
Technical Reports

Proposed Update Unicode® Technical Standard #39

UNICODE SECURITY MECHANISMS
Version 16.0.0 (draft 3)

Editors Mark Davis (markdavis@google.com),
Michel Suignard (michel@suignard.com)

Date 2024-05-13

This Version https://www.unicode.org/reports/tr39/tr39-29.html

Previous
Version

https://www.unicode.org/reports/tr39/tr39-28.html

Latest Version https://www.unicode.org/reports/tr39/

Latest Proposed
Update

https://www.unicode.org/reports/tr39/proposed.html

Revision 29

Summary

Because Unicode contains such a large number of characters and incorporates the varied writing
systems of the world, incorrect usage can expose programs or systems to possible security attacks.
This document specifies mechanisms that can be used to detect possible security problems.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any
time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable
document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification. Conformance to the
Unicode Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related
information that is useful in understanding this document is found in the References. For the latest
version of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see
[Reports]. For more information about versions of the Unicode Standard, see [Versions].

Contents

1 Introduction
2 Conformance
3 Identifier Characters

3.1 General Security Profile for Identifiers
Table 1. Identifier_Status and Identifier_Type
3.1.1 Joining Controls

3.1.1.1 Limited Contexts for Joining Controls
3.1.1.2 Limitations

3.2 IDN Security Profiles for Identifiers
3.3 Email Security Profiles for Identifiers

4 Confusable Detection
4.1 Whole-Script Confusables

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 1/29

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
mailto:markdavis@google.com
mailto:michel@suignard.com
https://www.unicode.org/reports/tr39/tr39-29.html
https://www.unicode.org/reports/tr39/tr39-28.html
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr39/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
rick
Text Box
L2/24-192

4.2 Mixed-Script Confusables
5 Detection Mechanisms

5.1 Mixed-Script Detection
Table 1a. Mixed Script Examples

5.2 Restriction-Level Detection
5.3 Mixed-Number Detection
5.4 Optional Detection

6 Development Process
6.1 Confusables Data Collection
6.2 Identifier Modification Data Collection

7 Data Files
Table 2. Data File List

Migration
Table 3. Version Correspondence
Migrating Persistent Data
Version 8.0 Migration
Version 7.0 Migration

Acknowledgments
References
Modifications

1 Introduction

Unicode Technical Report #36, "Unicode Security Considerations" [UTR36] provides guidelines for
detecting and avoiding security problems connected with the use of Unicode. This document specifies
mechanisms that are used in that document, and can be used elsewhere. Readers should be familiar
with [UTR36] before continuing. See also the Unicode FAQ on Security Issues [FAQSec].

2 Conformance

An implementation claiming conformance to this specification must do so in conformance to the
following clauses:

UTS-39-C1. An implementation claiming to implement the General Profile for Identifiers shall do so
by conforming to either UTS-39-C1-1 or UTS-39-C1-2.

UTS-39-C1-1. The Implementation shall be in accordance with the specifications in Section 3.1,
General Security Profile for Identifiers, without change.

UTS-39-C1-2. The implementation shall provide a precise list of characters that are added to or
removed from the profile, but otherwise be in accordance with the specifications in Section 3.1,
General Security Profile for Identifiers.

UTS-39-C1.1. An implementation claiming to implement the IDN Security Profiles for Identifiers
shall do so by conforming to either UTS-39-C1.1-1 or UTS-39-C1.1-2.

UTS-39-C1.1-1. The implementation shall be in accordance with the specifications in Section
3.2, IDN Security Profiles for Identifiers for Identifiers, without change.

UTS-39-C1.1-2. The implementation shall provide a precise list of characters that are added to or
removed from the profile, but otherwise be in accordance with the specifications in Section 3.2,
IDN Security Profiles for Identifiers.

UTS-39-C1.2. An implementation claiming to implement the Email Security Profiles for Identifiers
shall do so by conforming to either UTS-39-C1.2-1 or UTS-39-C1.2-2.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 2/29

UTS-39-C1.2-1. The implementation shall be in accordance with the specifications in Section
3.3, Email Security Profiles for Identifiers, without change.

UTS-39-C1.2-2. The implementation shall provide a precise list of characters that are added to or
removed from the profile, but otherwise be in accordance with the specifications in Section 3.3,
Email Security Profiles for Identifiers.

UTS-39-C2. An implementation claiming to implement any of the following confusable-detection
functions for Identifiers defined in Section 4, Confusable Detection shall do so by conforming to either
UTS-39-C2-1 or UTS-39-C2-2.

1. X and Y are single-script confusables
2. X and Y are mixed-script confusables
3. X and Y are whole-script confusables
4. X has whole-script confusables in set of scripts S

UTS-39-C2-1. The implementation of the function shall be in accordance with the specifications
in Section 4, Confusable Detection, without change.

UTS-39-C2-2. The implementation shall provide a precise list of character mappings that are
added to or removed from those provided, but otherwise be in accordance with the specifications
in Section 4, Confusable Detection.

UTS-39-C3. An implementation claiming to detect mixed scripts shall do so by conforming to either
UTS-39-C3-1 or UTS-39-C3-2.

UTS-39-C3-1. The implementation shall be in accordance with the specifications in Section 5.1,
Mixed-script Detection, without change.

UTS-39-C3-2. The implementation shall provide a precise description of changes in behavior, but
otherwise be in accordance with the specifications in Section 5.1, Mixed-Script Detection.

UTS-39-C4. An implementation claiming to detect Restriction-Levels shall do so by conforming to
either UTS-39-C4-1 or UTS-39-C4-2.

UTS-39-C4-1. The implementation shall be in accordance with the specifications in Section 5.2,
Restriction-Level Detection, without change.

UTS-39-C4-2. The implementation shall provide a precise description of changes in behavior, but
otherwise be in accordance with the specifications in Section 5.2, Restriction-Level Detection.

UTS-39-C5. An implementation claiming to detect mixed numbers shall do so by conforming to either
UTS-39-C5-1 or UTS-39-C5-2.

UTS-39-C5-1. The implementation shall be in accordance with the specifications in Section 5.3,
Mixed-Number Detection, without change.

UTS-39-C5-2. The implementation shall provide a precise description of changes in behavior, but
otherwise be in accordance with the specifications in Section 5.3, Mixed-Number Detection.

3 Identifier Characters

Identifiers ("IDs") are strings used in application contexts to refer to specific entities of certain
significance in the given application. In a given application, an identifier will map to at most one
specific entity. Many applications have security requirements related to identifiers. A common example
is URLs referring to pages or other resources on the Internet: when a user wishes to access a
resource, it is important that the user can be certain what resource they are interacting with. For
example, they need to know that they are interacting with a particular financial service and not some
other entity that is spoofing the intended service for malicious purposes. This illustrates a general

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 3/29

security concern for identifiers: potential ambiguity of strings. While a machine has no difficulty
distinguishing between any two different character sequences, it could be very difficult for humans to
recognize and distinguish identifiers if an application did not limit which Unicode characters could be in
identifiers. The focus of this specification is mitigation of such issues related to the security of
identifiers.

Deliberately restricting the characters that can be used in identifiers is an important security technique.
The exclusion of characters from identifiers does not affect the general use of those characters for
other purposes, such as for general text in documents. Unicode Standard Annex #31, "Unicode
Identifier and Pattern Syntax" [UAX31] provides a recommended method of determining which strings
should qualify as identifiers. The UAX #31 specification extends the common practice of defining
identifiers in terms of letters and numbers to the Unicode repertoire.

That specification also permits other protocols to use that method as a base, and to define a profile
that adds or removes characters. For example, identifiers for specific programming languages typically
add some characters like "$", and remove others like "-" (because of the use as minus), while IDNA
removes "_" (among others)—see Unicode Technical Standard #46, "Unicode IDNA Compatibility
Processing" [UTS46], as well as [IDNA2003], and [IDNA2008].

This document provides for additional identifier profiles for environments where security is an issue.
These are profiles of the extended identifiers based on properties and specifications of the Unicode
Standard [Unicode], including:

The XID_Start and XID_Continue properties defined in the Unicode Character Database (see
[DCore])
The toCasefold(X) operation defined in Chapter 3, Conformance of [Unicode]
The NFKC and NFKD normalizations defined in Chapter 3, Conformance of [Unicode]

The data files used in defining these profiles follow the UCD File Format, which has a semicolon-
delimited list of data fields associated with given characters, with each field referenced by number. For
more details, see [UCDFormat].

3.1 General Security Profile for Identifiers

The files under [idmod] provide data for a profile of identifiers in environments where security is at
issue. The files contain a set of characters recommended to be restricted from use. They also contain
a small set of characters that are recommended as additions to the list of characters defined by the
XID_Start and XID_Continue properties, because they may be used in identifiers in a broader context
than programming identifiers.

The Restricted characters are characters not in common use, and they can be blocked to further
reduce the possibilities for visual confusion. They include the following:

characters not in modern use
characters only used in specialized fields, such as liturgical characters, phonetic letters, and
mathematical letter-like symbols
characters in limited use by very small communities

The choice of which characters to specify as Restricted starts conservatively, but allows additions in
the future as requirements for characters are refined. For information on handling modifications over
time, see 2.10.1, Backward Compatibility in Unicode Technical Report #36, "Unicode Security
Considerations" [UTR36].

An implementation following the General Security Profile does not permit any characters in
\p{Identifier_Status=Restricted}, unless it documents the additional characters that it does allow. Such
documentation can specify characters via properties, such as \p{Identifier_TypeStatus=Technical}, or
by explicit lists, or by combinations of these. Implementations may also specify that fewer characters
are allowed than implied by \p{Identifier_Status=AllowedRestricted}; for example, they can restrict
characters to only those allow only characters permitted by [IDNA2008].

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 4/29

Common candidates for such additions include characters for scripts listed in Table 7, Limited Use
Scripts of [UAX31]. However, characters from these scripts have not been a priority for examination for
confusables or to determine specialized, non-modern, or uncommon-use characters.

