Proposed Update Unicode® Standard Annex #42

UNICODE CHARACTER DATABASE IN XML

Version	Unicode 16.0.0 (draft 2)
Editors	Eric Muller (eric.muller@efele.net) Laurențiu Iancu (liancu@unicode.org)
Date	2024-05-16
This Version	https://www.unicode.org/reports/tr42/tr42-35.html
Previous Version	https://www.unicode.org/reports/tr42/tr42-34.html
Latest Version	https://www.unicode.org/reports/tr42/
Latest Proposed Update	https://www.unicode.org/reports/tr42/proposed.html
Schema	https://www.unicode.org/reports/tr42/tr42-35.rnc
Revision	<u>\$5</u>

Summary

This annex describes an XML representation of the Unicode Character Database.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but is published online as a separate document. The Unicode Standard may require conformance to normative content in a Unicode Standard Annex, if so specified in the Conformance chapter of that version of the Unicode Standard. The version number of a UAX document corresponds to the version of the Unicode Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding this annex is found in Unicode Standard Annex #41, "Common References for Unicode Standard Annexes." For the latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For more information about versions of the Unicode Standard, see [Versions]. For any errata which may apply to this annex, see [Errata].

Contents

- Introduction 1 2 Overall schema
 - 2.1 **General principles**
 - Namespace
 - 2.2 2.3 Datatypes
 - Root Element 2.4
 - 2.5 **Common attributes**
 - 26 Ordering of elements
- Description 3 4 Repertoire
 - 4.1 Sets of code points
 - 4.2 Code point types
 - 4.3 Group
 - 4.4 Properties
 - Age property 4.4.1
 - 442 Name properties
 - 443 Name Aliases
 - 4.4.4 Block
 - 4.4.5 **General Category**
 - 4.4.6 Combining properties
 - 4.4.7 **Bidirectionality properties**
 - 4.4.8 Decomposition properties
 - 4.4.9 Numeric Properties
 - 4 4 10 Joining properties
 - 4.4.11 Linebreak properties
 - 4.4.12 East Asian Width property
 - 4.4.13 **Case properties**
 - 4.4.14 Script properties
 - 4.4.15 ISO Comment properties
 - 4.4.16 Hangul properties
 - 4.4.17 Indic properties
 - 4.4.18 Identifier and Pattern and programming language properties
 - 4.4.19 Properties related to function and graphic characteristics
 - 4.4.20 Properties related to boundaries
 - 4.4.21 Properties related to ideographs
 - 4.4.22 Miscellaneous properties
 - 4.4.23 Unihan properties
 - 4.4.24 Tangut data
 - 4.4.25 Nushu data
 - 4.4.26 Emoji properties
- 5 Blocks

Named Sequences 6

Normalization Corrections

UAX #42: Unicode Character Database in XML

- 8 Standardized Variants9 CJK Radicals
- 9 CJK Radicals 10 Emoji sources
- 11 Do Not Emit
- 12 The full schema
- 13 Examples
- Acknowledgments
- Modifications

1 Introduction

In working on Unicode implementations, it is often useful to access the full content of the Unicode Character Database (UCD). For example, in establishing mappings from characters to glyphs in fonts, it is convenient to see the character scalar value, the character name, the character East Asian width, along with the shape and metrics of the proposed glyph to map to; looking at all this data simultaneously helps in evaluating the mapping.

Directly accessing the data files that constitute the UCD is sometimes a daunting proposition. The data is dispersed in a number of files of various formats, and there are just enough peculiarities (all justified by the processing power available at the time the UCD representation was designed) to require a fairly intimate knowledge of the data format itself, in addition to the meaning of the data.

Many programming environments (for example, Java or ICU) do give access to the UCD. However, those environments tend to lag behind releases of the standard, or support only some of the UCD content.

Unibook is a wonderful tool to explore the UCD and in many cases is just the ticket; however, it is difficult to use when the task at hand has not been built-in, or when non-UCD data is to be displayed as well.

This annex presents an alternative representation of the UCD, which is meant to overcome these difficulties. We have chosen an XML representation, because parsing becomes a non-issue: there are a number of XML parsers freely available, and using them is often fairly easy. In addition, there are freely available tools that can perform powerful operations on XML data; for example, XPATH and XQUERY engines can be thought of as a "grep" for XML data and XSLT engines can be thought of as "awk" for XML data.

It is important to note that we are interested in exploring the content of the UCD, rather than in using the UCD data to process character streams. Thus, we are not concerned so much by the speed of processing or the size of our representation.

Our representation supports the creation of documents that represent only parts of the UCD, either by not representing all the characters, or by not representing all the properties. This can be useful when only some of the data is needed.

This annex presents only the XML representation format of the UCD. The data itself is part of the Unicode Character Database.

2 Overall schema

2.1 General principles

Our schema can be used to create and validate documents which are intended to represent properties of Unicode code points, blocks, named sequences, normalization corrections, standardized variants, CJK radicals and emoji sources. A document may represent the values actually assigned in a given version of the UCD, or it may represent a draft version of the UCD, or a private agreement on Private Use characters. The validity of a XML document with respect to the schema defined in this annex does not assert anything about the correctness of the values.

Valid documents may provide values for only some of the code points, or some of the Unicode properties. Furthermore, they may also incorporate non-Unicode properties.

Our schema is defined using English. However, a useful subset of the validity constraints can be captured using a schema language, thereby simplifying the task of validating documents. We have chosen Relax NG [ISO 19757], in the compact syntax, as the schema language. It is important to stress that the schema which is defined in English imposes more constraints on the documents than can be validated with the Relax NG schema.

An important characteristic of Relax NG is that its schemas do not modify or augment the infoset of the documents. Therefore, it is possible to process our XML representation without using the schema. Also, the schema is relatively straightforward and can be converted mechanically to other schema languages.

While our XML representation is not intended to be used during processing of characters and strings, it is still a design principle for our schema to support the relatively efficient representation of the UCD. This is achieved by an inheritance mechanism, similar to property inheritance in CSS or in XSL:FO (see section 4.3 Group).

Many invariants impose constraints on the values of the different properties for a given code point. For example, if the value of the Numeric Type property is None, then the value of the Numeric Value property should be the empty string; and if the value of the Other Alphabetic property is true, then the value of the Alphabetic property should be true. Those invariants are not captured in the schema.

