
Unicode 4.1 and all later versions, the results of normalizing a string on one version will
always be the same as normalizing it on any other version, as long as the string contains only
assigned characters according to both versions. For information on these stability policies,
especially regarding normalization, see the Unicode Character Encoding Stability Policy
[Policies].

If an implementation normalizes a string that contains characters that are not assigned in the
version of Unicode that it supports, that string might not be in normalized form according to a
future version of Unicode. For example, suppose that a Unicode 5.0 program normalizes a
string that contains new Unicode 5.1 characters. That string might not be normalized
according to Unicode 5.1.

Prior to Unicode 4.1, the stability policy was not quite as strict. For more information, see
Section 11 Stability Prior to Unicode 4.1.

4 Conformance

Starting with Unicode 5.2.0, conformance clauses UAX15-C1 and UAX15-C2 have been
redirected to point to the formal specification of Unicode Normalization Forms in Section 3.11,
Normalization Forms in [Unicode]. All of the local clauses have been retained in this annex, so
that any external references to Unicode Standard Annex #15 and to particular conformance
clauses for Unicode Normalization Forms will continue to be valid. Specific references to any
definitions used by the Unicode Normalization Algorithm also remain valid.

UAX15-C1. A process that produces Unicode text that purports to be in a Normalization Form
shall do so in accordance with the specifications in Section 3.11, Normalization Forms in
[Unicode].

See C13 in Chapter 3, Conformance in [Unicode]

UAX15-C2. A process that tests Unicode text to determine whether it is in a Normalization
Form shall do so in accordance with the specifications in Section 3.11, Normalization Forms in
[Unicode]

See C14 in Chapter 3, Conformance in [Unicode]

UAX15-C3. A process that purports to transform text into a Normalization Form must be able
to produce the results of the conformance test specified in the NormalizationTest.txt data file
[Test15].

See C15 in Chapter 3, Conformance in [Unicode]
The NormalizationText.txt file consists of a series of fields. When Normalization Forms
are applied to the different fields in the test file, the results shall be as specified in the
header of that file.

UAX15-C4. A process that purports to transform text according to the Stream-Safe Text
Format must do so in accordance with the specifications in this annex.

UAX15-C5. A process that purports to transform text according to the Normalization Process
for Stabilized Strings must do so in accordance with the specifications in this annex.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 11/33

https://www.unicode.org/reports/tr41/tr41-32.html#Policies
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Tests15
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

The specifications for Normalization Forms are written in terms of a process for producing a
decomposition or composition from an arbitrary Unicode string. This is a logical description—
particular implementations can have more efficient mechanisms as long as they produce the
same result. See C18 in Chapter 3, Conformance in [Unicode] and the notes following.

Implementations must be thoroughly tested for conformance to the normalization specification.
Testing for a particular Normalization Form does not require directly applying the process of
normalization, so long as the result of the test is equivalent to applying normalization and then
testing for binary identity.

5 Composition Exclusion

The concept of composition exclusion is a key part of the Unicode Normalization Algorithm.
For normalization forms NFC and NFKC, which normalize Unicode strings to Composed
forms, where possible, the basic process is first to fully decompose the string, and then to
compose the string, except where blocked or excluded. (See D117, Canonical Composition
Algorithm, in Section 3.11, Normalization Forms in [Unicode].) This section provides
information about the types of characters which are excluded from composition during
application of the Unicode Normalization Algorithm, and describes the data files which provide
the definitive lists of those characters.

Composition exclusion characters have an associated binary character property in the [UCD]:
Composition_Exclusion. It is a notable characteristic of the Unicode Normalization Algorithm
that no composition exclusion character can occur in any normalized form of Unicode text:
NFD, NFC, NFKD, or NFKC.

5.1 Composition Exclusion Types

Four types of canonically decomposable characters are excluded from composition in the
Canonical Composition Algorithm. These four types are described and exemplified here.

Script-specific Exclusions

The term script-specific exclusion refers to certain canonically decomposable characters
whose decomposition includes one of a small set of combining marks for particular Indian
scripts, for Tibetan, or for Hebrew.

The list of such characters cannot be computed from the decomposition mappings in the
Unicode Character Database, and must instead be explicitly listed.

The character U+0958 (क़) DEVANAGARI LETTER QA is an example of a script-specific
composition exclusion.

The list of script-specific composition exclusions constituted a one-time adjustment to the
Unicode Normalization Algorithm, defined at the time of the composition version in 2001 and
unchanged since that version. The list can be divided into the following three general groups,
all added to the Unicode Standard before Version 3.1:

Many precomposed characters using a nukta diacritic in the Bangla/Bengali,
Devanagari, Gurmukhi, or Odia/Oriya scripts, mostly consisting of additions to the core
set of letters for those scripts.
Tibetan letters and subjoined letters with decompositions that include either U+0FB7
TIBETAN SUBJOINED LETTER HA or U+0FB5 TIBETAN SUBJOINED LETTER SSA,
and two two-part Tibetan vowel signs involving top and bottom pieces.
A large collection of compatibility precomposed characters for Hebrew involving dagesh
and/or other combining marks.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 12/33

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

Although, in principle, the list of script-specific composition exclusions could be expanded to
add newly encoded characters in future versions of the Unicode Standard, it is very unlikely to
be extended for such characters, because the normalization forms of sequences are now
taken into account before new characters are encoded.

Post Composition Version Exclusions

The term post composition version exclusion refers to certain canonical decomposable
characters which were added after the composition version, and which meet certain criteria for
exclusion.

The list of such characters cannot be computed from the decomposition mappings in the
Unicode Character Database, and must instead be explicitly listed.

A canonical decomposable character must be added to the list of post composition version
exclusions when its decomposition mapping is defined to contain two characters, both of
which were already encoded in an earlier version of the Unicode Standard. This criterion is
required to maintain normalization stability. Without the composition exclusion, any previously
existing sequence of the two characters would change to the newly encoded character in
NFC, destabilizing the normalized form of pre-existing text.

A canonical decomposable character may be added to the list of post composition version
exclusions when its decomposition mapping is defined to contain just one character which
was already encoded in an earlier version of the Unicode Standard. Under these
circumstances, a composition exclusion is not required for normalization stability, but could be
optionally specified by the UTC if there were a determination that the maximally decomposed
sequence was preferred in all normalization forms.

An example of such a post composition version exclusion is U+2ADC (⫝̸) FORKING. To date,
that one character, encoded in Unicode 3.2, is the only character added to the list of
composition exclusions based on the criterion of its decomposition mapping containing a
single prior-encoded character.

A canonical decomposable character may also be added to the list of post composition
version exclusions when its decomposition mapping is defined to contain only characters
which are first encoded in same version of the Unicode Standard as the canonical
decomposable character, itself.

An example of such a post composition version exclusion is U+1D15F (𝅘𝅥) MUSICAL SYMBOL
QUARTER NOTE. To date, that character and a related set of musical note symbols, encoded
in Unicode 3.1, are the only characters added to the list of composition exclusions based on
the criterion of their decomposition mappings containing only characters encoded in the same
version of the Unicode Standard. Note that, techically, the encoding of those particular musical
symbols did not formally postdate the composition version, but that fact is now a historical
oddity resulting from early uncertainty as to whether the composition version would be fixed at
Unicode 3.0 or Unicode 3.1.