Canonical equivalence is applied when testing candidate identifiers for inclusion of Allowed characters.
For example, suppose the candidate string is the sequence

<u, combining-diaeresis>

The target string would be Allowed in either of the following 2 situations:

1. u is Allowed and ¨ is Allowed, or
2. ü is Allowed

For details of the format for the [idmod] files, see Section 7, Data Files.

Table 1. Identifier_Status and Identifier_Type

Identifier_Status Identifier_Type Description

Restricted Not_Character Unassigned characters, private use characters, surrogates,
non-whitespace control characters.

Deprecated Characters with the Unicode property Deprecated=Yes.

Default_Ignorable Characters with the Unicode property
Default_Ignorable_Code_Point=Yes.

Not_NFKC Characters that cannot occur in strings normalized to NFKC.

Not_XID Characters that do not qualify as default Unicode identifiers;
that is, they do not have the Unicode property
XID_Continue=True.

Exclusion Characters with Script_Extensions values containing a script
in Table 4, Excluded Scripts from [UAX31], and no script from
Table 7, Limited Use Scripts or Table 5, Recommended
Scripts, other than “Common” or “Inherited”.

Obsolete Characters that are no longer in modern use, or that are not
commonly used in modern text.

Technical Specialized usage: technical, liturgical, etc.

Uncommon_Use Characters that are uncommon, or are limited in use (even
though they are in scripts that are not "Limited_Use"), or
whose usage is uncertain.
May be combined with Exclusion or Limited_Use for
characters that are less common than the main characters of
their scripts.

Limited_Use Characters from scripts that are in limited use: with
Script_Extensions values containing a script in Table 7,
Limited Use Scripts in [UAX31], and no script from Table 5,
Recommended Scripts, other than “Common” or “Inherited”.

Allowed Inclusion Exceptionally allowed characters, including Table 3a, Optional
Characters for Medial and Table 3b, Optional Characters for
Continue in [UAX31], and some characters for [IDNA2008],
except for certain characters that are Restricted above.

Recommended Characters from scripts that are in widespread everyday
common use: with Script_Extensions values containing a
script in Table 5, Recommended Scripts in [UAX31], except
for those characters that are Restricted above.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 5/29

https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Optional_Medial
https://www.unicode.org/reports/tr31/#Table_Optional_Medial
https://www.unicode.org/reports/tr31/#Table_Optional_Continue
https://www.unicode.org/reports/tr31/#Table_Optional_Continue
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts

Note: In Unicode 15.0, the Joiner_Control characters (ZWJ/ZWNJ) have been removed from
Identifier_Type=Inclusion. They thereby have the properties Identifier_Type=Default_Ignorable
and Identifier_Status=Restricted. Their inclusion in programming language identifier profiles has
usability and security implications.

Implementations of the General Profile for Identifiers that wish to retain ZWJ and ZWNJ should
declare that they use a modification of the profile per Section 2, Conformance, and should
ensure that they implement the restrictions described in Section 3.1.1, Joining Controls.

Identifier_Status and Identifier_Type are properties of characters (code points). See UTS #18: Unicode
Regular Expressions [UTS18] and UTR #23: The Unicode Character Property Model [UTR23] for more
discussion. For the purpose of regular expressions, the long and short names of these properties and
their values are documented in their respective data files; see Section 7, Data Files.

For stability considerations, see Migrating Persistent Data.

There may be multiple reasons for restricting a character; therefore, the Identifier_Type property allows
multiple values that correspond with Restricted. For example, some characters have Identifier_Type
values of Limited_Use and Technical. Multiple values are not assigned to characters with strong
restrictions: Not_Character, Deprecated, Default_Ignorable, Not_NFKC. For example, if a character is
Deprecated, there is little value in also marking it as Uncommon_Use. For the qualifiers on usage,
Obsolete, Uncommon_Use and Technical, the distinctions among the Identifier_Type values is not
strict and only one might be given. The important characteristic is the Identifier_Status: whether or not
the character is Restricted.

The default Identifier_Type property value should be Uncommon_Use if no other categories apply.

As more information is gathered about characters, this data may change in successive versions. That
can cause either the Identifier_Status or Identifier_Type to change for a particular character. Thus
users of this data should be prepared for changes in successive versions, such as by having a
grandfathering policy in place for previously supported characters or registrations. Both
Identifier_Status and Identifier_Type values are to be compared case-insensitively and ignoring
hyphens and underbars.

Restricted characters should be treated with caution when considering possible use in identifiers, and
should be disallowed unless there is good reason to allow them in the environment in question.
However, the set of Identifier_Status=Allowed characters are not typically used as is by
implementations. Instead, they are applied as filters to the set of characters C that are supported by
the identifier syntax, generating a new set C′. Typically there are also particular characters or classes
of characters from C that are retained as Exception characters.

C′ = (C ∩ {Identifier_Status=Allowed}) ∪ Exception

The implementation may simply restrict use of new identifiers to C′, or may apply some other strategy.
For example, there might be an appeal process for registrations of ids that contain characters outside
of C′ (but still inside of C), or in user interfaces for lookup of identifiers, warnings of some kind may be
appropriate. For more information, see [UTR36].

The Exception characters would be implementation-specific. For example, a particular implementation
might extend the default Unicode identifier syntax by adding Exception characters with the Unicode
property XID_Continue=False, such as “$”, “-”, and “.”. Those characters are specific to that identifier
syntax, and would be retained even though they are not in the Identifier_Status=Allowed set. Some
implementations may also wish to add some [CLDR] exemplar characters for particular supported
languages that have unusual characters.

The Identifier_Type=Inclusion characters already contain some characters that are not letters or
numbers, but that are used within words in some languages. For example, it is recommended that
U+00B7 (·) MIDDLE DOT be allowed in identifiers, because it is required for Catalan.

The implementation may also apply other restrictions discussed in this document, such as checking for
confusable characters or doing mixed-script detection.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 6/29

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Inclusion:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Default_Ignorable:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Status=Restricted:]

3.1.1 Joining Controls

Visible distinctions created by certain characters excluded by the General Security Profile because
their Identifier_Type is Default_Ignorable (particularly the Join_Control characters) are necessary in
certain languages. A blanket exclusion of these characters makes it impossible to create identifiers
with the correct visual appearance for common words or phrases in those languages.

Identifier systems that attempt to provide more natural representations of terms in "modern, customary
usage" should allow these characters in input and display, but limit them to contexts in which they are
necessary. The term modern customary usage includes characters that are in common use in
newspapers, journals, lay publications; on street signs; in commercial signage; and as part of common
geographic names and company names, and so on. It does not include technical or academic usage
such as in mathematical expressions, using archaic scripts or words, or pedagogical use (such as
illustration of half-forms or joining forms in isolation), or liturgical use.

The goals for such a restriction of format characters to particular contexts are to:

Allow the use of these characters where required in normal text
Exclude as many cases as possible where no visible distinction results
Be simple enough to be easily implemented with standard mechanisms such as regular
expressions

An implementation following the General Security Profile that allows the additional characters ZWJ and
ZWNJ shall only permit them where they satisfy the conditions A1, A2, and B in Section 3.1.1.1,
Limited Contexts for Joiner Controls, unless it documents the additional contexts where it allows them.

More advanced implementations may use script-specific information for more detailed testing. In
particular, they can:

1. Disallow joining controls in sequences that meet the conditions of A1, A2, and B, where in common
fonts the resulting appearance of the sequence is normally not distinct from appearance in the same
sequences with the joining controls removed.

2. Allow joining controls in sequences that don't meet the conditions of A1, A2, and B, where in
common fonts the resulting appearance of the sequence is normally distinct from the appearance in
the same sequences with the joining controls removed. The following regular expressions describe
sequences that typically result in distinct rendering. They use the notation explained below in A1.

/$L ZWNJ $V $L/

/$L ZWJ $V $L/

3.1.1.1 Limited Contexts for Joining Controls

An implementation that attempts to provide more natural representations of terms in "modern,
customary usage" should allow the following Join_Control characters in the limited contexts specified
in A1, A2, and B below.

U+200C ZERO WIDTH NON-JOINER (ZWNJ)
U+200D ZERO WIDTH JOINER (ZWJ)

There are also two global conditions incorporated in each of A1, A2, and B:

Script Restriction. In each of the following cases, the specified sequence must only consist of
characters from a single script (after ignoring Common and Inherited script characters).
Normalization. In each of the following cases, the specified sequence must be in NFC format.
(To test an identifier that is not required to be in NFC, first transform into NFC format and then
test the condition.)

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 7/29

Implementations may also impose tighter restrictions than provided below, in order to eliminate some
other circumstances where the characters either have no visual effect or the effect has no semantic
importance.

A1. Allow ZWNJ in the following context:

Breaking a cursive connection. That is, in the context based on the Joining_Type property,
consisting of:

A Left-Joining or Dual-Joining character, followed by zero or more Transparent characters,
followed by a ZWNJ, followed by zero or more Transparent characters, followed by a Right-
Joining or Dual-Joining character

This corresponds to the following regular expression (in Perl-style syntax): /$LJ $T* ZWNJ $T* $RJ/

Where the character classes like $T could be defined with Unicode properties (similar to UnicodeSet
notation) like this:

$T = \p{Joining_Type=Transparent}
$RJ = [\p{Joining_Type=Dual_Joining}\p{Joining_Type=Right_Joining}]
$LJ = [\p{Joining_Type=Dual_Joining}\p{Joining_Type=Left_Joining}]

For example, consider Farsi <Noon, Alef, Meem, Heh, Alef, Farsi Yeh>. Without a ZWNJ, it translates
to "names", as shown in the first row; with a ZWNJ between Heh and Alef, it means "a letter", as
shown in the second row of Figure 1.