2.2 Namespace

The namespace for our elements is "http://www.unicode.org/ns/2003/ucd/1.0". Our attributes are in the empty namespace.

[namespace declaration, 1] =

default namespace ucd = "http://www.unicode.org/ns/2003/ucd/1.0"

In all our examples, we assume that this namespace is the default one.

2.3 Datatypes

We use a standard XML Schema datatypes:

[datatypes declaration, 2] =

default; datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

Characters are pervasive in the UCD, and will need to be represented. Representing characters directly by themselves would seem the most obvious choice; for example, we could express that the decomposition of U+00E8 is "è", that is have exactly two characters in (the infoset of) the XML document. However, the current XML specification limits the set of characters that can be part of a document. Another problem is that the various tools (XML parser, XPATH engine, etc.) may equate U+00E8 with U+0065 U+0300, thus making it difficult to figure out which of the two sequences is contained in the database (which is sometimes important for our purposes). Therefore, we chose instead to represent characters by their code points; we follow the usual convention of four to six hexadecimal digits (uppercase) and code points in a sequence separated by space; for example, the decomposition of U+00E8 will be represented by the nine characters "0065 0300" in the infoset.

[datatype for code points, 3] =
 single-code-point = xsd:string { pattern = "(|[1-9A-F]|(10))[0-9A-F]{4}" }

one-or-more-code-points = list { single-code-point + }

zero-or-more-code-points = list { single-code-point * }
two-code-points = list { single-code-point, single-code-point }

2.4 Root Element

The root element of valid documents is a ucd.

[schema start, 4] =
 start =
 element ucd { ucd.content }

erement aca (aca.content

2.5 Common attributes

A large number of properties are boolean. We uniformly use the values Y and N for those:

[boolean type, 5] = boolean = "Y" | "N"

2.6 Ordering of elements

In elements that hold lists of child elements, such as repertoire, group, or standardized-variants, the schema does not require that the child elements be in any particular order.

3 Description

The root element may have a description child element, which in turn contains any string, which is meant to describe what the XML document purports to describe.

It is recommended that if the document purports to represent the UCD of some Unicode version, the description be selected in accord with the rules listed in [Versions]; and conversely, that documents which do not purport to represent the UCD be described as such.

[description, 6] =
 ucd.content &=
 element description { text }?

4 Repertoire

The repertoire child element of the ucd element describes the code points and their properties. As we will see shortly, code points can be described individually or as part of a group:

[repertoire, 7] =
 ucd.content &=
 element repertoire { (code-point | group) + }?

4.1 Sets of code points

It is often the case that successive code points have the same property values, for a given set of properties. The most striking example is that of an unallocated plane, where all but the last two code points are reserved and have the same property values. Another example is the URO (U+4E00 .. U+9FA5) where all the code points have the same property values if we ignore their name and their Unihan properties.

This observation suggests that it is profitable to represent sets of code points which share the same properties, rather than individual code points. To make the representation of the sets simple, we restrict them to be segments in the code point space, that is a set is defined by the first and last code point it contains. Those are captured by the attributes first-cp and last-cp. The attribute cp is a shorthand notation for the case where the set has a single code point.

```
[Set of code points, 8] =
  set-of-code-points =
    attribute cp { single-code-point }
    ( attribute first-cp { single-code-point },
        attribute last-cp { single-code-point } )
```

In the repertoire, there must be at most one code-point element for a given code point.

4.2 Code point types

When thinking about Unicode code points, it is useful to split them into four types:

- · those assigned to abstract characters (PUA or not)
- · the noncharacters
- the surrogate code points
- · the reserved code points

This leads to four elements to describe sets of code points:

```
[Code points, 9] =
  code-point |=
   element reserved {
     set-of-code-points,
     code-point-attributes }
  code-point |=
   element noncharacter {
     set-of-code-points,
     code-point |=
   element surrogate {
     set-of-code-points,
     code-point |=
   element char {
     set-of-code-points,
     code-point-attributes }
  code-point =
   element char {
     set-of-code-points,
     code-point,
     code-point-attributes }
  code-point-attributes }
  code-point =
   element char {
     set-of-code-points,
     code-points,
     code-point-attributes }
  code-point-attributes }
```

4.3 Group

UAX #42: Unicode Character Database in XML

While we already recognized the situation where a set of code points have exactly the same set of property values, another common situation is that of code points which have almost all the same property values.

For example, the characters U+1740 BUHID LETTER A.. U+1753 BUHID VOWEL SIGN U all have the age "3.2", and all have the script "Buhd". On the one hand, it is convenient to support data files in which those properties are explicitly listed with every code point, at this makes answering questions like "what is the age of U+1749?" easier, because that data is expressed right there. On the other hand, this leads to rather large data files, and it also tends to obscure the differences between similar characters.

Our representation accounts for this situation with the notion of groups. A group element is simply a container of code points that also holds default values for the properties. If a code point inside a group does not list explicitly a property but the group lists it, then the code point inherits that property from its group. For example, the fragment with explicit properties:

<char cp="1740" age="3.2" na="BUHID LETTER A" gc="Lo" sc="Buhd"/> <char cp="1741" age="3.2" na="BUHID LETTER I" gc="Lo" sc="Buhd"/> <char cp="1752" age="3.2" na="BUHID VOWEL SIGN I" gc="Mn" sc="Buhd"/> <char cp="1820" age="3.0" na="MONGOLIAN LETTER A" gc="Lo" sc="Mong"/>

is equivalent to this fragment which uses a group:

```
<group age="3.2" gc="Lo" sc="Buhd">
<char cp="1740" na="BUHID LETTER A"/>
<char cp="1741" na="BUHID LETTER I"/>
<char cp="1752" na="BUHID VOWEL SIGN I" gc="Mn"/>
<char cp="1820" age="3.0" na="MONGOLIAN LETTER A" sc="Mong"/>
</group>
```

The element for U+1740 does not have the age attribute, and it therefore inherits it from its enclosing group element, that is "3.2". On the other hand, the element for U+1820 does have this attribute, so the value is "3.0".

As this example illustrates, the notion of group does not necessarily align with the notion of Unicode block. It is entirely defined and limited to our representation. In particular, the value of a property for a code point can always be determined from the XML document alone, assuming that this property and this code point are expressed at all. Of course, one may create an XML representation where the groups happen to coincide with the Unicode blocks.