In principle, future canonical decomposable characters could be added to the list of post
composition version exclusions, if the UTC determines that their preferred representation is a
decomposed sequence. In practice, this situation has not actually occurred since the
publication of Unicode 3.1, and is unlikely to occur in the future, given current practice for
assigning decomposition mappings for newly encoded characters.

Singleton Exclusions

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 13/33

A singleton decomposition is defined as a canonical decomposition mapping from a character
to different single character. (See D110 in Section 3.11, Normalization Forms in [Unicode].)
Characters which have single decompositions are automatically excluded from composition in
the Canonical Composition Algorithm.

The list of characters with singleton decompositions is directly derivable from the list of
decomposition mappings in the Unicode Character Database. For information, that list is also
provided in comment lines in CompositionExclusions.txt in the UCD.

An example of a singleton exclusion is U+2126 (Ω) OHM SIGN.

There are cases where two characters have the same canonical decomposition in the
Unicode Character Database. Table 5 shows an example.

Table 5. Same Canonical Decomposition

Character Full Decomposition

212B (Å) ANGSTROM SIGN 0041 (A) LATIN CAPITAL LETTER A + 030A
(°) COMBINING RING ABOVE

00C5 (Å) LATIN CAPITAL LETTER A
WITH RING ABOVE

In such a case, the practice is to assign a singleton decomposition for one character to the
other. The full decomposition for both characters then is derived from the decomposition
mapping for the second character. In this particular case U+212B ANGSTROM SIGN has a
singleton decomposition to U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE.
Instances of characters with such singleton decompositions occur in the Unicode Standard for
compatibility with certain pre-existing character encoding standards.

Non-starter Decomposition Exclusions

A non-starter decomposition is defined as an expanding canonical decomposition which is not
a starter decomposition. (See D110b and D111 in Section 3.11, Normalization Forms in
[Unicode].) Characters which have non-starter decompositions are automatically excluded
from composition in the Canonical Composition Algorithm.

The list of characters with non-starter decompositions is directly derivable from the list of
decomposition mappings in the Unicode Character Database. For information, that list is also
provided in comment lines in CompositionExclusions.txt in the UCD.

An example of a non-starter decomposition exclusion is U+0344 (◌̈́) COMBINING GREEK
DIALYTIKA TONOS.

5.2 Composition Exclusion Data Files

The list of composition exclusion characters (Composition_Exclusion = True) is available as a
machine-readable data file, CompositionExclusions.txt [Exclusions] in the Unicode Character
Database [UCD].

All four classes of composition exclusion characters are included in this file, although the
singletons and non-starter decompositions are provided in comment lines, as they can be
computed directly from the decomposition mappings in the Unicode Character Database.

A derived property containing the complete list of full composition exclusion characters
(Full_Composition_Exclusion = True), is available separately in the Unicode Character
Database [UCD] and is described in Unicode Standard Annex #44, "Unicode Character

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 14/33

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Exclusions
https://www.unicode.org/reports/tr41/tr41-32.html#UCD
https://www.unicode.org/reports/tr41/tr41-32.html#UCD

Database" [UAX44]. Implementations can avoid having to compute the singleton and non-
starter decompositions from the Unicode Character Database by using the
Full_Composition_Exclusion property instead.

6 Examples and Charts

This section provides some detailed examples of the results when each of the Normalization
Forms is applied. The Normalization Charts [Charts15] provide charts of all the characters in
Unicode that differ from at least one of their Normalization Forms (NFC, NFD, NFKC, NFKD).

Basic Examples

The basic examples in Table 6 do not involve compatibility decompositions. Therefore, in each
case Normalization Forms NFD and NFKD are identical, and Normalization Forms NFC and
NFKC are also identical.

Table 6. Basic Examples

Original NFD, NFKD NFC, NFKC Notes

a D-dot_above D + dot_above D-dot_above Both decomposed and
precomposed canonical
sequences produce the same
result.

b D + dot_above D + dot_above D-dot_above

c D-dot_below
+ dot_above

D + dot_below
+ dot_above

D-dot_below
+ dot_above

The dot_above cannot be
combined with the D because
the D has already combined with
the intervening dot_below.

d D-dot_above
+ dot_below

D + dot_below
+ dot_above

D-dot_below
+ dot_above

e D + dot_above
+ dot_below

D + dot_below
+ dot_above

D-dot_below
+ dot_above

f D + dot_above
+ horn
+ dot_below

D + horn
+ dot_below
+ dot_above

D-dot_below
+ horn
+ dot_above

There may be intervening
combining marks, so long as the
result of the combination is
canonically equivalent.

g E-macron-grave E + macron
+ grave

E-macron-grave Multiple combining characters
are combined with the base
character.h E-macron

+ grave
E + macron
+ grave

E-macron-grave

i E-grave
+ macron

E + grave
+ macron

E-grave
+ macron

Characters will not be combined
if they would not be canonical
equivalents because of their
ordering.

j angstrom_sign A + ring A-ring Because Å (A-ring) is the
preferred composite, it is the
form produced for both
characters.

k A-ring A + ring A-ring

Effect of Compatibility Decompositions

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 15/33

https://www.unicode.org/reports/tr41/tr41-32.html#UAX44
https://www.unicode.org/reports/tr41/tr41-32.html#Charts15

The examples in Table 7 and Table 8 illustrate the effect of compatibility decompositions.
When text is normalized in forms NFD and NFC, as in Table 7, compatibility-equivalent strings
do not result in the same strings. However, when the same strings are normalized in forms
NFKD and NFKC, as shown in Table 8, they do result in the same strings. The tables also
contain an entry showing that Hangul syllables are maintained under all Normalization Forms.

Table 7. NFD and NFC Applied to Compatibility-Equivalent Strings

Original NFD NFC Notes

l "Äffin" "A\u0308ffin" "Äffin" The ffi_ligature (U+FB03) is
not decomposed, because it
has a compatibility mapping,
not a canonical mapping. (See
Table 8.)

m "Ä\uFB03n" "A\u0308\uFB03n" "Ä\uFB03n"

n "Henry IV" "Henry IV" "Henry IV" Similarly, the ROMAN
NUMERAL IV (U+2163) is not
decomposed.o "Henry \u2163" "Henry \u2163" "Henry \u2163"

p ga ka + ten ga Different compatibility
equivalents of a single
Japanese character will not
result in the same string in
NFC.

q ka + ten ka + ten ga

r hw_ka + hw_ten hw_ka + hw_ten hw_ka + hw_ten

s ka + hw_ten ka + hw_ten ka + hw_ten

t hw_ka + ten hw_ka + ten hw_ka + ten

u kaks ki + am + ksf kaks Hangul syllables are
maintained under
normalization.