Figure 1. Persian Example with ZWNJ

Appearance Code Points Abbreviated Names

0646 + 0627 + 0645 + 0647 + 0627 +
06CC

NOON + ALEF + MEEM + HEH + ALEF +
FARSI YEH

0646 + 0627 + 0645 + 0647 + 200C
+ 0627 + 06CC

NOON + ALEF + MEEM + HEH + ZWNJ +
ALEF + FARSI YEH

A2. Allow ZWNJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWNJ (optionally preceded or followed by certain
nonspacing marks), followed by a Letter.

This corresponds to the following regular expression (in Perl-style syntax): /$L $M* $V $M₁* ZWNJ
$M₁* $L/

Where:

$L = \p{General_Category=Letter}
$V = \p{Canonical_Combining_Class=Virama}
$M = \p{General_Category=Mn}
$M₁ = [\p{General_Category=Mn}&\p{CCC≠0}]

For example, the Malayalam word for eyewitness is shown in Figure 2. The form without the ZWNJ in
the second row is incorrect in this case.

Figure 2. Malayalam Example with ZWNJ

Appearance Code Points Abbreviated Names

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 8/29

0D26 + 0D43 + 0D15 + 0D4D
+ 200C + 0D38 + 0D3E +

0D15 + 0D4D + 0D37 + 0D3F

DA + VOWEL SIGN VOCALIC R + KA +
VIRAMA + ZWNJ + SA + VOWEL SIGN AA +

KA + VIRAMA + SSA + VOWEL SIGN I

0D26 + 0D43 + 0D15 + 0D4D
+ 0D38 + 0D3E + 0D15 +

0D4D + 0D37 + 0D3F

DA + VOWEL SIGN VOCALIC R + KA +
VIRAMA + SA + VOWEL SIGN AA + KA +

VIRAMA + SSA + VOWEL SIGN I

B. Allow ZWJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWJ (optionally preceded or followed by certain
nonspacing marks), and not followed by a character of type
Indic_Syllabic_Category=Vowel_Dependent

This corresponds to the following regular expression (in Perl-style syntax): /$L $M* $V $M₁* ZWJ
(?!$D)/

Where:

$L= \p{General_Category=Letter}
$V = \p{Canonical_Combining_Class=Virama}
$M = \p{General_Category=Mn}
$M₁ = [\p{General_Category=Mn}&\p{CCC≠0}]
$D = \p{Indic_Syllabic_Category=Vowel_Dependent}

For example, the Sinhala word for the country 'Sri Lanka' is shown in the first row of Figure 3, which
uses both a space character and a ZWJ. Removing the space results in the text shown in the second
row of Figure 3, which is still legible, but removing the ZWJ completely modifies the appearance of the
'Sri' cluster and results in the unacceptable text appearance shown in the third row of Figure 3.

Figure 3. Sinhala Example with ZWJ

Appearance Code Points Abbreviated Names

0DC1 + 0DCA + 200D + 0DBB +
0DD3 + 0020 + 0DBD + 0D82 +

0D9A + 0DCF

SHA + VIRAMA + ZWJ + RA + VOWEL
SIGN II + SPACE + LA + ANUSVARA + KA +

VOWEL SIGN AA

0DC1 + 0DCA + 200D + 0DBB +
0DD3 + 0DBD + 0D82 + 0D9A +

0DCF

SHA + VIRAMA + ZWJ + RA + VOWEL
SIGN II + LA + ANUSVARA + KA + VOWEL

SIGN AA

0DC1 + 0DCA + 0DBB + 0DD3
+ 0020 + 0DBD + 0D82 + 0D9A

+ 0DCF

SHA + VIRAMA + RA + VOWEL SIGN II +
SPACE + LA + ANUSVARA + KA + VOWEL

SIGN AA

Note: The restrictions in A1, A2, and B are similar to the CONTEXTJ rules defined in Appendix
A, Contextual Rules Registry, in The Unicode Code Points and Internationalized Domain Names
for Applications (IDNA) [IDNA2008].

3.1.1.2 Limitations

While the restrictions in A1, A2, and B greatly limit visual confusability, they do not prevent it. For
example, because Tamil only uses a Join_Control character in one specific case, most of the
sequences these rules allow in Tamil are, in fact, visually confusable. Therefore based on their
knowledge of the script concerned, implementations may choose to have tighter restrictions than

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 9/29

specified in Section 3.1.1.2, Limited Contexts for Joining Controls—for example, by explicitly providing
for the exceptional sequence, while otherwise disallowing the joiner in context.

There are also cases where a joiner preceding a virama makes a visual distinction in some scripts. It is
currently unclear whether this distinction is important enough in identifiers to warrant retention of a
joiner. For more information, see UTR #36: Unicode Security Considerations [UTR36].

Performance. Parsing identifiers can be a performance-sensitive task. However, these characters are
quite rare in practice, thus the regular expressions (or equivalent processing) only rarely would need to
be invoked. Thus these tests should not add any significant performance cost overall.

3.2 IDN Security Profiles for Identifiers

Version 1 of this document defined operations and data that apply to [IDNA2003], which has been
superseded by [IDNA2008] and Unicode Technical Standard #46, "Unicode IDNA Compatibility
Processing" [UTS46]. The identifier modification data can be applied to whichever specification of
IDNA is being used. For more information, see the [IDN FAQ].

However, implementations can claim conformance to other features of this document as applied to
domain names, such as Restriction Levels.

3.3 Email Security Profiles for Identifiers

The SMTP Extension for Internationalized Email provides for specifications of internationalized email
addresses [EAI]. However, it does not provide for testing those addresses for security issues. This
section provides an email security profile that may be used for that. It can be applied for different
purposes, such as:

1. When an email address is registered, flag anything that does not meet the profile:
Either forbid the registration, or
Allow for an appeals process.

2. When an email address is detected in linkification of plain text:
Do not linkify if the identifier does not meet the profile.

3. When an email address is displayed in incoming email:
Flag it as suspicious with a wavy underline, if it does not meet the profile.
Filter characters from the quoted-string-part to prevent display problems.

This profile does not exclude characters from EAI. Instead, it provides a profile that can be used for
registration, linkification, and notification. The goal is to flag addresses that are structurally unsound or
contain unexpected detritus.

An email address is formed from three main parts. (There are more elements of an email address, but
these are the ones for which Unicode security is important.) For example:

"Joey" <joe31834@gmail.com>

The domain-part is "gmail.com"
The local-part is "joe31834"
The quoted-string-part is "Joey"

To meet the requirements of the Email Security Profiles for Identifiers section of this specification,
an identifier must satisfy the following conditions for the specified <restriction level>.

Domain-Part

The domain-part of an email address must satisfy Section 3.2, IDN Security Profiles for Identifiers, and
satisfy the conformance clauses of [UTS46].

Local-Part

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 10/29

The local-part of an email address must satisfy all the following conditions:

1. It must be in NFKC format
2. It must have level = <restriction level> or less, from Restriction_Level_Detection
3. It must not have mixed number systems according to Mixed_Number_Detection
4. It must satisfy dot-atom-text from RFC 5322 §3.2.3, where atext is extended as follows:

Where C ≤ U+007F, C is defined as in §3.2.3. (That is, C ∈ [!#-'*+\-/-9=?A-Z\^-~]. This list copies
what is already in §3.2.3, and follows HTML5 for ASCII.)

Where C > U+007F, both of the following conditions are true:

1. C has Identifier_Status=Allowed from General Security Profile
2. If C is the first character, it must be XID_Start from Default Identifier_Syntax in [UAX31]

Note that in RFC 5322 §3.2.3:

dot-atom-text = 1*atext *("." 1*atext)

That is, dots can also occur in the local-part, but not leading, trailing, or two in a row. In more
conventional regex syntax, this would be:

dot-atom-text = atext+ ("." atext+)*

Note that bidirectional controls and other format characters are specifically disallowed in the local-part,
according to the above.

Quoted-String-Part

The quoted-string-part of an email address must satisfy the following conditions:

1. It must be in NFC.
2. It must not contain any stateful bidirectional format characters.

That is, no [:bidicontrol:] except for the LRM, RLM, and ALM, since the bidirectional
controls could influence the ordering of characters outside the quotes.

3. It must not contain more than four nonspacing marks in a row, and no sequence of two of the
same nonspacing marks.

4. It may contain mixed scripts, symbols (including emoji), and so on.

Other Issues

The restrictions above are insufficient to prevent bidirectional-reordering that could intermix the
quoted-string-part with the local-part or the domain-part in display. To prevent that, implementations
could use bidirectional isolates (or equivalent) around the each of these parts in display.

Implementations may also want to use other checks, such as for confusability, or services such as
Safe Browsing.

A serious practical issue is that clients do not know what the identity rules are for any particular email
server: that is, when two email addresses are considered equivalent. For example, are
mark@macchiato.com and Mark@macchiato.com treated the same by the server? Unfortunately,
there is no way to query a server to see what identity rules it follows. One of the techniques used to
deal with this problem is having whitelists of email providers indicating which of them are case-
insensitive, dot-insensitive, or both.

4 Confusable Detection

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 11/29

https://www.rfc-editor.org/rfc/rfc5322.html#section-3.2.3
https://www.rfc-editor.org/rfc/rfc5322.html#section-3.2.3
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%21%23-%27*%2B%5C-%2F-9%3D%3FA-Z%5C%5E-~%5D&abb=on&g=
https://html.spec.whatwg.org/multipage/input.html#email-state-(type=email)
https://www.unicode.org/reports/tr31/#Default_Identifier_Syntax
https://www.rfc-editor.org/rfc/rfc5322.html#section-3.2.3

The data in [confusables] provide a mechanism for determining when two strings are visually
confusable. The data in these files may be refined and extended over time. For information on
handling modifications over time, see Section 2.10.1, Backward Compatibility in Unicode Technical
Report #36, "Unicode Security Considerations" [UTR36] and the Migration section of this document.

Collection of data for detecting gatekeeper-confusable strings is not currently a goal for the confusable
detection mechanism in this document. For more information, see Section 2, Visual Security Issues in
[UTR36].