Groups cannot be nested. The motivation for this limitation is to make the life of consumers easier: either a property is defined by the element for a code point, or it is defined by the immediately enclosing group element.

[groups, 10] =
 group =
 element group {
 code-point-attributes,
 code-point* }

4.4 Properties

Each property, except for the Special_Case_Condition and Name_Alias properties, is represented by an attribute. In an XML data file, the absence of an attribute (may be only on some code-points) means that the document does not express the value of the corresponding property. Conversely, the presence of an attribute is an expression of the corresponding property value; the implied null value is represented by the empty string.

The Name_Alias property is represented by zero or more name-alias child elements. Unlike the situation for properties represented by attributes, it is not possible to determine whether all of the aliases have been represented in a data file by inspecting that data file.

The name of an attribute is the abbreviated name of the property as given in the file PropertyAliases.txt in version 6.1.0 of the UCD. For the Unihan properties, the name is that given in the various versions of the Unihan database (some properties are no longer present in version 6.1.0).

For catalog and enumerated properties, the values are those listed in the file PropertyValueAliases.txt in version 6.1.0 of the UCD; if there is an abbreviated name, it is used, otherwise the long name is used.

Note that the set of possible values for a property captured in this schema may change from one version to the next.

4.4.1 Age property

The age attribute captures the version of Unicode in which a code point was assigned to an abstract character, or made a surrogate or non-character.

```
lage, 111 =
   code-point-attributes &= attribute age {
              "1.1'
             1.1
"2.0"
"3.0"
"4.0"
                         "2.1
                       "3.1" | "3.2"
"4.1"
                       "5.1" | "5.2"
"6.1" | "6.2" | "6.3"
             "5.0"
             "6.0" |
"7.0"
"8.0"
              "9.0"
             "10.0
             "11.0"
              "12.0" | "12.1"
              "13.0"
             "14.0"
             "15.0"
"16.0"
                      | "15.1"
              "unassigned" }?
```

4.4.2 Name properties

There are two name properties: the name given by the current version of the standard (na), and possibly the name this character had in version 1.0 of the standard (na1).

[name pattern, 12] =
 character-name = xsd:string { pattern="([A-Z0-9 #\-\(\)]*)|(<control>)" }

[name properties, 13] =
 code-point-attributes &= attribute na { character-name }?
 code-point-attributes &= attribute na1 { character-name }?

UAX #42: Unicode Character Database in XML

The majority of the characters in Unicode have a name which is of the form CJK UNIFIED IDEOGRAPH-<code point>. It also happens that character names cannot contain the character U+0023 # NUMBER SIGN, so we adopted the following convention: if a code point has the attribute na (either directly or by inheritance from an enclosing group), then occurrences of the character # in the name are to be interpreted as the value of the code point. For example:

<char cp="3400" na="CJK UNIFIED IDEOGRAPH-3400"/>

and

<char cp="3400" na="CJK UNIFIED IDEOGRAPH-#"/>

are equivalent. The # can be in any position in the value of the na attribute. The convention also applies just as well to a set of multiple code points:

<char cp="3400" na="CJK UNIFIED IDEOGRAPH-3400"/> <char cp="3401" na="CJK UNIFIED IDEOGRAPH-3401"/>

is equivalent to

<char cp="3400" na="CJK UNIFIED IDEOGRAPH#"/><char cp="3401" na="CJK UNIFIED IDEOGRAPH#"/>

which in turn is equivalent to:

<char first-cp="3400" last-cp="3401" na="CJK UNIFIED IDEOGRAPH-#"/>

4.4.3 Name Aliases

The Name_Alias property is represented by zero or more name-alias child elements:

[name_alias property, 14] =
 code-point-attributes &=
 element name-alias {
 attribute alias { text }?,
 attribute type {
 "abbreviation" | "alternate"
 " correction"
 "figment" }? } *

4.4.4 Block

The Block property is represented by the blk attribute:

[block property, 15] = code-point-attributes &= "Adlam' attribute blk { "Aegean_Numbers" "Ahom" "Alchemical" "Alphabetic PF" "Anatolian_Hieroglyphs" "Ancient_Greek_Music" "Ancient Greek Numbers" "Ancient_Symbols" "Arabic" "Arabic_Ext_A" "Arabic_Ext_B" "Arabic_Ext_C" "Arabic_Math" "Arabic_PF_A" "Arabic_PF_B" "Arabic Sup" "Armenian" "Arrows" "ASCII" "Avestan' "Balinese" "Bamum" "Bamum_Sup" "Bassa_Vah" "Batak" "Bengali" "Bhaiksuki" "Block_Elements" "Bopomofo" "Bopomofo_Ext" "Box_Drawing' "Brahmi" "Braille" "Buginese' "Buhid" "Byzantine_Music" "Carian" "Caucasian Albanian" "Chakma" "Cham" "Cherokee" "Cherokee_Sup" "Chess Symbols" "Chorasmian" "CJK" "CJK_Compat" "CJK_Compat_Forms" "CJK_Compat_Ideographs" "CJK_Compat_Ideographs_Sup" "CJK_Ext_A" "CJK_Ext_B" "CJK Ext C" "CJK_Ext_D" "CJK Ext E" "CJK_Ext_F" "CJK_Ext_G" "CJK_Ext_H" "CJK_Ext_I" "CJK Radicals Sup"

"CJK_Strokes" "CJK_Symbols" "Compat_Jamo" Compat_Jamo "Control_Pictures" "Coptic" "Coptic_Epact_Numbers" "Counting_Rod" "Cunciform" "Cunciform Numbers" "Cuneiform_Numbers" "Cuneiform Numbers" "Currency_Symbols" "Cypriot_Syllabary" "Cypro_Minoan" "Cyrillic" "CyrillicExt_A" "Cyrillic_Ext_A" "Cyrillic_Ext_B" "Cyrillic_Ext_C" "Cyrillic_Ext_D" "Cyrillic_Sup" "Deseret" "Devanagari" "Devanagari_Ext" "Devanagari_Ext_A" "Diacriticals" "Diacriticals_For_Symbols" "Diacriticals_Sup" "Early_Dynastic_Cuneiform" "Egyptian_Hieroglyph_Format_Controls" "Elbasan" "Elymaic" "Emoticons" "Geometric_Shapes" "Gunjala_Gondi" "Katakana_Ext" "Khmer" "Khudawadi" "Kirat Rai" "Lao" "Latin_1_Sup" "Latin_Ext_A" "Latin_Ext_Additional"