Table 8. NFKD and NFKC Applied to Compatibility-Equivalent Strings

Original NFKD NFKC Notes

l' "Äffin" "A\u0308ffin" "Äffin" The ffi_ligature (U+FB03) is
decomposed in NFKC (where it
is not in NFC).m' "Ä\uFB03n" "A\u0308ffin" "Äffin"

n' "Henry IV" "Henry IV" "Henry IV" Similarly, the resulting strings
here are identical in NFKC.o' "Henry \u2163" "Henry IV" "Henry IV"

p' ga ka + ten ga Different compatibility
equivalents of a single
Japanese character will result
in the same string in NFKC.

q' ka + ten ka + ten ga

r' hw_ka + hw_ten ka + ten ga

s' ka + hw_ten ka + ten ga

t' hw_ka + ten ka + ten ga

u' kaks ki + am + ksf kaks Hangul syllables are
maintained under
normalization.*

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 16/33

* In earlier versions of Unicode, jamo characters like ksf had compatibility mappings to kf
+ sf. These mappings were removed in Unicode 2.1.9 to ensure that Hangul syllables
would be maintained.

7 Design Goals

The following are the design goals for the specification of the Normalization Forms and are
presented here for reference. The first goal is a fundamental conformance feature of the
design.

Goal 1: Uniqueness

The first, and by far the most important, design goal for the Normalization Forms is
uniqueness. Two equivalent strings will have precisely the same normalized form. More
explicitly,

1. If two strings x and y are canonical equivalents, then
toNFC(x) = toNFC(y)
toNFD(x) = toNFD(y)

2. If two strings are compatibility equivalents, then
toNFKC(x) = toNFKC(y)
toNFKD(x) = toNFKD(y)

3. All of the transformations are idempotent: that is,
toNFC(toNFC(x)) = toNFC(x)
toNFD(toNFD(x)) = toNFD(x)
toNFKC(toNFKC(x)) = toNFKC(x)
toNFKD(toNFKD(x)) = toNFKD(x)

Goal 1.3 is a consequence of Goals 1.2 and 1.1, but is stated here for clarity.

Another consequence of the definitions is that any chain of normalizations is equivalent to a
single normalization, which is:

1. a compatibility normalization, if any normalization is a compatibility normalization
2. a composition normalization, if the final normalization is a composition normalization

For example, the following table lists equivalent chains of two transformations:

toNFC(x) toNFD(x) toNFKC(x) toNFKD(x)

=toNFC(toNFC(x))
=toNFC(toNFD(x))

=toNFD(toNFC(x))
=toNFD(toNFD(x))

=toNFC(toNFKC(x))
=toNFC(toNFKD(x))
=toNFKC(toNFC(x))
=toNFKC(toNFD(x))
=toNFKC(toNFKC(x))
=toNFKC(toNFKD(x))

=toNFD(toNFKC(x))
=toNFD(toNFKD(x))
=toNFKD(toNFC(x))
=toNFKD(toNFD(x))
=toNFKD(toNFKC(x))
=toNFKD(toNFKD(x))

Goal 2: Stability

The second major design goal for the Normalization Forms is stability of characters that are
not involved in the composition or decomposition process.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 17/33

1. If a string x contains a character with a compatibility decomposition, then toNFD(x) and
toNFC(x) still contain that character.

2. As much as possible, if there are no combining characters in x, then toNFC(x) = x.
The only characters for which this is not true are those in the Section 5,
Composition Exclusion Table.

3. Irrelevant combining marks should not affect the results of composition. See example f
in Section 6, Examples and Charts, where the horn character does not affect the results
of composition.

Goal 3: Efficiency

The third major design goal for the Normalization Forms is to allow efficient implementations.

1. It is possible to implement efficient code for producing the Normalization Forms. In
particular, it should be possible to produce Normalization Form C very quickly from
strings that are already in Normalization Form C or are in Normalization Form D.

2. Normalization Forms that compose do not have to produce the shortest possible results,
because that can be computationally expensive.

8 Legacy Encodings

While the Normalization Forms are specified for Unicode text, they can also be extended to
non-Unicode (legacy) character encodings. This is based on mapping the legacy character set
strings to and from Unicode using definitions UAX15-D1 and UAX15-D2.

UAX15-D1. An invertible transcoding T for a legacy character set L is a one-to-one mapping
from characters encoded in L to characters in Unicode with an associated mapping T-1 such
that for any string S in L, T-1(T(S)) = S.

Most legacy character sets have a single invertible transcoding in common use. In a few
cases there may be multiple invertible transcodings. For example, Shift-JIS may have two
different mappings used in different circumstances: one to preserve the '\' semantics of 5C16,
and one to preserve the '¥' semantics.

The character indexes in the legacy character set string may be different from character
indexes in the Unicode equivalent. For example, if a legacy string uses visual encoding for
Hebrew, then its first character might be the last character in the Unicode string.

If transcoders are implemented for legacy character sets, it is recommended that the result be
in Normalization Form C where possible. See Unicode Technical Standard #22, “Unicode
Character Mapping Markup Language” [UTS22] for more information.

UAX15-D2. Given a string S encoded in L and an invertible transcoding T for L, the
Normalization Form X of S under T is defined to be the result of mapping to Unicode,
normalizing to Unicode Normalization Form X, and mapping back to the legacy character
encoding—for example, T-1(toNFx(T(S))). Where there is a single invertible transcoding for
that character set in common use, one can simply speak of the Normalization Form X of S.

Legacy character sets are classified into three categories based on their normalization
behavior with accepted transcoders.

1. Prenormalized. Any string in the character set is already in Normalization Form X.
For example, ISO 8859-1 is prenormalized in NFC.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 18/33

https://www.unicode.org/reports/tr41/tr41-32.html#UTS22

2. Normalizable. Although the set is not prenormalized, any string in the set can be
normalized to Normalization Form X.

For example, ISO 2022 (with a mixture of ISO 5426 and ISO 8859-1) is
normalizable.

3. Unnormalizable. Some strings in the character set cannot be normalized into
Normalization Form X.

For example, ISO 5426 is unnormalizable in NFC under common transcoders,
because it contains combining marks but not composites.

9 Detecting Normalization Forms

The Unicode Character Database supplies properties that allow implementations to quickly
determine whether a string x is in a particular Normalization Form—for example, isNFC(x).
This is, in general, many times faster than normalizing and then comparing.

For each Normalization Form, the properties provide three possible values for each Unicode
code point, as shown in Table 9.

Table 9. Description of Quick_Check Values

Values Abbr Description

NO N The code point cannot occur in that Normalization Form.

YES Y The code point is a starter and can occur in the Normalization Form. In
addition, for NFKC and NFC, the character may compose with a following
character, but it never composes with a previous character. Furthermore, if
the Decomposition_Mapping of the character is more than one code point in
length, the first code point in that Decomposition_Mapping must also have
the corresponding Quick_Check value YES.

MAYBE M The code point can occur, subject to canonical ordering, but with
constraints. In particular, the text may might not be in the specified
Normalization Form depending on the context in which the character occurs.