The data provides a mapping from source characters to their prototypes. A prototype should be
thought of as a sequence of one or more classes of symbols, where each class has an exemplar
character. For example, the character U+0153 (œ), LATIN SMALL LIGATURE OE, has a prototype
consisting of two symbol classes: the one with exemplar character U+006F (o), and the one with
exemplar character U+0065 (e). If an input character does not have a prototype explicitly defined in
the data file, the prototype is assumed to consist of the class of symbols with the input character as the
exemplar character.

For an input string X, define internalSkeleton(X) to be the following transformation on the string:

1. Convert X to NFD format, as described in [UAX15].
2. Remove any characters in X that have the property Default_Ignorable_Code_Point.
3. Concatenate the prototypes for each character in X according to the specified data, producing a

string of exemplar characters.
4. Reapply NFD.

For an input string X and a direction 𝑑 ∈ {RTL, LTR, FS}, define bidiSkeleton(𝑑, X) to be the following
transformation on the string:

1. Reorder the code points in X for display by applying the rules of the Unicode Bidirectional
Algorithm [UAX9] up to and including L2, treating X in isolation; if 𝑑≠FS, apply protocol HL1 to set
the paragraph level to 1 if 𝑑=RTL, and to 0 if 𝑑=LTR; this yields the reordered sequence of
characters R.

2. Apply rule L3 of the UBA: move combining marks after their base in R; this yields the sequence
R′.

3. Replace any character whose glyph would be mirrored by rule L4 of the UBA by the value of its
Bidi_Mirroring_Glyph property, yielding R″.

4. bidiSkeleton(𝑑, X) is then internalSkeleton(R″).

The strings X and Y are defined to be 𝑑-confusable if and only if bidiSkeleton(𝑑, X) = bidiSkeleton(𝑑,
Y). This is abbreviated as X ≒ Y (𝑑).

This mechanism imposes transitivity on the data, so if X ≒ Y (𝑑) and Y ≒ Z (𝑑), then X ≒ Z (𝑑). It is
possible to provide a more sophisticated confusable detection, by providing a metric between given
characters, indicating their "closeness." However, that is computationally much more expensive, and
requires more sophisticated data, so at this point in time the simpler mechanism has been chosen.
That means that in some cases the test may be overly inclusive.

Note: The operation internalSkeleton may change the Bidi_Class of characters, so it does not
commute with the reordering and mirroring steps, and needs to be performed after them.

Like confusability, 𝑑-confusability is an equivalence relation; in particular, it is transitive: if X ≒ Y (𝑑)
and Y ≒ Z (𝑑), then X ≒ Z (𝑑).

Example: The sequences of code points S₁ and S₂ are LTR-confusable:

S₁ ≔ "A1<ׂש" = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN, HEBREW
LETTER SHIN, HEBREW POINT SIN DOT)

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 12/29

S₂ ≔ "Α1<ֹש" = (GREEK CAPITAL LETTER ALPHA, HEBREW LETTER SHIN, HEBREW
POINT HOLAM HASER FOR VAV, GREATER-THAN SIGN, DIGIT ONE)

Computation of bidiSkeleton(LTR, S₁):

R₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN, HEBREW POINT SIN DOT,
HEBREW LETTER SHIN)
R′₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN, HEBREW LETTER SHIN,
HEBREW POINT SIN DOT)
R″₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN, HEBREW LETTER SHIN,
HEBREW POINT SIN DOT)
bidiskeleton(LTR, S₁) = internalSkeleton(R″₁) = (LATIN CAPITAL LETTER A, LATIN SMALL
LETTER L, LESS-THAN SIGN, HEBREW LETTER SHIN, COMBINING DOT ABOVE)

Computation of bidiSkeleton(LTR, S₂):

R₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, GREATER-THAN SIGN, HEBREW
POINT HOLAM HASER FOR VAV, HEBREW LETTER SHIN)
R′₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, GREATER-THAN SIGN, HEBREW
LETTER SHIN, HEBREW POINT HOLAM HASER FOR VAV)
R″₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, LESS-THAN SIGN, HEBREW LETTER
SHIN, HEBREW POINT HOLAM HASER FOR VAV)
bidiskeleton(LTR, S₂) = internalSkeleton(R″₂) = (LATIN CAPITAL LETTER A, LATIN SMALL
LETTER L, LESS-THAN SIGN, HEBREW LETTER SHIN, COMBINING DOT ABOVE)

Note that these sequences are not RTL-confusable; indeed in a right-to-left paragraph, the
strings look distinct:

S₁ = "ׂש>A1"
S₂ = "1<ֹשΑ"

LTR, and RTL, and FS confusability should be used when it is inappropriate to enforce that strings be
single-script, or at least single-directionality; this is the case in programming language identifiers. See
Section 5.1, Confusability Mitigation Diagnostics, in Unicode Technical Standard #55, Unicode Source
Code Handling [UTS55].

Bidirectional confusability The bidiSkeleton is costlier to check compute than confusability the
internalSkeleton, as the bidirectional algorithm must be applied. However, a fast path can be used: if
𝑑=LTR and X has no characters with bidi classes R or AL, bidiSkeleton(𝑑, X) = internalSkeleton(X).

Further, if the strings are known not to contain explicit directional formatting characters (as is the case
for UAX31-R1 Default Identifiers defined in Unicode Standard Annex #31, Identifiers and Syntax
[UAX31]), the algorithm can be drastically simplified, as the X rules are trivial, obviating the need for
the directional status stack of the Unicode Bidirectional Algorithm. The highest possible resolved level
is then 2; see Table 5, Resolving Implicit Levels, in Unicode Standard Annex #9, Unicode Bidirectional
Algorithm [UAX9].

Note: The strings bidiSkeleton(𝑑, X) and bidiSkeleton(𝑑, Y) are not intended for display,
storage or transmission. Further, they are not stable across versions of Unicode, so that they can
only be interchanged between systems that use the same version of Unicode to compute
bidiSkeleton. If they are stored, they must be recomputed when updating the version of Unicode
used to compute bidiSkeleton. They should be thought of as an intermediate processing form,
similar to a hashcode. The exemplar characters are not guaranteed to be identifier characters.

Note: As is the case for skeleton, the strings bidiSkeleton(d, X) and bidiSkeleton(d, Y) are not
intended for display, storage or transmission.

The use of bidirectional confusability with an appropriate direction is preferable when possible.
However, for cases where the direction with which identifiers will be displayed is unknown, and for
compatibility with earlier definitions of confusability which did not take bidirectional reordering into

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 13/29

account, the operation skeleton is defined as skeleton(X) = bidiSkeleton(LTR, X). The strings X and Y
are then defined to be confusable if and only if skeleton(X) = skeleton(Y). This is abbreviated as X ≅ Y.

Note: Some implementations of confusable detection outside Unicode use different terminology.
In particular, in the ICANN Root Zone Label Generation Rules [RZLGR5], the term variant of X is
used for a property similar to confusable with X, and the term index variant is used for the
equivalent of skeleton.

Definitions

Confusables are divided into three classes: single-script confusables, mixed-script confusables, and
whole-script confusables, defined below. All confusables are either a single-script confusable or a
mixed-script confusable, but not both. All whole-script confusables are also mixed-script confusables.

The definitions of these three classes of confusables depend on the definitions of resolved script set
and single-script, which are provided in Section 5, Mixed-Script Detection.

X and Y are single-script confusables if and only if they are confusable, and their resolved script sets
have at least one element in common.

Examples: “ǉeto” and “ljeto” in Latin (the Croatian word for “summer”), where the first word uses
only four codepoints, the first of which is U+01C9 (ǉ) LATIN SMALL LETTER LJ.

X and Y are mixed-script confusables if and only if they are confusable but their resolved script sets
have no elements in common.

Examples: "paypal" and "pаypаl", where the second word has the character U+0430 (а)
CYRILLIC SMALL LETTER A.

X and Y are whole-script confusables if and only if they are mixed-script confusables, and each of
them is a single-script string.

Example: "scope" in Latin and "ѕсоре" in Cyrillic.

As noted in Section 5, the resolved script set ignores characters with Script_Extensions {Common}
and {Inherited} and augments characters with CJK scripts with their respective writing systems.
Characters with the Script_Extension property values COMMON or INHERITED are ignored when
testing for differences in script.

Data File Format

Each line in the data file has the following format: Field 1 is the source, Field 2 is the target, and Field
3 is obsolete, always containing the letters “MA” for backwards compatibility. For example:

0441 ; 0063 ; MA # (с → c) CYRILLIC SMALL LETTER ES → LATIN SMALL LETTER C #

2CA5 ; 0063 ; MA # (ⲥ → c) COPTIC SMALL LETTER SIMA → LATIN SMALL LETTER C #
→ϲ→

Everything after the # is a comment and is purely informative. A asterisk after the comment indicates
that the character is not an XID character [UAX31]. The comments provide the character names.

Implementations that use the confusable data do not have to recursively apply the mappings, because
the transforms are idempotent. That is,

skeleton(skeleton(X)) = skeleton(X)

If the data was derived via transitivity, there is an extra comment at the end. For instance, in the above
example the derivation was:

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 14/29

https://util.unicode.org/UnicodeJsps/character.jsp?a=0430

1. ⲥ (U+2CA5 COPTIC SMALL LETTER SIMA)
2. → ϲ (U+03F2 GREEK LUNATE SIGMA SYMBOL)
3. → c (U+0063 LATIN SMALL LETTER C)

To reduce security risks, it is advised that identifiers use casefolded forms, thus eliminating uppercase
variants where possible.

The data may change between versions. Even where the data is the same, the order of lines in the
files may change between versions. For more information, see Migration.

Note: Due to production problems, versions before 7.0 did not maintain idempotency in all
cases. For more information, see Migration.

4.1 Whole-Script Confusables

For some applications, it is useful to determine if a given input string has any whole-script confusable.
For example, the identifier "ѕсоре" using Cyrillic characters would pass the single-script test described
in Section 5.2, Restriction-Level Detection, even though it is likely to be a spoof attempt.