"Diacriticals_Ext" "Dingbats" "Dives_Akuru" "Dogra" "Domino" "Duployan" "Egyptian Hieroglyphs" "Egyptian Hieroglyphs Ext A" "Enclosed_Alphanum" "Enclosed_Alphanum_Sup" "Enclosed_CJK" "Enclosed_UK" "Enclosed_Ideographic_Sup" "Ethiopic" "Ethiopic_Ext" "Ethiopic_Ext_A" "Ethiopic_Ext_A" "Ethiopic_Ext_B" "Ethiopic_Sup" "Garay" "Geometric_Shapes_Ext" "Georgian" "Georgian" "Georgian_Ext" "Georgian_Sup" "Glagolitic" "Glagolitic_Sup" "Gothic" "Grantha" "Greek" "Greek_Ext" "Gujarati" "Gunjala_Gondi" "Gurmukhi" "Gurung Khema" "Half_And_Full_Forms" "Half_Marks" "Hangul" "Hanifi_Rohingya" "Hanunoo" "Hatran" "Hebrew" neurew "High_PU_Surrogates" "High_Surrogates" "Hiragana" "IDC" "Ideographic_Symbols" "Imperial_Aramaic" "Indic_Number_Forms" "Indic_Siyaq_Numbers" "Inscriptional_Pahlavi" "Inscriptional_Parthian" "IPA_Ext" "Jamo" "Jamo_Ext_A" "Jamo_Ext_B" "Javanese" "Kaithi" "Kaitha" "Kaktovik_Numerals" "Kana_Ext_A" "Kana_Sup" "Kanbun" "Kangxi" "Kannada" "Katakana" "Kana_Ext_B" "Kawi" "Kayah_Li" "Kharoshthi" "Khitan_Small_Script" "Khmer_Symbols" "Khojki"

UAX #42: Unicode Character Database in XML

"Latin_Ext_B" "Latin_Ext_C" "Latin_Ext_D" "Latin_Ext_E" "Latin_Ext_F" "Latin_Ext_G" "Lepcha" "Letterlike_Symbols" "Limbu" "Linear_A" "Linear_B_Ideograms" "Linear_B_Syllabary" "Lisu" "Lisu Sup" "Low_Surrogates" "Lycian" "Lydian" "Mahajani" "Mahjong" "Makasar" "Malayalam" "Mandaic" "Manichaean" "Marchen" "Masaram Gondi" "Math_Alphanum" "Math_Operators" "Mayan_Numerals" "Medefaidrin" "Meetei_Mayek" "Meetei_Mayek_Ext" "Mende_Kikakui" "Meroitic_Cursive" "Meroitic_Hieroglyphs" "Miao" "Misc Arrows" "Misc_Arrows" "Misc_Math_Symbols_A" "Misc_Math_Symbols_B" "Misc_Pictographs" "Misc_Symbols" "Misc_Technical" "Modi" "Modifier_Letters" "Modifier_Tone_Letters" "Mongolian Sup" "Mongolian_Sup" "Mro" "Music" "Multani" "Myanmar" "Myanmar_Ext_A" "Myanmar_Ext_B" "Myanmar_Ext_C" "Nabataean' "Nag_Mundari" "Nandinagari" "NB" "New_Tai_Lue" "Newa" "NKo" "Number_Forms" "Nushu" "Nyiakeng_Puachue_Hmong" "OCR" "Ogham" "Ol Chiki" "Ol Onal" "Old Hungarian" "Old_Italic" "Old_North_Arabian" "Old_Permic" "Old_Persian" "Old_Sogdian" "Old_South_Arabian" "Old_Turkic" "Old_Uyghur" "Oriya" "Ornamental_Dingbats" "Osage" "Osmanya" "Ottoman_Siyaq_Numbers" "Pahawh_Hmong" "Palmyrene" "Pau Cin Hau" "Phags_Pa" "Phaistos" "Phoenician" "Phonetic_Ext" "Phonetic_Ext_Sup" "Playing_Cards" "Psalter_Pahlavi" "PUA" "Punctuation" "Rejang" "Rumi" "Runic" "Samaritan" "Saurashtra" "Sharada" "Shavian" "Shorthand_Format_Controls" "Siddham" "Sinhala" "Sinhala_Archaic_Numbers" "Small_Forms" "Small_Kana_Ext" "Sogdian" "Sora_Sompeng"