Code that uses this property can do a very fast first pass over a string to determine the
Normalization Form. The result is also either NO, YES, or MAYBE. For NO or YES, the
answer is definite. In the MAYBE case, a more thorough check must be made, typically by
putting a copy of the string into the Normalization Form and checking for equality with the
original.

Even the slow case can be optimized, with a function that does not perform a complete
normalization of the entire string, but instead works incrementally, only normalizing a
limited area around the MAYBE character. See Section 9.1, Stable Code Points.

This check is much faster than simply running the normalization algorithm, because it avoids
any memory allocation and copying. The vast majority of strings will return a definitive YES or
NO answer, leaving only a small percentage that require more work. The sample below is
written in Java, although for accessibility it avoids the use of object-oriented techniques.

public int quickCheck(String source) {
 short lastCanonicalClass = 0;
 int result = YES;
 for (int i = 0; i < source.length(); ++i) {
 int ch = source.codepointAt(i);
 if (Character.isSupplementaryCodePoint(ch)) ++i;
 short canonicalClass = getCanonicalClass(ch);
 if (lastCanonicalClass > canonicalClass && canonicalClass != 0) {

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 19/33

 return NO; }
 int check = isAllowed(ch);
 if (check == NO) return NO;
 if (check == MAYBE) result = MAYBE;
 lastCanonicalClass = canonicalClass;
 }
 return result;
}

public static final int NO = 0, YES = 1, MAYBE = -1;

The isAllowed() call should access the data from Derived Normalization Properties file
[NormProps] for the Normalization Form in question. (For more information, see Unicode
Standard Annex #44, "Unicode Character Database" [UAX44].) For example, here is a
segment of the data for NFC:

...
0338 ; NFC_QC; M # Mn COMBINING LONG SOLIDUS OVERLAY
...

F900..FA0D ; NFD_QC; N # Lo [270] CJK COMPATIBILITY IDEOGRAPH-F900..CJK COMPATIBILITY IDEOGRAPH-FA0D
...

These lines assign the value NFC_QC==MAYBE to the code point U+0338, and the value
NFC_QC==NO to the code points in the range U+F900..U+FA0D. There are no MAYBE
values for NFD and NFKD: the quickCheck function will always produce a definite result for
these Normalization Forms. All characters that are not specifically mentioned in the file have
the values YES.

The data for the implementation of the isAllowed() call can be accessed in memory with a
hash table or a trie (see Section 14, Implementation Notes); the latter will be the fastest.

There is also a Unicode Consortium stability policy that canonical mappings are always limited
in all versions of Unicode, so that no string when decomposed with NFC expands to more
than 3× in length (measured in code units). This is true whether the text is in UTF-8, UTF-16,
or UTF-32. This guarantee also allows for certain optimizations in processing, especially in
determining buffer sizes. See also Section 13, Stream-Safe Text Format.

9.1 Stable Code Points

It is sometimes useful to distinguish the set of code points that are stable under a particular
Normalization Form. They are the set of code points never affected by that particular
normalization process. This property is very useful for skipping over text that does not need to
be considered at all, either when normalizing or when testing normalization.

Formally, each stable code point CP fulfills all of the following conditions:

1. CP has canonical combining class 0.
2. CP is (as a single character) not changed by this Normalization Form.

In case of NFC or NFKC, each stable code point CP fulfills all of the following additional
conditions:

3. CP can never compose with a previous character.
4. CP can never compose with a following character.
5. CP can never change if another character is added.

Example. In NFC, a-breve satisfies all but (5), but if one adds an ogonek it changes to a-
ogonek plus breve. So a-breve is not stable in NFC. However, a-ogonek is stable in NFC,

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 20/33

https://www.unicode.org/reports/tr41/tr41-32.html#NormProps
https://www.unicode.org/reports/tr41/tr41-32.html#UAX44

because it does satisfy (1–5).

Concatenation of normalized strings to produce a normalized result can be optimized using
stable code points. An implementation can find the last stable code point L in the first string,
and the first stable code point F in the second string. The implementation has to normalize
only the range from (and including) L to the last code point before F. The result will then be
normalized. This can be a very significant savings in performance when concatenating large
strings.

Because characters with the property values Quick_Check=YES and
Canonical_Combining_Class=0 satisfy conditions 1–3, the optimization can also be performed
using the Quick_Check property. In this case, the implementation finds the last code point L
with Quick_Check=YES and Canonical_Combining_Class=0 in the first string and the first
code point F with Quick_Check=YES and Canonical_Combining_Class=0 in the second
string. It then normalizes the range of code points starting from (and including) L to the code
point just before F.

Note: The following text has been lightly adapted from material provided for the alpha review
in PRI #497. Please review carefully for content.

9.2 Normalization Contexts Requiring Care in Optimization

Starting with Unicode 16.0, there are several new characters (in the Kirat Rai, Tulu-Tigalari,
and Gurung Khema scripts) with normalization behavior not seen in characters encoded in
earlier versions of the Unicode Standard. The normalization algorithm and the definitions of
normalization-related properties have not changed. However, Unicode 16.0 is the first version
which includes some composite characters that can occur in NFC/NFKC strings, but when
those characters occur in a context directly following certain other characters, performing an
NFC or NFKC normalization will change those composite characters. (A composite character
has a Decomposition_Mapping (dm) value consisting of a sequence of more than one
character. In this case, the first characters in their decompositions can combine with certain
preceding characters.) This situation is illustrated schematically in the following table, using
an arbitrary convention of square brackets to indicate a composite character.

Character dm Full Decomposition NFC

A A A A

B B B B

[BB] B + B B + B [BB]

[AB] A + B A + B [AB]

[ABB] [AB] + B A + B + B [ABB]

Sequences Full Decomposition NFC

A + [BB] A + B + B [ABB]

B + [BB] B + B + B [BB] + B

A + B + [BB] A + B + B + B [ABB] + B

[AB] + [BB] A + B + B + B [ABB] + B

In this schematic example, the composite character [BB] is in NFC form, and the composite
character [AB] also is in NFC form. The problem happens when an implementation
encounters a sequence such as A + B + B in text and needs to normalize it to NFC form. If it

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 21/33

is only looking locally, it might conclude that the B + B should be normalized to [BB] and stop
there, but in this context, preceded by an A, the correct normalization is for the entire
sequence A + B + B to be normalized to [ABB] in NFC form. More problematical are the
sequences shown in the last four rows of the table. Faced with mixed input data, an optimized
normalization implementation that has incorrect assumptions about the status of [BB] can go
astray and miss the implications of characters that precede it.

Optimized implementations of normalization may normalize strings incorrectly if those strings
contain these particular characters. For the quickCheck() algorithm to work properly, the
relevant characters with canonical decomposition mappings have NFC_Quick_Check=Maybe
and NFKC_Quick_Check=Maybe values. Any implementation that derives these property
values should be carefully compared with data provided in the UCD, in which all the Maybe
values are assigned so as to produce correct results. Any quickCheck() implementation
should also be carefully tested against the results specified in NormalizationTest.txt.