It is possible to determine whether a single-script string X has a whole-script confusable:

1. Consider Q, the set of all strings that are confusable with X.
2. Remove all strings from Q whose resolved script set intersects with the resolved script set of X.
3. If Q is nonempty and contains any single-script string, return TRUE.
4. Otherwise, return FALSE.

The logical description above can be used for a reference implementation for testing, but is not
particularly efficient. A production implementation can be optimized as long as it produces the same
results.

Note that the confusables data include a large number of mappings between Latin and Cyrillic text. For
this reason, the above algorithm is likely to flag a large number of legitimate strings written in Latin or
Cyrillic as potential whole-script confusables. To effectively use whole-script confusables, it is often
useful to determine both whether a string has a whole-script confusable, and which scripts those
whole-script confusables have.

This information can be used, for example, to distinguish between reasonable versus suspect whole-
script confusables. Consider the Latin-script domain-name label “circle”. It would be appropriate to
have that in the domain name “circle.com”. It would also be appropriate to have the Cyrillic confusable
“сігсӀе” in the Cyrillic domain name “сігсӀе.рф”. However, a browser may want to alert the user to
possible spoofs if the Cyrillic “сігсӀе” is used with .com or the Latin “circle” is used with .рф.

The process of determining suspect usage of whole-script confusables is more complicated than
simply looking at the scripts of the labels in a domain name. For example, it can be perfectly legitimate
to have scripts in a SLD (second level domain) not be the same as scripts in a TLD (top-level domain),
such as:

Cyrillic labels in a domain name with a TLD of .ru or .рф
Chinese labels in a domain name with a TLD of .com.au or .com
Cyrillic labels that aren’t confusable with Latin with a TLD of .com.au or .com

The following high-level algorithm can be used to determine all scripts that contain a whole-script
confusable with a string X:

1. Consider Q, the set of all strings confusable with X.
2. Remove all strings from Q whose resolved script set is ∅ or ALL (that is, keep only single-script

strings plus those with characters only in Common).
3. Take the union of the resolved script sets of all strings remaining in Q.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 15/29

As usual, this algorithm is intended only as a definition; implementations should use an optimized
routine that produces the same result.

4.2 Mixed-Script Confusables

To determine the existence of a mixed-script confusable, a similar process could be used:

1. Consider Q, the set of all strings that are confusable with X.
2. Remove all strings from Q whose resolved script set intersects with the resolved script set of X.
3. If Q is nonempty, return TRUE.
4. Otherwise, return FALSE.

The logical description above can be used for a reference implementation for testing, but is not
particularly efficient. A production implementation can be optimized as long as it produces the same
results.

Note that due to the number of mappings provided by the confusables data, the above algorithm is
likely to flag a large number of legitimate strings as potential mixed-script confusables.

5 Detection Mechanisms

5.1 Mixed-Script Detection

The Unicode Standard supplies information that can be used for determining the script of characters
and detecting mixed-script text. The determination of script is according to the UAX #24, Unicode
Script Property [UAX24], using data from the Unicode Character Database [UCD].

Define a character's augmented script set to be a character's Script_Extensions with the following two
modifications.

1. Entries for the writing systems containing multiple scripts — Hanb (Han with Bopomofo), Jpan
(Japanese), and Kore (Korean) — are added according to the following rules.

1. If Script_Extensions contains Hani (Han), add Hanb, Jpan, and Kore.
2. If Script_Extensions contains Hira (Hiragana), add Jpan.
3. If Script_Extensions contains Kana (Katakana), add Jpan.
4. If Script_Extensions contains Hang (Hangul), add Kore.
5. If Script_Extensions contains Bopo (Bopomofo), add Hanb.

2. Sets containing Zyyy (Common) or Zinh (Inherited) are treated as ALL, the set of all script
values.

The Script_Extensions data is from the Unicode Character Database [UCD]. For more information on
the Script_Extensions property and Jpan, Kore, and Hanb, see UAX #24, Unicode Script Property
[UAX24].

Define the resolved script set for a string to be the intersection of the augmented script sets over all
characters in the string.

A string is defined to be mixed-script if its resolved script set is empty and defined to be single-script if
its resolved script set is nonempty.

Note: The term “single-script string” may be confusing. It means that there is at least one script
in the resolved script set, not that there is only one. For example, the string “〆切” is single-script,
because it has four scripts {Hani, Hanb, Jpan, Kore} in its resolved script set.

As well as providing an API to detect whether a string has mixed-scripts, is also useful to offer an API
that returns those scripts. Look at the examples below.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 16/29

Table 1a. Mixed Script Examples

String Code
Point

Script_Extensions Augmented Script Sets Resolved Script
Set

Single-
Script?

Circle U+0043
U+0069
U+0072
U+0063
U+006C
U+0065

{Latn}
{Latn}
{Latn}
{Latn}
{Latn}
{Latn}

{Latn}
{Latn}
{Latn}
{Latn}
{Latn}
{Latn}

{Latn} Yes

СігсӀе U+0421
U+0456
U+0433
U+0441
U+04C0
U+0435

{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}

{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}

{Cyrl} Yes

Сirсlе U+0421
U+0069
U+0072
U+0441
U+006C
U+0435

{Cyrl}
{Latn}
{Latn}
{Cyrl}
{Latn}
{Cyrl}

{Cyrl}
{Latn}
{Latn}
{Cyrl}
{Latn}
{Cyrl}

∅ No

Circ1e U+0043
U+0069
U+0072
U+0063
U+0031
U+0065

{Latn}
{Latn}
{Latn}
{Latn}
{Zyyy}
{Latn}

{Latn}
{Latn}
{Latn}
{Latn}
ALL
{Latn}

{Latn} Yes

C𝗂𝗋𝖼𝗅𝖾 U+0043
U+1D5C2
U+1D5CB
U+1D5BC
U+1D5C5
U+1D5BE

{Latn}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}

{Latn}
ALL
ALL
ALL
ALL
ALL

{Latn} Yes

𝖢𝗂𝗋𝖼𝗅𝖾 U+1D5A2
U+1D5C2
U+1D5CB
U+1D5BC
U+1D5C5
U+1D5BE

{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}

ALL
ALL
ALL
ALL
ALL
ALL

ALL Yes

〆切 U+3006
U+5207

{Hani, Hira, Kana}
{Hani}

{Hani, Hira, Kana, Hanb,
Jpan, Kore}
{Hani, Hanb, Jpan, Kore}

{Hani, Hanb,
Jpan, Kore}

Yes

ねガ U+306D
U+30AC

{Hira}
{Kana}

{Hira, Jpan}
{Kana, Jpan}

{Jpan} Yes

A set of scripts is defined to cover a string if the intersection of that set with the augmented script sets
of all characters in the string is nonempty; in other words, if every character in the string shares at
least one script with the cover set. For example, {Latn, Cyrl} covers "Сirсlе", the third example in Table
1a.

A cover set is defined to be minimal if there is no smaller cover set. For example, {Hira, Hani} covers
"〆切", the seventh example in Table 1a, but it is not minimal, since {Hira} also covers the string, and
{Hira} is smaller than {Hira, Hani}. Note that minimal cover sets are not unique: a string may have
different minimal cover sets.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 17/29

Typically an API that returns the scripts in a string will return one of the minimal cover sets.

For computational efficiency, a set of script sets (SOSS) can be computed, where the augmented
script sets for each character in the string map to one entry in the SOSS. For example, { {Latn}, {Cyrl} }
would be the SOSS for "Сirсlе". A set of scripts that covers the SOSS also covers the input string.
Likewise, the intersection of all entries of the SOSS will be the input string's resolved script set.

5.2 Restriction-Level Detection

Restriction Levels 1-5 are defined here for use in implementations. These place restrictions on the use
of identifiers according to the appropriate identifier profile as specified in Section 3, Identifier
Characters. The lists of Recommended scripts are taken from Table 5, Recommended Scripts of
[UAX31]. For more information on the use of Restriction Levels, see Section 2.9, Restriction Levels
and Alerts in [UTR36].

For each of the Restriction Levels 1-6, the identifier must be well-formed according to whatever
general syntactic constraints are in force, such as the Default Identifier Syntax in [UAX31].

In addition, an application may provide an identifier profile such as the General Security Profile for
Identifiers, which restricts the allowed characters further. For each of the Restriction Levels 1-5,
characters in the string must also be in the identifier profile. Where there is no such identifier profile,
Levels 5 and 6 are identical.

1. ASCII-Only
All characters in the string are in the ASCII range.

2. Single Script
The string qualifies as ASCII-Only, or
The string is single-script, according to the definition in Section 5.1.

3. Highly Restrictive
The string qualifies as Single Script, or
The string is covered by any of the following sets of scripts, according to the definition in
Section 5.1:

Latin + Han + Hiragana + Katakana; or equivalently: Latn + Jpan
Latin + Han + Bopomofo; or equivalently: Latn + Hanb
Latin + Han + Hangul; or equivalently: Latn + Kore

4. Moderately Restrictive
The string qualifies as Highly Restrictive, or
The string is covered by Latin and any one other Recommended script, except Cyrillic,
Greek

5. Minimally Restrictive
There are no restrictions on the set of scripts that cover the string.
The only restrictions are the identifier well-formedness criteria and identifier profile, allowing
arbitrary mixtures of scripts such as Ωmega, Teχ, HλLF-LIFE, Toys-Я-Us.

6. Unrestricted
There are no restrictions on the script coverage of the string.
The only restrictions are the criteria on identifier well-formedness. Characters may be
outside of the identifier profile.
This level is primarily for use in detection APIs, providing return value indicating that the
string does not match any of the levels 1-5.

Note that in all levels except ASCII-Only, any character having Script_Extensions {Common} or
{Inherited} are allowed in the identifier, as long as those characters meet the identifier profile
requirements.