"Soyombo" "Specials"
"Specials"
Specials
"Sundanese"
"Sundanese Sun"
<mark> "Sunuwar"</mark>
Sup Arrows A"
"Sup Arrows B"
"Sup Arrows C"
"Sup_Math_Operators"
"Sup_PUA_A"
Sup_PUA_B
"Sup_Punctuation"
"Sup_Symbols_And_Pictographs"
Super_And_Sub"
"Sutton_SignWriting"
"Syloti_Nagri"
"Symbols_And_Pictographs_Ext_A"
"Symbols For Legacy Computing"
Symbols_For_Legacy_Computing_Sup"
"Syriac"
"Syriac_Sup"
"Tagalog"
"Tagbanwa"
"Tags"
"Tai_Le"
"Tai Tham"
"Tai_Viet"
"Tai_Xuan_Jing"
"Takri"
"Tamil"
"Tamil_Sup"
"Tangsa"
"Tangut"
"Tangut Components"
"Tangut_Components" "Tangut_Sup"
"Telugu"
"Thaana"
Inddid
"Thai"
"Tibetan"
"Tibetan" "Tifinagh"
"Tibetan" "Tifinagh"
"Tibetan" "Tifinagh" "Tirhuta"
"Tibetan" "Tifinagh" "Tirhuta" "Todhri" "Toto"
"Tibetan" "Tifinagh" "Tirhuta" "Todhri" "Toto" "Transport And Map"
"Tibetan" "Tifhagh" "Tirhuta" "Todhn" "Toto" "Toto" "Tulu Tigalari"
"Tibetan" "Tifhagh" "Tirhuta" "Todhn" "Toto" "Toto" "Tulu Tigalari"
"Tibetan" "Tifinagh" "Tirhuta" "Todhri" "Toto" "Transport And Map"
"Tibetan" "Tifinagh" "Tirhuta" "Todhn" "Toto" "Transport And Map" "Tulu Tigalari" "UCAS" "UCAS_Ext"
"Tibetan" "Tifhagh" "Tirhuta" "Todohn" "Toto" "Transport And Map" "Tulu Tigalan" "UCAS_Ext" "UCAS_Ext" "UCAS_Ext "
<pre>"Tibetan" "Tifhagh" "Tirhuta" "Todhni" "Toto" "Transport And Map" "Tulu Tigalani" "UCAS_Ext" "UCAS_Ext" "UCAS_Ext" "UCAS_Ext"</pre>
"Tibetan" "Tifhagh" "Tirhuta" "Todhri" "Toto" "Toto" "Transport And Map" "Tulu Tigalari" "UCAS_Ext "UCAS_Ext A" "UCAS_Ext A" "Ugaritic" "Vai"
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Toto" "Transport And Map" "Tulu Tigalan" "UCAS" "UCAS_Ext" "UCAS_Ext" "UGAS_Ext A" "Ugaritic" "Val" "Vedic_Ext"</pre>
<pre>"Tibetan" "Tifinagh" "Tirhuta" "Todhni" "Toto" "Transport And Map" "Tulu Tigalan!" "UCAS_Ext" "UCAS_Ext" "UCAS_Ext" "Ugaritic" "Vai" "Vedic_Ext" "Vedic_Ext"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Todhri" "Toto" "Transport_And_Map" "Tulu_Tigalari" "UCAS" "UCAS_Ext" "UCAS_Ext_A" "UGAS_Ext_A" "Ugaritic" "Vai" "Vedic_Ext" "Vertical_Forms" "Vithuqi"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Toto" "Transport And Map" "Tulu Tigalan" "UCAS" "UCAS_Ext" "UCAS_Ext" "UGAS_Ext A" "Ugaritic" "Val" "Vedic_Ext" "Vertical_Forms" "VS"</pre>
<pre>"Tibetan" "Tifhagh" "Tirhuta" "Todhn" "Toto" "Toto" "Transport And Map" "Tulu Tigalan!" "UCAS_Ext" "UCAS_Ext A" "Ugaritic" "Vai" "Vedic_Ext" "Vertical_Forms" "Vithkuqi" "VS_Sup"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Todhri" "Toto" "Transport_And_Map" "Tulu Tigalari" "UCAS" "UCAS_Ext" "UCAS_Ext_A" "Ugaritic" "Vai" "Vedic_Ext" "Vertical_Forms" "Vithuqi" "Vs" "Vs" "Vs_Sup" "Wancho"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Toto" "Transport And Map" "Tulu Tigalan" "UCAS" "UCAS_Ext" "UCAS_Ext A" "Ugaritic" "Vai" "Vedic_Ext" "Vertical_Forms" "Vithkuqi" "VS_Sup" "VS_Sup" "Wancho" "Wancho"</pre>
<pre>"Tibetan" "Tifinagh" "Tirhuta" "Todhn" "Toto" "Transport And Map" "Tulu Tigalan!" "UCAS_Ext" "UCAS_Ext" "UCAS_Ext" "Ugaritic" "Vai" "Vedic_Ext" "Vedic_Ext" "Vetical_Forms" "Vithkuqi" "VS" "VS" "Wancho" "Warang_Citi" "Yeridi"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Todnri" "Toto" "Transport And Map" "Tulu Tigalari" "UCAS" "UCAS_Ext" "UCAS_Ext" "UCAS_Ext_A" "Ugaritic" "Vai" "Vetical_Forms" "Vetrical_Forms" "Vithuqi" "VS" "VS_Sup" "Wancho" "Warang_Citi" "Yezidi" "Yzidi"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Toto" "Transport And Map" "Tulu Tigalar" "UCAS" "UCAS_Ext" "UCAS_Ext" "Ugaritic" "Val" "Vedic_Ext" "Vertical_Forms" "Vithkuqi" "Vs_Sup" "Wancho" "Wancho" "Warang_Citi" "Yezidi" "Yi_Radicals" "Yi_Syllables"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Todnri" "Toto" "Transport And Map" "Tulu Tigalari" "UCAS" "UCAS_Ext" "UCAS_Ext A" "Ugaritic" "Vai" "Vedic_Ext" "Vedic_Ext" "Vetical_Forms" "Vithkuqi" "Vs" "Vs" "Vs" "Vs" "Vs" "Vs" "Ys" "Wanang_citi" "Yi_Radicals" "Yi_Syllables" "Yi_Syllables"</pre>
<pre>"Tibetan" "Tirhuta" "Tirhuta" "Toto" "Transport And Map" "Tulu Tigalar" "UCAS" "UCAS_Ext" "UCAS_Ext" "Ugaritic" "Val" "Vedic_Ext" "Vertical_Forms" "Vithkuqi" "Vs_Sup" "Wancho" "Wancho" "Warang_Citi" "Yezidi" "Yi_Radicals" "Yi_Syllables"</pre>

4.4.5 General Category

}?

The general category is represented by the $_{\rm gc}$ attribute.

[gc property, 16] = code-point-attri		§=			
attribute gc {	"Lu"	"L1"	"Lt"	"Lm"	"Lo"
		"Mc"			
		"N1"			
	"Pc"	"Pd"	"Ps"	"Pe"	"Pi" "Pf" "Po"
	"Sm"	"Sc"	"Sk"	"So"	
	"Zs"	"Z1"	"Zp"		
	"Cc"	"Cf"	"Cs"	"Co"	"Cn"
}?					

4.4.6 Combining properties

The combining class is represented by the ccc attribute, which holds the decimal representation of the combining class.

Because the set of values that this property has taken across the various versions of the UCD is rather large, our schema does not restrict the possible values to those actually used.

[ccc property, 17] =
 code-point-attributes &=
 attribute ccc { xsd:integer { minInclusive="0" maxInclusive="254" }}?

4.4.7 Bidirectionality properties

The bidirectional class is represented by the bc attribute.

}?

The mirrored property is represented by the Bidi M attribute, which takes a boolean value.

```
[bidi_M property, 19] =
    code-point-attributes &=
    attribute Bidi_M { boolean }?
```

The bmg attribute is the code point of a character whose glyph is typically a mirrored image of the glyph for the current character.

[bmg property, 20] =
 code-point-attributes &=
 attribute bmg { "" | single-code-point }?