10 Respecting Canonical Equivalence

This section describes the relationship of normalization to respecting (or preserving) canonical
equivalence. A process (or function) respects canonical equivalence when canonical-
equivalent inputs always produce canonical-equivalent outputs. For a function that transforms
one string into another, this may also be called preserving canonical equivalence. There are a
number of important aspects to this concept:

1. The outputs are not required to be identical, only canonically equivalent.
2. Not all processes are required to respect canonical equivalence. For example:

A function that collects a set of the General_Category values present in a string will
and should produce a different value for <angstrom sign, semicolon> than for <A,
combining ring above, greek question mark>, even though they are canonically
equivalent.
A function that does a binary comparison of strings will also find these two
sequences different.

3. Higher-level processes that transform or compare strings, or that perform other higher-
level functions, must respect canonical equivalence or problems will result.

The canonically equivalent inputs or outputs are not just limited to strings, but are also
relevant to the offsets within strings, because those play a fundamental role in Unicode string
processing.

Offset P into string X is canonically equivalent to offset Q into string Y if and only if both
of the following conditions are true:

X[0, P] ≈ Y[0, Q], and
X[P, len(X)] ≈ Y[Q, len(Y)]

This can be written as PX ≈ QY. Note that whenever X and Y are canonically equivalent, it
follows that 0X ≈ 0Y and len(X)X ≈ len(Y)Y.

Example 1. Given X = <angstrom sign, semicolon> and Y = <A, combining ring above, greek
question mark>,

0X ≈ 0Y
1X ≈ 2Y
2X ≈ 3Y

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 22/33

1Y has no canonically equivalent offset in X

The following are examples of processes that involve canonically equivalent strings and/or
offsets.

Example 2. When isWordBreak(string, offset) respects canonical equivalence, then

isWordBreak(<A-ring, semicolon>, 1) = isWordBreak(<A, ring, semicolon>, 2)

Example 3. When nextWordBreak(string, offset) respects canonical equivalence, then

nextWordBreak(<A-ring, semicolon>, 0) = 1 if and only if nextWordBreak(<A, ring,
semicolon>, 0) = 2

Respecting canonical equivalence is related to, but different from, preserving a canonical
Normalization Form NFx (where NFx means either NFD or NFC). In a process that preserves
a Normalization Form, whenever any input string is normalized according to that
Normalization Form, then every output string is also normalized according to that form. A
process that preserves a canonical Normalization Form respects canonical equivalence, but
the reverse is not necessarily true.

In building a system that as a whole respects canonical equivalence, there are two basic
strategies, with some variations on the second strategy.

A. Ensure that each system component respects canonical equivalence.
B. Ensure that each system component preserves NFx, and one of the following:

1. Reject any non-NFx text on input to the whole system.
2. Reject any non-NFx text on input to each component.
3. Normalize to NFx all text on input to the whole system.
4. Normalize to NFx all text on input to each component.
5. All three of the following:

a. Allow text to be marked as NFx when generated.
b. Normalize any unmarked text on input to each component to NFx.
c. Reject any marked text that is not NFx.

There are trade-offs for each of these strategies. The best choice or mixture of strategies will
depend on the structure of the components and their interrelations, and how fine-grained or
low-level those components are. One key piece of information is that it is much faster to check
that text is NFx than it is to convert it. This is especially true in the case of NFC. So even
where it says “normalize” above, a good technique is to first check if normalization is required,
and perform the extra processing only if necessary.

Strategy A is the most robust, but may be less efficient.
Strategies B1 and B2 are the most efficient, but would reject some data, including that
converted 1:1 from some legacy code pages.
Strategy B3 does not have the problem of rejecting data. It can be more efficient than A:
because each component is assured that all of its input is in a particular Normalization
Form, it does not need to normalize, except internally. But it is less robust: any
component that fails can “leak” unnormalized text into the rest of the system.
Strategy B4 is more robust than B1 but less efficient, because there are multiple points
where text needs to be checked.
Strategy B5 can be a reasonable compromise; it is robust but allows for all text input.

11 Stability Prior to Unicode 4.1

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 23/33

For versions prior to Unicode 4.1 (that do not apply Corrigenda #2 through #5), slightly weaker
stability policies are in effect. For information on these stability policies, especially regarding
normalization, see the Unicode Character Encoding Stability Policy [Policies].

These policies still guaranteed, in particular, that:

Once a character is encoded, its canonical combining class and decomposition mapping
will not be changed in a way that will destabilize normalization.

What this means is:

If a string contains only characters from a given version of the Unicode Standard (for
example, Unicode 3.1.1), and it is put into a normalized form in accordance with that
version of Unicode, then it will be in normalized form according to any future version of
Unicode.

This guarantee has been in place for Unicode 3.1 and after. It has been necessary to correct
the decompositions of a small number of characters since Unicode 3.1, as listed in the
Normalization Corrections data file [Corrections], but such corrections are in accordance with
the above principles: all text normalized on old systems will test as normalized in future
systems. All text normalized in future systems will test as normalized on past systems. Prior to
Unicode 4.1, what may change for those few characters, is that unnormalized text may
normalize differently on past and future systems.

11.1 Stability of Normalized Forms

For all versions, even prior to Unicode 4.1, the following policy is followed:

A normalized string is guaranteed to be stable; that is, once normalized, a string is normalized
according to all future versions of Unicode.

More precisely, if a string has been normalized according to a particular version of Unicode
and contains only characters allocated in that version, it will qualify as normalized according to
any future version of Unicode.

11.2 Stability of the Normalization Process

For all versions, even prior to Unicode 4.1, the process of producing a normalized string from
an unnormalized string has the same results under each version of Unicode, except for
certain edge cases addressed in the following corrigenda:

Three corrigenda correct certain data mappings for a total of seven characters:
Corrigendum #2, “U+FB1D Normalization” [Corrigendum2]

Corrigendum #3, “U+F951 Normalization” [Corrigendum3]

Corrigendum #4, “Five Unihan Canonical Mapping Errors” [Corrigendum4]

Corrigendum #5, “Normalization Idempotency” [Corrigendum5], fixed a problem in the
description of the normalization process for some instances of particular sequences.
Such instances never occur in meaningful text.

11.3 Guaranteeing Process Stability

The Unicode Standard provides a mechanism for those implementations that require not only
normalized strings, but also the normalization process, to be absolutely stable between two
versions even prior to Unicode 4.1 (including the edge cases mentioned in Section 11.2,

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 24/33

https://www.unicode.org/reports/tr41/tr41-32.html#Policies
https://www.unicode.org/reports/tr41/tr41-32.html#Corrections
https://www.unicode.org/versions/corrigendum2.html
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum2
https://www.unicode.org/versions/corrigendum3.html
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum3
https://www.unicode.org/versions/corrigendum4.html
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum4
https://www.unicode.org/versions/corrigendum5.html
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum5

Stability of the Normalization Process). This, of course, is true only where the repertoire of
characters is limited to those characters present in the earlier version of Unicode.

To have the newer implementation produce the same results as the older version (for
characters defined as of the older version):

1. Premap a maximum of seven (rare) characters according to whatever corrigenda came
between the two versions (see [Errata]).