These levels can be detected by reusing some of the mechanisms of Section 5.1. For a given input
string, the Restriction Level is determined by the following logical process:

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 18/29

https://www.unicode.org/reports/tr39/#Identifier_Characters
https://www.unicode.org/reports/tr39/#Identifier_Characters
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts

1. If the string contains any characters outside of the Identifier Profile, return Unrestricted.
2. If no character in the string is above 0x7F, return ASCII-Only.
3. Compute the string's SOSS according to Section 5.1.
4. If the SOSS is empty or the intersection of all entries in the SOSS is nonempty, return Single

Script.
5. Remove all the entries from the SOSS that contain Latin.
6. If any of the following sets cover SOSS, return Highly Restrictive.

{Kore}
{Hanb}
{Japn}

7. If the intersection of all entries in the SOSS contains any single Recommended script except
Cyrillic or Greek, return Moderately Restrictive.

8. Otherwise, return Minimally Restrictive.

The actual implementation of this algorithm can be optimized; as usual, the specification only depends
on the results.

5.3 Mixed-Number Detection

There are three different types of numbers in Unicode. Only numbers with General_Category =
Decimal_Numbers (Nd) should be allowed in identifiers. However, characters from different decimal
number systems can be easily confused. For example, U+0660 (٠) ARABIC-INDIC DIGIT ZERO can
be confused with U+06F0 (٠) EXTENDED ARABIC-INDIC DIGIT ZERO, and U+09EA (৪) BENGALI
DIGIT FOUR can be confused with U+0038 (8) DIGIT EIGHT. There are other reasons for disallowing
mixed number systems in identifiers, just as there are for mixing scripts.

For a given input string which does not contain non-decimal numbers, the logical process of detecting
mixed numbers is the following:

For each character in the string:

1. Find the decimal number value for that character, if any.
2. Map the value to the unique zero character for that number system.

If there is more than one such zero character, then the string contains multiple decimal number
systems.

The actual implementation of this algorithm can be optimized; as usual, the specification only depends
on the results. The following Java sample using [ICU] shows how this can be done :

 public UnicodeSet getNumberRepresentatives(String identifier) {
 int cp;
 UnicodeSet numerics = new UnicodeSet();
 for (int i = 0; i < identifier.length(); i += Character.charCount(i)) {
 cp = Character.codePointAt(identifier, i);
 // Store a representative character for each kind of decimal digit
 switch (UCharacter.getType(cp)) {
 case UCharacterCategory.DECIMAL_DIGIT_NUMBER:
 // Just store the zero character as a representative for comparison.
 // Unicode guarantees it is cp - value.
 numerics.add(cp - UCharacter.getNumericValue(cp));
 break;
 case UCharacterCategory.OTHER_NUMBER:
 case UCharacterCategory.LETTER_NUMBER:
 throw new IllegalArgumentException("Should not be in identifiers.");
 }
 }
 return numerics;
 }
...
 UnicodeSet numerics = getMixedNumbers(String identifier);
 if (numerics.size() > 1) reject(identifier, numerics);

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 19/29

https://util.unicode.org/UnicodeJsps/character.jsp?a=0660
https://util.unicode.org/UnicodeJsps/character.jsp?a=06F0
https://util.unicode.org/UnicodeJsps/character.jsp?a=09EA
https://util.unicode.org/UnicodeJsps/character.jsp?a=0038

5.4 Optional Detection

There are additional enhancements that may be useful in spoof detection, such as:

1. Check to see that all the characters are in the sets of exemplar characters for at least one
language in the Unicode Common Locale Data Repository [CLDR].

2. Check for unlikely sequences of combining marks:
a. Forbid sequences of the same nonspacing mark.
b. Forbid sequences of more than 4 nonspacing marks (gc=Mn or gc=Me).
c. Forbid sequences of base character + nonspacing mark that look the same as or

confusingly similar to the base character alone (because the nonspacing mark overlays a
portion of the base character). An example is U+0069 LOWERCASE LETTER I + U+0307
COMBINING DOT ABOVE.

3. Add support for detecting two distinct sequences that have identical representations. The current
data files only handle cases where a single code point is confusable with another code point or
sequence. It does not handle cases like shri, as below.

The characters U+0BB6 TAMIL LETTER SHA and U+0BB8 TAMIL LETTER SA are normally quite
distinct. However, they can both be used in the representation of the Tamil word shri. On some very
common platforms, the following sequences result in exactly the same visual appearance:

U+0BB6 U+0BCD U+0BB0 U+0BC0

SHA VIRAMA RA II

ஶ ◌் ர ◌ீ
= �

U+0BB8 U+0BCD U+0BB0 U+0BC0

SA VIRAMA RA II

ஸ ◌் ர ◌ீ
= �

6 Development Process

As discussed in Unicode Technical Report #36, "Unicode Security Considerations" [UTR36],
confusability among characters cannot be an exact science. There are many factors that make
confusability a matter of degree:

Shapes of characters vary greatly among fonts used to represent them. The Unicode Standard
uses representative glyphs in the code charts, but font designers are free to create their own
glyphs. Because fonts can easily be created using an arbitrary glyph to represent any Unicode
code point, character confusability with arbitrary fonts can never be avoided. For example, one
could design a font where the ‘a’ looks like a ‘b’ , ‘c’ like a ‘d’, and so on.
Writing systems using contextual shaping (such as Arabic and many South Asian systems)
introduce even more variation in text rendering. Characters do not really have an abstract shape
in isolation and are only rendered as part of cluster of characters making words, expressions,
and sentences. It is a fairly common occurrence to find the same visual text representation
corresponding to very different logical words that can only be recognized by context, if at all.
Font style variants such as italics may introduce a confusability which does not exist in another
style. For example, in the Cyrillic script, the U+0442 (т) CYRILLIC SMALL LETTER TE looks
like a small caps Latin ‘T’ in normal style, while it looks like a small Latin ‘m’ in italic style.

In-script confusability is extremely user-dependent. For example, in the Latin script, characters with
accents or appendices may look similar to the unadorned characters for some users, especially if they

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 20/29

https://util.unicode.org/UnicodeJsps/character.jsp?a=0442

are not familiar with their meaning in a particular language. However, most users will have at least a
minimum understanding of the range of characters in their own script, and there are separate
mechanisms available to deal with other scripts, as discussed in [UTR36].

As described elsewhere, there are cases where the confusable data may be different than expected.
Sometimes this is because two characters or two strings may only be confusable in some fonts. In
other cases, it is because of transitivity. For example, the dotless and dotted I are considered
equivalent (ı ↔ i), because they look the same when accents such as an acute are applied to each.
However, for practical implementation usage, transitivity is sufficiently important that some oddities are
accepted.

The data may be enhanced in future versions of this specification. For information on handling
changes in data over time, see 2.10.1, Backward Compatibility of [UTR36].

6.1 Confusables Data Collection

The confusability data was created by collecting a number of prospective confusables, examining
those confusables according to a set of common fonts, and processing the result for transitive closure.

The primary goal is to include characters that would be Identifier_Status=Allowed as in Table 1,
Identifier_Status and Identifier_Type. Other characters, such as NFKC variants, are not a primary
focus for data collection. However, such variants may certainly be included in the data, and may be
submitted using the online forms at [Feedback].

The prospective confusables were gathered from a number of sources. Erik van der Poel contributed a
list derived from running a program over a large number of fonts to catch characters that shared
identical glyphs within a font, and Mark Davis did the same more recently for fonts on Windows and
the Macintosh. Volunteers from Google, IBM, Microsoft and other companies gathered other lists of
characters. These included native speakers for languages with different writing systems. The Unicode
compatibility mappings were also used as a source. The process of gathering visual confusables is
ongoing: the Unicode Consortium welcomes submission of additional mappings. The complex scripts
of South and Southeast Asia need special attention. The focus is on characters that have
Identifier_Status=Allowed, because they are of most concern.

The fonts used to assess the confusables included those used by the major operating systems in user
interfaces. In addition, the representative glyphs used in the Unicode Standard were also considered.
Fonts used for the user interface in operating systems are an important source, because they are the
ones that will usually be seen by users in circumstances where confusability is important, such such as
when using IRIS (Internationalized Resource Identifiers) and their sub-elements (such as domain
names). These fonts have a number of other relevant characteristics:

They rarely changed in updates to operating systems and applications; changes brought by
system upgrades tend to be gradual to avoid usability disruption.
Because user interface elements need to be legible at low screen resolution (implying a low
number of pixels per EM), fonts used in these contexts tend to be designed in sans-serif style,
which has the tendency to increase the possibility of confusables. There are, however, some
languages such as Chinese where a serif style is in common use.
Strict bounding box requirements create even more constraints for scripts which use relatively
large ascenders and descenders. This also limits space allocated for accent or tone marks, and
can also create more opportunities for confusability.

Pairs of prospective confusables were removed if they were always visually distinct at common sizes,
both within and across fonts. The data was then closed under transitivity, so that if X≅Y and Y≅Z, then
X≅Z. In addition, the data was closed under substring operations, so that if X≅Y then AXB≅AYB. It
was then processed to produce the in-script and cross-script data, so that a single data table can be
used to map an input string to a resulting skeleton.

A skeleton is intended only for internal use for testing confusability of strings; the resulting text is not
suitable for display to users, because it will appear to be a hodgepodge of different scripts. In
particular, the result of mapping an identifier will not necessary be an identifier. Thus the confusability

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 21/29

mappings can be used to test whether two identifiers are confusable (if their skeletons are the same),
but should definitely not be used as a "normalization" of identifiers.

6.2 Identifier Modification Data Collection

The idmod data is gathered in the following way. The basic assignments are derived based on UCD
character properties, information in [UAX31], and a curated list of exceptions based on information
from various sources, including the core specification of the Unicode Standard, annotations in the code
charts, information regarding CLDR exemplar characters, and external feedback.