Note that we do not express the "Best Fit" element recorded in BidiMirroring.txt. For one thing, it is not meant to be machine readable. More importantly, the idea underlying the mirrored glyph is delicate to use, since it makes assumptions about the design of the fonts, and the best fit goes even farther.

The Bidi_Control property is represented by the bidi_c attribute.

```
[Bidi_C property, 21] =
    code-point-attributes &=
    attribute Bidi_C { boolean }?
```

The bidi paired bracket type and bidi paired bracket properties are represented by the bpt and bpb attributes respectively.

```
[bpt and bpb attributes, 22] =
  code-point-attributes &=
    attribute bpt { "o" | "c" | "n" }?
  code-point-attributes &=
    attribute bpb { "#" | single-code-point }?
```

4.4.8 Decomposition properties

The decomposition type and decomposition mapping properties are represented by the dt and dm attributes.

Most characters have a decomposition mapping to themselves. This is very similar to the situation we encountered with names, and we adopted a similar convention: if the value of a decomposition mapping is the character itself, we use the attribute value # (U+0023 # NUMBER SIGN) as a shorthand notation; this enables those attributes to be captured in groups.

[decomposition properties, 23] =

attribute dm { "#" | zero-or-more-code-points }?

The properties Composition_Exclusion and Full_Composition_Exclusion are represented by the attributes cE and Comp_Ex:

```
[composition properties, 24] =
  code-point-attributes &=
    attribute CE { boolean }?
  code-point-attributes &=
    attribute Comp_Ex { boolean }?
```

The properties NFC_Quick_Check, NFD_Quick_Check, NFKC_Quick_Check, NFKD_Quick_Check, Expands_On_NFC, Expands_On_NFD, Expands_On_NFKC, Expands_On_NFKC, Expands_On_NFKC, Closure have corresponding attributes.

```
[quick check properties, 25] =
code-point-attributes &=
attribute NFC_QC { "Y" | "N" | "M" }?
code-point-attributes &=
attribute NFD_QC { "Y" | "N" }?
code-point-attributes &=
attribute NFKD_QC { "Y" | "N" | "M" }?
code-point-attributes &=
attribute XO_NFC { boolean }?
code-point-attributes &=
attribute XO_NFD { boolean }?
code-point-attributes &=
attribute XO_NFC { boolean }?
code-point-attributes &=
attribute XO_NFC { boolean }?
code-point-attributes &=
attribute XO_NFC { boolean }?
code-point-attributes &=
attribute XO_NFD { boolean }?
code-point-attributes &=
attribute XO_NFKC { boolean }?
code-point-attributes &=
attribute XO_NFKC { boolean }?
code-point-attributes &=
attribute XO_NFKD { boolean }?
code-point-attributes &=
attribute XO_NFKD { boolean }?
```

attribute FC_NFKC { "#" | one-or-more-code-points }?

4.4.9 Numeric Properties

The numeric type is represented by the nt attribute.

The numeric value is represented by the nv attribute, represented as a fraction.

[numeric properties, 26] =

```
code-point-attributes &=
attribute nt { "None" | "De" | "Di" | "Nu" }?
```

code-point-attributes &=
 attribute nv { "NaN" | list { xsd:string { pattern = "-?[0-9]+(/[0-9]+)?" } +}}?

4.4.10 Joining properties

The joining class of a character is represented by the jt attribute.

The jg attribute is the joining group of the character.

```
[joining properties, 27] =
    sharing propositions, 21
code-point-attributes &=
   attribute jt { "U" | "C" | "T" | "D" | "L" | "R" }?
   "Beh" | "Betn" | "Burushaski_Yeh_Barree"

"Dal" | "Dalath_Rish" | "E"

"Farsi_Yeh" | "Fe" | "Feh" | "Final_Semkath"

"Gaf" | "Gamal"

"Hah" | "Hamza_On_Heh_Goal" | "He"

"Heh" | "Heh_Goal" | "Heth"

"Hanifi_Rohingya_Kinna_Ya" | "Hanifi_Rohingya_Pa"

"Kaf" | "Kaph" | "Khaph" | "Knotted_Heh"

"Lam" | "Lamadh"

"Malayalam_Jga"
                                        "Malayalam_Ja"
"Malayalam_Nya"
                                        "Malayalam_Nya
"Malayalam_Tta"
"Malayalam_Nna"
"Malayalam_Nnna"
                                         "Malayalam_Bha"
"Malayalam_Ra"
                                         "Malayalam_Lla"
                                         "Malayalam_Llla"
                                         "Malayalam_Ssa"
                                         "Manichaean Aleph'
                                         "Manichaean_Ayin"
                                         "Manichaean_Beth"
"Manichaean_Daleth"
                                         "Manichaean_Dhamedh"
"Manichaean_Five"
                                         "Manichaean_Gimel"
                                         "Manichaean_Heth'
                                         "Manichaean_Hundred"
                                         "Manichaean Kaph"
                                         "Manichaean_Lamedh"
                                         "Manichaean_Mem"
"Manichaean_Nun"
                                         "Manichaean_One"
"Manichaean_Pe"
                                         "Manichaean_Qoph"
                                         "Manichaean Resh"
                                         "Manichaean_Sadhe"
                                        "Manichaean_Sadhe"
"Manichaean_Samekh"
"Manichaean_Taw"
"Manichaean_Ten"
"Manichaean_Teth"
"Manichaean_Thamedh"
"Manichaean_Twenty"
                                         "Manichaean_Waw"
                                        "Manichaean_Yodh"
"Manichaean_Zayin"
"Meem" | "Mim"
                                       "Meem" | "Mim"
"No_Joining_Group" | "Noon" | "Nun" | "Nya"
"Pe" | "Qaf" | "Qaph" | "Reh" | "Reversed_Pe"
"Rohingya_Yeh"
"Sadhe" | "Seen" | "Semkath" | "Shin" | "Straight_Waw"
"Swash_Kaf" | "Syriac_Waw"
"Tah" | "Taw" | "Teh_Marbuta" | "Teh_Marbuta_Goal" | "Teth"
"Thin_Yeh"
                                         "Vertical_Tail"
                                        "Waw"
"Yeh" | "Yeh_Barree" | "Yeh_With_Tail" | "Yudh" | "Yudh_He"
"Zain" | "Zhain" }?
```