For example, for a Unicode 4.0 implementation to produce the same results as
Unicode 3.2, the five characters mentioned in [Corrigendum4] are premapped to
the old values given in version 4.0 of the UCD data file [Corrections].

2. Apply the later version of normalization.
Handle any code points that were not defined in the earlier version as if they were
unassigned: such code points will not decompose or compose, and their
Canonical_Combining_Class value will be zero.
The Derived_Age property in the Unicode Character Database can be used to
determine whether a code point is assigned for any particular version of the
standard.

3. If the earlier version is before Unicode 4.1 and the later version is 4.1 or later and if the
normalization is to forms NFC or NFKC, perform the following steps:

Reorder the sequences listed in Table 10 of Section 11.5, Corrigendum 5
Sequences, as follows:

From: first_character intervening_character(s) last_character

To: first_character last_character intervening_character(s)

Replace the first_character and last_character sequence with the canonically
equivalent composed character, according to the Canonical Composition
Algorithm.

Note: For step 3, in most implementations it is actually more efficient (and much simpler)
to parameterize the code to provide for both pre- and post-Unicode 4.1 behavior. This
typically takes only one additional conditional statement.

Implementations of the Unicode Normalization Algorithm prior to version 4.1 were not all
consistent with each other. Some followed the letter of the specification; because of the defect
in the specification addressed by Corrigendum #5 [Corrigendum5], such implementations
were not idempotent, and their normalization results for the edge cases addressed by the
corrigendum were not always well-defined. Other implementations followed the intent of the
specification and implemented based on the normalization examples and reference code;
those implementations behave as if Corrigendum #5 had already been applied. When
developing a current implementation to guarantee process stability even for earlier versions of
the standard, it is important to know which type of earlier Unicode implementation of
normalization is being targeted. Step 3 outlined above only needs to be applied to guarantee
process stability for interoperating with early implementations that followed the letter of the
specification prior to version 4.1. Step 3 can be omitted when interoperating with
implementations that behaved as if Corrigendum #5 had already been applied.

11.4 Forbidding Characters

An alternative approach for certain protocols is to forbid characters that differ in normalization
status across versions prior to Unicode 4.1. The characters and sequences affected are not in

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 25/33

https://www.unicode.org/reports/tr41/tr41-32.html#Errata
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum4
https://www.unicode.org/reports/tr41/tr41-32.html#Corrections
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum5

any practical use, so this may be viable for some implementations. For example, when
upgrading from Unicode 3.2 to Unicode 5.0, there are three relevant corrigenda:

Corrigendum #3, “U+F951 Normalization” [Corrigendum3]
Corrigendum #4, “Five Unihan Canonical Mapping Errors” [Corrigendum4]
The five characters are U+2F868, U+2F874, U+2F91F, U+2F95F, and U+2F9BF.
Corrigendum #5, “Normalization Idempotency” [Corrigendum5]

The characters in Corrigenda #3 and #4 are all extremely rare Han characters. They are
compatibility characters included only for compatibility with a single East Asian character
set standard each: U+F951 for a duplicate character in KS X 1001, and the other five for
CNS 11643-1992. That’s why they have canonical decomposition mappings in the first
place.

The duplicate character in KS X 1001 is a rare character in Korean to begin with—in a
South Korean standard, where the use of Han characters at all is uncommon in actual
data. And this is a pronunciation duplicate, which even if it were used would very likely
be inconsistently and incorrectly used by end users, because there is no visual way for
them to make the correct distinctions.

The five characters from CNS 11643-1992 have even less utility. They are minor glyphic
variants of unified characters—the kinds of distinctions that are subsumed already within
all the unified Han ideographs in the Unicode Standard. They are from Planes 4–15 of
CNS 11643-1992, which never saw any commercial implementation in Taiwan. The IT
systems in Taiwan almost all implemented Big Five instead, which was a slight variant
on Planes 1 and 2 of CNS 11643-1986, and which included none of the five glyph
variants in question here.

As for Corrigendum #5, it is important to recognize that none of the affected sequences
occur in any well-formed text in any language. See Section 11.5, Corrigendum 5
Sequences.

11.5 Corrigendum 5 Sequences

Table 10 shows all of the problem sequences relevant to Corrigendum 5. It is important to
emphasize that none of these sequences will occur in any meaningful text, because none of
the intervening characters shown in the sequences occur in the contexts shown in the table.

Table 10. Problem Sequences

First Character Intervening
Character(s)

Last Character

09C7 BENGALI VOWEL SIGN E One or more
characters
with a non-
zero
Canonical
Combining
Class
property
value — for
example, an
acute accent.

09BE BENGALI VOWEL SIGN AA or
09D7 BENGALI AU LENGTH MARK

0B47 ORIYA VOWEL SIGN E 0B3E ORIYA VOWEL SIGN AA or
0B56 ORIYA AI LENGTH MARK or
0B57 ORIYA AU LENGTH MARK

0BC6 TAMIL VOWEL SIGN E 0BBE TAMIL VOWEL SIGN AA or
0BD7 TAMIL AU LENGTH MARK

0BC7 TAMIL VOWEL SIGN EE 0BBE TAMIL VOWEL SIGN AA

0B92 TAMIL LETTER O 0BD7 TAMIL AU LENGTH MARK

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 26/33

https://www.unicode.org/versions/corrigendum3.html
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum3
https://www.unicode.org/versions/corrigendum4.html
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum4
https://www.unicode.org/versions/corrigendum5.html
https://www.unicode.org/reports/tr41/tr41-32.html#Corrigendum5

0CC6 KANNADA VOWEL SIGN E 0CC2 KANNADA VOWEL SIGN UU or
0CD5 KANNADA LENGTH MARK or
0CD6 KANNADA AI LENGTH MARK

0CBF KANNADA VOWEL SIGN I
or
0CCA KANNADA VOWEL SIGN O

0CD5 KANNADA LENGTH MARK

0D47 MALAYALAM VOWEL SIGN
EE

0D3E MALAYALAM VOWEL SIGN AA

0D46 MALAYALAM VOWEL SIGN
E

0D3E MALAYALAM VOWEL SIGN AA
or
0D57 MALAYALAM AU LENGTH
MARK

1025 MYANMAR LETTER U 102E MYANMAR VOWEL SIGN II

0DD9 SINHALA VOWEL SIGN
KOMBUVA

0DCF SINHALA VOWEL SIGN AELA-
PILLA or
0DDF SINHALA VOWEL SIGN
GAYANUKITTA

[1100-1112] HANGUL CHOSEONG
KIYEOK..HIEUH
(19 instances)

[1161-1175] HANGUL JUNGSEONG
A..I
(21 instances)

[:HangulSyllableType=LV:] [11A8..11C2] HANGUL JONGSEONG
KIYEOK..HIEUH
(27 instances)

Note: This table is constructed on the premise that the text is being normalized and that
the first character has already been composed if possible. If the table is used externally
to normalization to assess whether any problem sequences occur, then the
implementation must also catch cases that are canonical equivalents. That is only
relevant to the case [:HangulSyllableType=LV:]; the equivalent sequences of <x,y>
where x is in [1100..1112] and y is in [1161..1175] must also be detected.