The first condition that matches in the order of the items from top to bottom in Table 1. Identifier_Status
and Identifier_Type is used, with a few exceptions:

1. When a character is in Table 3a, Optional Characters for Medial or Table 3b, Optional Characters
for Continue in [UAX31], then it is given the Identifier_Type=Inclusion, regardless of other
properties.

2. When the Script_Extensions property value for a character contains multiple Script property
values, the Script used for the derivation is the first in the following list:

1. Table 5, Recommended Scripts
2. Table 7, Limited Use Scripts
3. Table 4, Excluded Scripts

The script information in Table 4, Table 5, and Table 7 is in machine-readable form in CLDR, as
scriptMetadata.txt.

7 Data Files

The following files provide data used to implement the recommendations in this document. The data
may be refined in future versions of this specification. For more information, see 2.10.1, Backward
Compatibility of [UTR36]. For illustration, this UTS shows sample data values, but for the actual data
for the current version of Unicode always refer to the data files.

The Unicode Consortium welcomes feedback on additional confusables or identifier restrictions.
There are online forms at [Feedback] where you can suggest additional characters or
corrections.

The files are in https://www.unicode.org/Public/security/. The directories there contain data files
associated with a given version. The directory for this version is:

https://www.unicode.org/Public/security/15.1.0/

The data files for the latest approved version are also in the directory:

https://www.unicode.org/Public/security/latest

The format for IdentifierStatus.txt follows the normal conventions for UCD data files, and is described
in the header of that file. All characters not listed in the file default to Identifier_StatusType=Restricted.
Thus the file only lists characters with Identifier_Status=Allowed. For example:

002D..002E ; Allowed # 1.1 HYPHEN-MINUS..FULL STOP

The format for IdentifierType.txt follows the normal conventions for UCD data files, and is described in
the header of that file. The value is a set whose elements are delimited by spaces. This format is
identical to that used for ScriptExtensions.txt. This differs from prior versions which only listed the
strongest reason for exclusion. This new convention allows the values to be used for more nuanced
filtering. For example, if an implementation wants to allow an Exclusion script, it could still exclude
Obsolete and Not_XID Deprecated characters in that script. All characters not listed in the file default
to Identifier_Type=Not_CharacterRecommended. For example:

2460..24EA ; Technical Not_XID Not_NFKC # 1.1 CIRCLED DIGIT ONE..CIRCLED DIGIT ZERO

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 22/29

https://www.unicode.org/reports/tr31/#Table_Optional_Medial
https://www.unicode.org/reports/tr31/#Table_Optional_Continue
https://www.unicode.org/reports/tr31/#Table_Optional_Continue
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/Public/security/
https://www.unicode.org/Public/security/15.1.0/
https://www.unicode.org/Public/security/latest

Both of these files have machine-readable # @missing lines for the default property values, as in many
UCD files. For details about this syntax see Section 4.2.10, @missing Conventions in [UAX44].

Table 2. Data File List

Reference File Name(s) Contents

[idmod] IdentifierStatus.txt
IdentifierType.txt

Identifier_Type and Identifier_Status: Provides
the list of additions and restrictions recommended
for building a profile of identifiers for environments
where security is at issue.

[confusables] confusables.txt Visually Confusable Characters: Provides a
mapping for visual confusables for use in
detecting possible security problems. The usage
of the file is described in Section 4, Confusable
Detection.

[confusablesSummary] confusablesSummary.txt A summary view of the confusables: Groups
each set of confusables together, listing them first
on a line starting with #, then individually with
names and code points. See Section 4,
Confusable Detection

[intentional] intentional.txt Intentional Confusable Mappings: A selection of
characters whose glyphs in any particular
typeface would probably be designed to be
identical in shape when using a harmonized
typeface design.

Migration

Beginning with version 6.3.0, the version numbering of this document has been changed to indicate
the version of the UCD that the data is based on. For versions up to and including 6.3.0, the following
table shows the correspondence between the versions of this document and UCD versions that they
were based on.

Table 3. Version Correspondence

Version Release Date Data File Directory UCD Version UCD Date

Version 1 2006-08-15 /Public/security/revision-02/ 5.1.0 2008-04

draft only 2010-04-12 /Public/security/revision-03/ n/a n/a

Version 2 2010-08-05 /Public/security/revision-04/ 6.0.0 2010-10

Version 3 2012-07-23 /Public/security/revision-05/ 6.1.0 2012-01

6.3.0 2013-11-11 /Public/security/6.3.0/ 6.3.0 2013-09

If an update version of this standard is required between the associated UCD versions, the version
numbering will include an update number in the 3rd field. For example, if a version of this document
and its associated data is needed between UCD 6.3.0 and UCD 7.0.0, then a version 6.3.1 could be
used.

Migrating Persistent Data

Implementations must migrate their persistent data stores (such as database indexes) whenever those
implementations update to use the data files from a new version of this specification.

Stability is never guaranteed between versions, although it is maintained where feasible. In particular,
an updated version of confusable mapping data may use a mapping for a particular character that is

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 23/29

https://www.unicode.org/reports/tr44/#Missing_Conventions

different from the mapping used for that character in an earlier version. Thus there may be cases
where X → Y in Version N, and X → Z in Version N+1, where Z may or may not have mapped to Y in
Version N. Even in cases where the logical data has not changed between versions, the order of lines
in the data files may have been changed.

The Identifier_Status does not have stability guarantees (such as “Once a character is Allowed, it will
not become Restricted in future versions”), because the data is changing over time as we find out
more about character usage. Certain of the Identifier_Type values, such as Not_XID, are backward
compatible but most may change as new data becomes available. The identifier data may also not
appear to be completely consistent when just viewed from the perspective of script and general
category. For example, it may well be that one character out of a set of nonspacing marks in a script is
Restricted, while others are not. But that can be just a reflection of the fact that that character is
obsolete and the others are not.

For identifier lookup, the data is aimed more at flagging possibly questionable characters, thus serving
as one factor (among perhaps many, like using the "Safe Browsing" service) in determining whether
the user should be notified in some way. For registration, flagged characters can result in a "soft no",
that is, require the user to appeal a denial with more information.

For dealing with characters whose status changes to Restricted, implementations can use a
grandfathering mechanism to maintain backwards compatibility.

Implementations should therefore have a strategy for migrating their persistent data stores (such as
database indexes) that use any of the confusable mapping data or other data files.

Version 13.0 Migration

As of Unicode 13.0, the Identifier_Status and Identifier_Type are consistently written with underbars.
This may cause parsers to malfunction, those that do not follow Unicode conventions for matching of
property names.

Version 10.0 Migration

As of Unicode 10.0, Identifier_Type=Aspirational is now empty; for more information, see [UAX31].

Version 9.0 Migration

There is an important data format change between versions 8.0 and 9.0. In particular, the
xidmodifications.txt file from Version 8.0 has been split into two files for Version 9.0: IdentifierStatus.txt
and IdentifierType.txt.

Version 9.0 Version 8.0

Field 1 of IdentifierStatus.txt Field 1 of xidmodifications.txt

Field 1 of IdentifierType.txt Field 2 of xidmodifications.txt

Multiple values are listed in field 1 of IdentifierType.txt. To convert to the old format of
xidmodifications.txt, use the last value of that field. For example, the following values would
correspond:

File Field Content

IdentifierType.txt 1 180A ; Limited_Use Exclusion Not_XID

xidmodifications.txt 2 180A ; Restricted ; Not_XID

Version 8.0 Migration

In Version 8.0, the following changes were made to the Identifier_Status and Identifier_Type:

Changed to the standard UCD formatting. For example, limited-use → Limited_Use.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 24/29

Usually this was simply changing the case and hyphen, but not-chars changed to
Not_Character.

Aligned the Identifier_Type better with UAX 31 and Unicode properties
historic

→ Exclusion, where from Table 4, Candidate Characters for Exclusion from
Identifiers,
→ Obsolete, otherwise

limited-use
→ Limited_Use, where from Table 7, Limited Use Scripts,
→ Aspirational, where from Table 6, Aspirational Use Scripts (later incorporated into
Limited_Use in Version 10.0)
→ Uncommon-Use, otherwise

obsolete
→ Deprecated, where matching the Unicode property

Version 7.0 Migration

Due to production problems, versions of the confusable mapping tables before 7.0 did not maintain
idempotency in all cases, so updating to version 8.0 is strongly advised.

Anyone using the skeleton mappings needs to rebuild any persistent uses of skeletons, such as in
database indexes.

The SL, SA, and ML mappings in 7.0 were significantly changed to address the idempotency problem.
However, the tables SL, SA, and ML were still problematic, and discouraged from use in 7.0. They
were thus removed from version 8.0.

All of the data necessary for an implementation to recreate the removed tables is available in the
remaining data (MA) plus the Unicode Character Database properties (script, casing, etc.). Such a
recreation would examine each of the equivalence classes from the MA data, and filter out instances
that did not fit the constraints (of script or casing). For the target character, it would choose the most
neutral character, typically a symbol. However, the reasons for deprecating them still stand, so it is not
recommended that implementations recreate them.

Note also that as the Script_Extensions data is made more complete, it may cause characters in the
whole-script confusables data file to no longer match. For more information, see Section 4, Confusable
Detection.

Acknowledgments

Mark Davis and Michel Suignard authored the bulk of the text, under direction from the Unicode
Technical Committee. Steven Loomis and other people on the ICU team were very helpful in
developing the original proposal for this technical report. Shane Carr analyzed the algorithms and
supplied the source text for the rewrite of Sections 4 and 5 in version 10.

The attendees of the Source Code Working Group meetings assisted with the substantial changes
made in Versions 15.0 and 15.1: Peter Constable, Elnar Dakeshov, Mark Davis, Barry Dorrans, Steve
Dower, Michael Fanning, Asmus Freytag, Dante Gagne, Rich Gillam, Manish Goregaokar, Tom
Honermann, Jan Lahoda, Nathan Lawrence, Robin Leroy, Chris Ries, Markus Scherer, Richard Smith.