The Join_Control property is represented by the Join_c attribute.

```
[joining properties, 28] =
    code-point-attributes &=
    attribute Join_C { boolean }?
```

4.4.11 Linebreak properties

The Line_Break property is represented by the 1b attribute.

```
[linebreak property, 29] =
  code-point-attributes &=
                         "AI"
"B2"
                                 -
"AK"
"BA"
"CJ"
"EM"
                                           "AL"
"BB"
                                                    "AP" | "AS"
"BK"
     attribute 1b {
                         "CB"
"EB"
                                            "CL"
                                                     "CM" | "CP" | "CR"
                                            "EX'
                         "GL"
                         "H2"
                                  "H3"
                                            "нг "
                                                    "HY"
                                                  "IN"
"JT"
                         "ID"
"JL"
                                           "IS"
                                           "JV"
                         "LF"
                         "NL"
                               T
                                  "NS" |
                                           "NU
                         "0P"
                         "PO" | "PR"
"OU"
```

```
"SG" | "SP" | "SY"
"SA"
"VF"
        "VI
"WJ'
"XX'
"ZW" | "ZWJ" }?
```

4.4.12 East Asian Width property

The East Asian width property is represented by the ea attribute.

```
[ea property, 30] =
   code-point-attributes &= attribute a { "A" | "F" | "H" | "N" | "Na" | "W" }?
```

4.4.13 Case properties

The Uppercase, Lowercase, Other_Uppercase and Other_Lowercase properties are represented by corresponding attributes.

```
[casing properties, 31] =
  code-point-attributes &=
    attribute Upper { boolean }?
  code-point-attributes &=
    attribute Lower { boolean }?
  code-point-attributes &=
    attribute OUpper { boolean }?
  code-point-attributes &=
    attribute OLower { boolean }?
```

Most characters have a case mapping and case folding properties that simply map or fold to themselves. This is very similar to the situation we encountered with names, and we adopted a similar convention: if the value of a case mapping or case folding property is the character itself, we use the attribute value # (U+0023 # NUMBER SIGN) as a shorthand notation; this enables those attributes to be captured in groups.

The simple case mappings are recorded in the suc, slc, stc attributes.

```
[casing properties, 32] =
   code-point-attributes &=
   attribute suc { "#" | single-code-point }?
  code-point-attributes &=
  attribute slc { "#" | single-code-point }?
   code-point-attributes &=
     attribute stc { "#" | single-code-point }?
```

The non-simple casing are recorded in the uc, 1c and tc attributes.

```
[casing properties, 33] =
  code-point-attributes &=
   attribute uc { "#" | one-or-more-code-points }?
```

code-point-attributes &=
 attribute lc { "#" | one-or-more-code-points }?

code-point-attributes &= attribute tc { "#" | one-or-more-code-points }?

The Simple Case Folding and Case Folding properties are recorded in the scf and cf attributes respectively.

```
[casing properties, 34] =
   code-point-attributes &=
  attribute scf { "#" | single-code-point }?
   code-point-attributes &=
  attribute cf { "#" | one-or-more-code-points }?
```

The Case_Ignorable, Cased, Changes_When_Casefolded, Changes_When_Casemapped, Changes_When_Lowercased, Changes_When_NFKC_Casefolded, Changes_When_Titlecased, Changes_When_Uppercased, NFKC_Casefold, and NFKC_Simple_Casefold properties are recorded in these attributes:

```
[casing properties, 35] =
  code-point-attributes &=
    attribute CI { boolean }?
  code-point-attributes &=
    attribute Cased { boolean }?
  code-point-attributes &=
  attribute CWCF { boolean }?
  code-point-attributes &=
    attribute CWCM { boolean }?
  code-point-attributes &=
    attribute CWL { boolean }?
  code-point-attributes &=
    attribute CWKCF { boolean }?
  code-point-attributes &=
    attribute CWT { boolean }?
  code-point-attributes &=
    attribute CWU { boolean }?
  code-point-attributes &=
   attribute NFKC_CF { "#" | zero-or-more-code-points }?
  code-point-attributes &=
  attribute NFKC_SCF { "#" | zero-or-more-code-points }?
```

Note that the UCD records more information about case folding than is expressed in the properties, specifically the entries in CaseFolding.txt with status T.

4.4.14 Script properties

The script and script extension properties are represented by the sc and scx attributes respectively.

[script property, 36] =
script = "Adlm" "Aghb" "Ahom" "Arab" "Armi" "Armn" "Avst"
"Bali" "Bamu" "Bass" "Batk" "Beng" "Bhks"
"Bopo" "Brah" "Brai" "Bugi" "Buhd"
"Cakm" "Cans" "Cari" "Cham" "Cher" "Chrs" "Copt"
"Cpmn" "Cprt" "Cyrl"
"Deva" "Diak" "Dogr" "Dsrt" "Dupl"
"Elba" "Elym" "Egyp" "Ethi"
"Gara" " Geor" "Glag" "Gong" "Gonm" "Goth" "Gran" "Grek"
"Gujr" <mark> "Gukh"</mark> "Guru"
"Hang" "Hani" "Hano" "Hatr" "Hebr" "Hira" "Hluw"
"Hmng" "Hmnp" "Hrkt" "Hung"
"Ital"
"Java"
"Kali" <u> "Kana"</u> "Kawi" "Khar" "Khmr" "Khoj" "Kits"
"Knda" <mark>"Krai"</mark> "Kthi"
"Lana" "Laoo" "Latn" "Lepc" "Limb" "Lina" "Linb"
"Lisu" "Lyci" "Lydi"
"Mahj" "Maka" "Mand" "Mani" "Marc"
"Medf" "Mend" "Merc" "Mero" "Mlym"
"Modi" "Mong" "Mroo" "Mtei" "Mult" "Mymr"
"Nagm" "Nand" <u> "Narb" </u> "Nbat" "Newa" "Nkoo" "Nshu"
"Ogam" "Olck" <mark> "Onao"</mark> "Orkh" "Orya" "Osge" "Osma" "Ougr"
"Palm" "Pauc" "Perm" "Phag" "Phli" "Phlp" "Phnx"
"Plrd" "Prti"
"Qaai"
"Rohg" "Rjng" "Runr"
"Samr" "Sarb" "Saur" "Sgnw" "Shaw" "Shrd" "Sidd"
<mark> "Sunu"</mark> "Sylo" "Syrc"
"Tagb" "Takr" "Tale" "Talu" "Taml" "Tang" "Tavt"
"Telu" <u> "Tfng"</u> "Tglg" <u>"Thaa" </u> "Thai" "Tibt" "Tirh"
"Tnsa" <mark> "Todr"</mark> "Toto" <mark> "Tutg"</mark>
"Ugar"
"Vaii" "Vith"
"Wara" "Wcho"
"Xpeo" "Xsux"
"Yezi" "Yiii" "Zaab" "Ziab" "Ziab" "Zaab"
"Zanb" "Zinh" "Zyyy" "Zzzz"
code-point-attributes &=
attribute sc { script }?

code-point-attributes &= attribute scx { list { script + }}?