12 Stabilized Strings

In certain protocols, there is a requirement for a normalization process for stabilized strings.
The key concept is that for a given normalization form, once a Unicode string has been
successfully normalized according to the process, it will never change if subsequently
normalized again, in any version of Unicode, past or future. To meet this need, the
Normalization Process for Stabilized Strings (NPSS) is defined. NPSS adds to regular
normalization the requirement that an implementation must abort with an error if it encounters
any characters that are not in the current version of Unicode.

12.1 Normalization Process for Stabilized Strings

The Normalization Process for Stabilized Strings (NPSS) for a given normalization form (NFD,
NFC, NFKD, or NFKC) is the same as the corresponding process for generating that form,
except that:

The process must be aborted with an error if the string contains any code point with the
property value General_Category=Unassigned, according to the version of Unicode
used for the normalization process.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 27/33

Examples:
Sample Characters Required Behavior for Unicode

Version

3.2 4.0 4.1 5.0

U+0234 (ȴ) LATIN SMALL LETTER L WITH
CURL
(added in Unicode 4.0)

Abort Accept Accept Accept

U+0237 (ȷ) LATIN SMALL LETTER DOTLESS J
(added in Unicode 4.1)

Abort Abort Accept Accept

U+0242 (ɂ) LATIN SMALL LETTER GLOTTAL
STOP
(added in Unicode 5.0)

Abort Abort Abort Accept

Once a string has been normalized by the NPSS for a particular normalization form, it will
never change if renormalized for that same normalization form by an implementation that
supports any version of Unicode, past or future. For example, if an implementation normalizes
a string to NFC, following the constraints of NPSS (aborting with an error if it encounters any
unassigned code point for the version of Unicode it supports), the resulting normalized string
would be stable: it would remain completely unchanged if renormalized to NFC by any
conformant Unicode normalization implementation supporting a prior or a future version of the
standard.

Note that NPSS defines a process, not another normalization form. The resulting string is
simply in a particular normalization form. If a different implementation applies the NPSS again
to that string, then depending on the version of Unicode supported by the other
implementation, either the same string will result, or an error will occur. Given a string that is
purported to have been produced by the NPSS for a given normalization form, what an
implementation can determine is one of the following three conditions:

1. definitely produced by NPSS (it is normalized, and contains no unassigned characters)
2. definitely not produced by NPSS (it is not normalized)
3. may or may not have been produced by NPSS (it contains unassigned characters but is

otherwise normalized)

The additional data required for the stable normalization process can be easily implemented
with a compact lookup table. Most libraries supplying normalization functions also supply the
required property tests, and in those normalization functions it is straightforward for them to
provide an additional parameter which invokes the stabilized process.

NPSS only applies to Unicode 4.1 and later, or to implementations that apply Corrigenda #2
through #5 to earlier versions: see Section 11 Stability Prior to Unicode 4.1. A protocol that
requires stability even across other versions is a restricted protocol. Such a protocol must
define and use a restricted NPSS, a process that also aborts with an error if encounters any
problematic characters or sequences, as discussed in Section 11.4 Forbidding Characters.

13 Stream-Safe Text Format

There are certain protocols that would benefit from using normalization, but that have
implementation constraints. For example, a protocol may require buffered serialization, in
which only a portion of a string may be available at a given time. Consider the extreme case of
a string containing a digit 2 followed by 10,000 umlauts followed by one dot-below, then a digit
3. As part of normalization, the dot-below at the end must be reordered to immediately after

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 28/33

the digit 2, which means that 10,003 characters need to be considered before the result can
be output.

Such extremely long sequences of combining marks are not illegal, even though for all
practical purposes they are not meaningful. However, the possibility of encountering such
sequences forces a conformant, serializing implementation to provide large buffer capacity or
to provide a special exception mechanism just for such degenerate cases. The Stream-Safe
Text Format specification addresses this situation.

UAX15-D3. Stream-Safe Text Format: A Unicode string is said to be in Stream-Safe Text
Format if it would not contain any sequences of non-starters longer than 30 characters in
length when normalized to NFKD.

Such a string can be normalized in buffered serialization with a buffer size of 32
characters, which would require no more than 128 bytes in any Unicode Encoding Form.
Incorrect buffer handling can introduce subtle errors in the results. Any buffered
implementation should be carefully checked against the normalization test data.
The value of 30 is chosen to be significantly beyond what is required for any linguistic or
technical usage. While it would have been feasible to chose a smaller number, this value
provides a very wide margin, yet is well within the buffer size limits of practical
implementations.
NFKD was chosen for the definition because it produces the potentially longest
sequences of non-starters from the same text.

UAX15-D4. Stream-Safe Text Process is the process of producing a Unicode string in Stream-
Safe Text Format by processing that string from start to finish, inserting U+034F COMBINING
GRAPHEME JOINER (CGJ) within long sequences of non-starters. The exact position of the
inserted CGJs are determined according to the following algorithm, which describes the
generation of an output string from an input string:

1. If the input string is empty, return an empty output string.
2. Set nonStarterCount to zero.
3. For each code point C in the input string:

a. Produce the NFKD decomposition S.
b. If nonStarterCount plus the number of initial non-starters in S is greater than 30,

append a CGJ to the output string and set the nonStarterCount to zero.
c. Append C to the output string.
d. If there are no starters in S, increment nonStarterCount by the number of code

points in S; otherwise, set nonStarterCount to the number of trailing non-starters in
S (which may be zero).

4. Return the output string.

The Stream-Safe Text Process ensures not only that the resulting text is in Stream-Safe Text
Format, but that any normalization of the result is also in Stream-Safe Text Format. This is
true for any input string that does not contain unassigned code points. The Stream-Safe Text
Process preserves all of the four normalization forms defined in this annex (NFC, NFD, NFKC,
NFKD). However, normalization and the Stream-Safe Text Process do not commute. That is,
normalizing an arbitrary text to NFC, followed by applying the Stream-Safe Text Process, is
not guaranteed to produce the same result as applying the Stream-Safe Text Process to that
arbitrary text, followed by normalization to NFC.

It is important to realize that if the Stream-Safe Text Process does modify the input text by
insertion of CGJs, the result will not be canonically equivalent to the original. The Stream-Safe
Text Format is designed for use in protocols and systems that accept the limitations on the

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 29/33

text imposed by the format, just as they may impose their own limitations, such as removing
certain control codes.

However, the Stream-Safe Text Format will not modify ordinary texts. Where it modifies an
exceptional text, the resulting string would no longer be canonically equivalent to the original,
but the modifications are minor and do not disturb any meaningful content. The modified text
contains all of the content of the original, with the only difference being that reordering is
blocked across long groups of non-starters. Any text in Stream-Safe Text Format can be
normalized with very small buffers using any of the standard Normalization Forms.

Implementations can optimize this specification as long as they produce the same results. In
particular, the information used in Step 3 can be precomputed: it does not require the actual
normalization of the character. For efficient processing, the Stream-Safe Text Process can be
implemented in the same implementation pass as normalization. In such a case, the choice of
whether to apply the Stream-Safe Text Process can be controlled by an input parameter.