Thanks also to the following people for their feedback or contributions to this document or earlier
versions of it, or to the source data for confusables or idmod: Julie Allen, Andrew Arnold, Vernon Cole,
David Corbett (specal thanks for the many contributions), Douglas Davidson, Rob Dawson, Alex
Dejarnatt, Chris Fynn, Martin Dürst, Asmus Freytag, Deborah Goldsmith, Manish Goregaokar, Paul
Hoffman, Ned Holbrook, Denis Jacquerye, Cibu Johny, Patrick L. Jones, Peter Karlsson, Robin Leroy,
Mike Kaplinskiy, Gervase Markham, Eric Muller, David Patterson, Erik van der Poel, Roozbeh
Pournader, Michael van Riper, Marcos Sanz, Alexander Savenkov, Markus Scherer, Dominikus
Scherkl, Manuel Strehl, Chris Weber, Ken Whistler, and Waïl Yahyaoui. Thanks to Peter Peng for his
assistance with font confusables.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 25/29

https://www.unicode.org/reports/tr31/tr31-23.html#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/tr31-23.html#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/tr31-23.html#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/tr31-23.html#Aspirational_Use_Scripts

References

[CLDR] Unicode Locales Project (Unicode Common Locale Data Repository)
http://cldr.unicode.org/

[DCore] Derived Core Properties
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt

[DemoConf] https://util.unicode.org/UnicodeJsps/confusables.jsp

[DemoIDN] https://util.unicode.org/UnicodeJsps/idna.jsp

[DemoIDNChars] https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=\p{age%3D3.2}-\p{cn}-
\p{cs}-\p{co}&abb=on&uts46+idna+idna2008

[EAI] https://www.rfc-editor.org/info/rfc6531

[FAQSec] Unicode FAQ on Security Issues
https://www.unicode.org/faq/security.html

[Feedback] To suggest additions or changes to confusables or identifier restriction data,
please see:
https://www.unicode.org/reports/tr39/suggestions.html

For issues in the text, please see:
Reporting Errors and Requesting Information Online
https://www.unicode.org/reporting.html

[ICANN] ICANN Documents:
Internationalized Domain Names
https://www.icann.org/en/topics/idn/
The IDN Variant Issues Project
https://www.icann.org/en/topics/new-gtlds/idn-vip-integrated-issues-23dec11-
en.pdf
Maximal Starting Repertoire Version 2 (MSR-2)
https://www.icann.org/news/announcement-2-2015-04-27-en

[ICU] International Components for Unicode
http://site.icu-project.org/

[IDNA2003] The IDNA2003 specification is defined by a cluster of IETF RFCs:

IDNA [RFC3490]
Nameprep [RFC3491]
Punycode [RFC3492]
Stringprep [RFC3454].

[IDNA2008] The IDNA2008 specification is defined by a cluster of IETF RFCs:

Internationalized Domain Names for Applications (IDNA): Definitions and
Document Framework
https://www.rfc-editor.org/info/rfc5890
Internationalized Domain Names in Applications (IDNA) Protocol
https://www.rfc-editor.org/info/rfc5891
The Unicode Code Points and Internationalized Domain Names for
Applications (IDNA)
https://www.rfc-editor.org/info/rfc5892
Right-to-Left Scripts for Internationalized Domain Names for Applications
(IDNA)

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 26/29

http://cldr.unicode.org/
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
https://util.unicode.org/UnicodeJsps/confusables.jsp
https://util.unicode.org/UnicodeJsps/idna.jsp
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=\p{age%3D3.2}-\p{cn}-\p{cs}-\p{co}&abb=on&g=uts46+idna+idna2008
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=\p{age%3D3.2}-\p{cn}-\p{cs}-\p{co}&abb=on&g=uts46+idna+idna2008
https://www.rfc-editor.org/info/rfc6531
https://www.unicode.org/faq/security.html
https://www.unicode.org/reports/tr39/suggestions.html
https://www.unicode.org/reporting.html
https://www.icann.org/en/topics/idn/
https://www.icann.org/en/topics/new-gtlds/idn-vip-integrated-issues-23dec11-en.pdf
https://www.icann.org/en/topics/new-gtlds/idn-vip-integrated-issues-23dec11-en.pdf
https://www.icann.org/news/announcement-2-2015-04-27-en
http://site.icu-project.org/
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5891
https://www.rfc-editor.org/info/rfc5892

https://www.rfc-editor.org/info/rfc5893

There are also informative documents:

Internationalized Domain Names for Applications (IDNA): Background,
Explanation, and Rationale
https://www.rfc-editor.org/info/rfc5894
The Unicode Code Points and Internationalized Domain Names for
Applications (IDNA) - Unicode 6.0
https://www.rfc-editor.org/info/rfc6452

[IDN-FAQ] https://www.unicode.org/faq/idn.html

[Reports] Unicode Technical Reports
https://www.unicode.org/reports/
For information on the status and development process for technical reports, and
for a list of technical reports.

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of Internationalized Strings ("stringprep")",
RFC 3454, December 2002.
https://www.rfc-editor.org/info/rfc3454

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello, "Internationalizing Domain Names in
Applications (IDNA)", RFC 3490, March 2003.
https://www.rfc-editor.org/info/rfc3490

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN)", RFC 3491, March 2003.
https://www.rfc-editor.org/info/rfc3491

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode for Internationalized
Domain Names in Applications (IDNA)", RFC 3492, March 2003.
https://www.rfc-editor.org/info/rfc3492

[RZLGR5] Integration Panel, “Integration Panel: Root Zone Label Generation Rules —
LGR-5”, 22 May 2022
https://www.icann.org/sites/default/files/lgr/rz-lgr-5-overview-26may22-en.pdf

[Security-FAQ] https://www.unicode.org/faq/security.html

[UCD] Unicode Character Database.
https://www.unicode.org/ucd/
For an overview of the Unicode Character Database and a list of its associated
files.

[UCDFormat] UCD File Format
https://www.unicode.org/reports/tr44/#Format_Conventions

[UAX9] UAX #9: Unicode Bidirectional Algorithm
https://www.unicode.org/reports/tr9/

[UAX15] UAX #15: Unicode Normalization Forms
https://www.unicode.org/reports/tr15/

[UAX24] UAX #24: Unicode Script Property
https://www.unicode.org/reports/tr24/

[UAX29] UAX #29: Unicode Text Segmentation
https://www.unicode.org/reports/tr29/

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 27/29

https://www.rfc-editor.org/info/rfc5893
https://www.rfc-editor.org/info/rfc5894
https://www.rfc-editor.org/info/rfc6452
https://www.unicode.org/faq/idn.html
https://www.unicode.org/reports/
https://www.rfc-editor.org/info/rfc3454
https://www.rfc-editor.org/info/rfc3490
https://www.rfc-editor.org/info/rfc3491
https://www.rfc-editor.org/info/rfc3492
https://www.icann.org/sites/default/files/lgr/rz-lgr-5-overview-26may22-en.pdf
https://www.unicode.org/faq/security.html
https://www.unicode.org/ucd/
https://www.unicode.org/reports/tr44/#Format_Conventions
https://www.unicode.org/reports/tr9/
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr24/
https://www.unicode.org/reports/tr29/

[UAX31] UAX #31: Unicode Identifier and Pattern Syntax
https://www.unicode.org/reports/tr31/

[UAX44] UAX #44: Unicode Character Database
https://www.unicode.org/reports/tr44/

[Unicode] The Unicode Standard
For the latest version, see:
https://www.unicode.org/versions/latest/

[UTR23] UTR #23: The Unicode Character Property Model
https://www.unicode.org/reports/tr23/

[UTR36] UTR #36: Unicode Security Considerations
https://www.unicode.org/reports/tr36/

[UTS18] UTS #18: Unicode Regular Expressions
https://www.unicode.org/reports/tr18/

[UTS39] UTS #39: Unicode Security Mechanisms
https://www.unicode.org/reports/tr39/

[UTS46] Unicode IDNA Compatibility Processing
https://www.unicode.org/reports/tr46/

[UTS55] Unicode Source Code Handling
https://www.unicode.org/reports/tr55/

[Versions] Versions of the Unicode Standard
https://www.unicode.org/standard/versions/
For information on version numbering, and citing and referencing the Unicode
Standard, the Unicode Character Database, and Unicode Technical Reports.

Modifications

The following summarizes modifications from the previous published version of this document.

Revision 29

Proposed Update for Unicode 16.0
Section 3, Table 1. Identifier_Status and Identifier_Type: Noted that Uncommon_Use may be
combined with Exclusion or Limited_Use.
Section 4 Confusable Detection: Updated the definitions of skeleton and confusable to be
aliases for bidiSkeleton(LTR, -) and LTR-confusable.
Section 7 Data Files: Fixed various typos.

Revision 28

Reissued for Unicode 15.1
Section 2 Conformance

Replaced the conformance clauses by clearer requirements for profiles, rather than the
former "Alternatively…".

Section 3.1.1 Joining Controls
Moved the definition and discussion of the contexts for Joining controls from UAX #31 to
this section; they are no longer used in UAX #31.

Section 4 Confusable Detection
Added a note with a gloss to RZ-LGR terminology.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 28/29

https://www.unicode.org/reports/tr31/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/tr23/
https://www.unicode.org/reports/tr36/
https://www.unicode.org/reports/tr18/
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr46/
https://www.unicode.org/reports/tr55/
https://www.unicode.org/standard/versions/

Changed the definition of confusability to take default ignorable code points into account.
Added a new confusability relation suitable for identifiers containing bidirectional text.

Section 5.1 Mixed-Script Detection
Fixed typo in code for Katakana script (again).

Modifications for previous versions are listed in those respective versions.

© 2024 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and assumes
no liability for errors or omissions. No liability is assumed for incidental and consequential damages in connection with or arising out of
the use of the information or programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

7/15/24, 1:50 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-29.html 29/29

https://www.unicode.org/copyright.html