13.1 Buffering with Unicode Normalization

Using buffers for normalization requires that characters be emptied from the buffer correctly.
That is, as decompositions are appended to the buffer, periodically the end of the buffer will be
reached. At that time, the characters in the buffer up to but not including the last character with
the property value Quick_Check=Yes (QC=Y) must be canonically ordered (and if NFC and
NFKC are being generated, must also be composed), and only then flushed. For more
information on the Quick_Check property, see Section 9 Detecting Normalization Forms.

Consider the following example. Text is being normalized into NFC with a buffer size of 40.
The buffer has been successively filled with decompositions, and has two remaining slots. The
decomposition takes three characters, and wouldn't fit. The last character with QC=Y is the
"s", highlighted in color below.

Buffer

T h e c ◌́ a ... p ◌̃ q r ◌́ s ◌́

0 1 2 3 4 5 6 ... 31 32 33 34 35 36 37 38 39

Decomposition

u ◌̃ ◌́
0 1 2

Thus the buffer up to but not including "s" needs to be composed, and flushed. Once this is
done, the decomposition can be appended, and the buffer is left in the following state:

s ◌́ u ◌̃ ◌́ ...

0 1 2 3 4 5 6 ... 31 32 33 34 35 36 37 38 39

Implementations may also canonically order (and compose) the contents of the buffer as they
go; the key requirement is that they cannot compose a sequence until a following character
with the property QC=Y is encountered. For example, if that had been done in the above
example, then during the course of filling the buffer, we would have had the following state,
where "c" is the last character with QC=Y.

T h e c ◌́

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 30/33

0 1 2 3 4 5 6 ... 31 32 33 34 35 36 37 38 39

When the "a" (with QC=Y) is to be appended to the buffer, it is then safe to compose the "c"
and all subsequent characters, and then enter in the "a", marking it as the last character with
QC=Y.

T h e ć a

0 1 2 3 4 5 6 ... 31 32 33 34 35 36 37 38 39

14 Implementation Notes

14.1 Optimization Strategies

There are a number of optimizations that can be made in programs that normalize Unicode
strings. This section lists a few techniques for optimization. See also [UTN5] for other
information about possible optimizations.

Any implementation using optimization techniques must be carefully checked to ensure that it
still produces conformant results. In particular, the code must still be able to pass the the
NormalizationTest.txt conformance test [Tests15].

14.1.1 Quick Check for NFC

When normalizing to NFC, rather than first decomposing the text fully, a quick check can be
made on each character. If it is already in the proper precomposed form, then no work has to
be done. Only if the current character is a combining mark or is in the Composition Exclusion
Table [Exclusions], does a slower code path need to be invoked. The slower code path will
need to look at previous characters, back to the last starter. See Section 9, Detecting
Normalization Forms, for more information.

14.1.2 Optimizing Tables for NFC Composition

The majority of the cycles spent in doing composition are spent looking up the appropriate
data. The data lookup for Normalization Form C can be very efficiently implemented, because
it has to look up only pairs of characters, rather than arbitrary strings. First, a multistage table
(also known as a trie; see Chapter 5, Implementation Guidelines in [Unicode]) is used to map
a character c to a small integer i in a contiguous range from 0 to n. The code for doing this
looks like:

i = data[index[c >> BLOCKSHIFT] + (c & BLOCKMASK)];

Then a pair of these small integers are simply mapped through a two-dimensional array to get
a resulting value. This yields much better performance than a general-purpose string lookup in
a hash table.

14.1.3 Optimizing Tables for NFD Quick Check

The values of the Canonical_Combining_Class property are constrained by the character
encoding stability guarantees to the range 0..254; the value 255 will never be assigned for a
Canonical_Combining_Class value. Because of this constraint, implementations can make
use of 255 as an implementation-specific value for optimizing data tables. For example, one
can do a fast and compact table for implementing isNFD(x) by using the value 255 to
represent NFKC_QC=No.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 31/33

https://www.unicode.org/reports/tr41/tr41-32.html#UTN5
https://www.unicode.org/reports/tr41/tr41-32.html#Tests15
https://www.unicode.org/reports/tr41/tr41-32.html#Exclusions
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

14.1.4 Hangul Decomposition and Composition

Because the decompositions and compositions for Hangul syllables are algorithmic, memory
storage can be significantly reduced if the corresponding operations are done in code, rather
than by simply storing the data in the general-purpose tables. See Section 3.12, Combining
Jamo Behavior in [Unicode] for example code illustrating the Hangul Syllable Decomposition
and the Hangul Syllable Composition algorithms.

14.2 Code Samples

Perl code implementing normalization is available on the W3C site [CharLint].

See also the [FAQ] pages regarding normalization for pointers to demonstrations of
normalization sample code.

Appendix A: Intellectual Property Considerations

Transcript of letter regarding disclosure of IBM Technology
(Hard copy is on file with the Chair of UTC and the Chair of NCITS/L2)

Transcribed on 1999-03-10

February 26, 1999

The Chair, Unicode Technical Committee

Subject: Disclosure of IBM Technology - Unicode Normalization Forms

The attached document entitled “Unicode Normalization Forms” does not require IBM
technology, but may be implemented using IBM technology that has been filed for US
Patent. However, IBM believes that the technology could be beneficial to the software
community at large, especially with respect to usage on the Internet, allowing the
community to derive the enormous benefits provided by Unicode.

This letter is to inform you that IBM is pleased to make the Unicode normalization
technology that has been filed for patent freely available to anyone using them in
implementing to the Unicode standard.

Sincerely,

W. J. Sullivan,
Acting Director of National Language Support
and Information Development

Acknowledgments

Mark Davis and Martin Dürst created the initial versions of this annex. Mark Davis added to
the text through Unicode 5.1. Ken Whistler has maintained the text since Unicode 5.2.

Thanks to Kent Karlsson, Marcin Kowalczyk, Rick Kunst, Per Mildner, Terry Reedy, Sadahiro
Tomoyuki, Markus Scherer, Dick Sites, Ienup Sung, and Erik van der Poel for feedback on this
annex, including earlier versions. Asmus Freytag extensively reformatted the text for
publication as part of the Unicode 5.0 book.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 32/33

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#CharLint
https://www.unicode.org/reports/tr41/tr41-32.html#FAQ

References

For references for this annex, see Unicode Standard Annex #41, “Common References for
Unicode Standard Annexes.”

Modifications

The following summarizes modifications from the previous version of this annex.

Revision 55 [KW]

Proposed Update for Version 16.0.0.
Added Section 9.2, Normalization Contexts Requiring Care in Optimization

Revision 54 [KW]

Reissued for Version 15.1.0.

Previous revisions can be accessed with the “Previous Version” link in the header.

© 2024 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind,
and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or accompanying this technical report. The
Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

7/17/24, 8:06 AM UAX #15: Unicode Normalization Forms

https://www.unicode.org/reports/tr15/tr15-55.html 33/33

https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/copyright.html