4.4.15 ISO Comment properties

The ISO 10646 comment field is represented by the isc attribute.

[isc property, 37] = code-point-attributes &= attribute isc { text }?

4.4.16 Hangul properties

The property Hangul_Syllable_Type is represented by the hst attribute.

[hst property, 38] = code-point-attributes &=
 attribute hst { "L" | "LV" | "LVT" | "T" | "V" | "NA" }?

The property Jamo_Short_Name is represented by the JSN attribute:

[jamo property, 39] = code-point-attributes &= attribute JSN { xsd:string { pattern="[A-Z]{0,3}" }}?

4.4.17 Indic properties

The property Indic_Syllabic_Category is represented by the Insc attribute.

```
[InSC property, 40] =
     code-point-attributes &=
         attribute InSC {
                                             "Avagraha"
"Bindu"
                                             "Brahmi_Joining_Number"
"Cantillation_Mark"
"Consonant"
                                              "Consonant_Dead"
"Consonant Final"
                                             "Consonant_Head_Letter"
"Consonant_Head_Letter"
"Consonant_Nitial_Postfixed"
"Consonant_Medial"
"Consonant_Pedial"
"Consonant_Placeholder"
                                              "Consonant_Preceding_Repha"
"Consonant_Prefixed"
                                             "Consonant_Repha"
"Consonant_Subjoined"
"Consonant_Succeeding_Repha"
"Consonant_With_Stacker"
                                              "Gemination_Mark
                                            "Invisible_Stacker'
"Joiner"
```

"Modifying_Letter"
"Non_Joiner"
"Nukta"
"Number_Joiner"
"Other"
"Pure Killer"
"Reordering Killer"
"Register_Shifter"
"Syllable_Modifier"
"Tone_Letter"
"Tone_Mark"
"Visarga"
"Vowel]
"Vowel_Dependent"
"Yowel_Independent" }?

The property Indic_Matra_Category is represented by the InMC attribute:

[InMC property, 41] =

The property Indic_Positional_Category is represented by the InPc attribute:

[InPC property, 42] = code-point-attributes &=

attribute InPC { "Bottom" attribute InPC { "Bottom_And_Left" "Bottom_And_Right" "Left" "Left" "NA" "Overstruck" "Right" "Top_And_Bottom" "Top_And_Bottom_And_Left" "Top_And_Left" "Top_And_Left" "Top_And_Left_And_Right" "Top_And_Right" "Visual_Order_Left" }?

The property Indic_Conjunct_Break is represented by the IncB attribute:

4.4.18 Identifier and Pattern and programming language properties

The properties ID_Start, Other_ID_Start, XID_Start, ID_Continue, Other_ID_Continue, XID_Continue, ID_Compat_Math_Start, and ID_Compat_Math_Continue are represented by corresponding attributes:

```
[identifier properties, 44] =
  code-point-attributes &=
    attribute IDS { boolean }?
  code-point-attributes &=
    attribute OIDS { boolean }?
  code-point-attributes &=
    attribute XIDS { boolean }?
  code-point-attributes &=
    attribute IDC { boolean }?
  code-point-attributes &=
    attribute OIDC { boolean }?
  code-point-attributes &=
    attribute XIDC { boolean }?
  code-point-attributes &=
    attribute ID_Compat_Math_Start { boolean }?
  code-point-attributes &=
    attribute ID_Compat_Math_Continue { boolean }?
```

The properties Pattern_Syntax and Pattern_White_Space are represented by corresponding attributes:

[pattern properties, 45] =
 code-point-attributes &=
 attribute Pat_Syn { boolean }?

code-point-attributes &=
 attribute Pat_WS { boolean }?

4.4.19 Properties related to function and graphic characteristics

The properties Dash, Hyphen, Quotation_Mark, Terminal_Punctuation, Sentence_Terminal, Diacritic, Extender, Soft_Dotted, Alphabetic, Other_Alphabetic, Math, Other_Math, Hex_Digit, ASCII_Hex_Digit, Default_Ignorable_Code_Point, Other_Default_Ignorable_Code_Point, Logical_Order_Exception, Prepended_Concatenation_Mark, Modifier_Combining_Mark, White_Space, Vertical_Orientation and Regional_Indicator describe the function or graphic characteristic of a character, and have each a corresponding attribute.

[properties related to function and graphic characteristics, 46] =

code-point-attributes &=
 attribute Dash { boolean }?

code-point-attributes &=
 attribute Hyphen { boolean }?

code-point-attributes &=
 attribute QMark { boolean }?

code-point-attributes &=
 attribute Term { boolean }?

code-point-attributes &=
 attribute STerm { boolean }?

code-point-attributes &=
 attribute Dia { boolean }?

code-point-attributes &=
 attribute Ext { boolean }?

code-point-attributes &=
 attribute PCM { boolean }?

code-point-attributes &= attribute MCM { boolean }?

code-point-attributes &=
 attribute SD { boolean }?

code-point-attributes &=
 attribute Alpha { boolean }?

code-point-attributes &=
 attribute OAlpha { boolean }?

code-point-attributes &=
 attribute Math { boolean }?

code-point-attributes &=
 attribute OMath { boolean }?

code-point-attributes &=
 attribute Hex { boolean }?

code-point-attributes &=
 attribute AHex { boolean }?

code-point-attributes &=
 attribute DI { boolean }?

code-point-attributes &=
 attribute ODI { boolean }?

code-point-attributes &=
 attribute LOE { boolean }?

code-point-attributes &=
 attribute WSpace { boolean }?

code-point-attributes &=
 attribute vo { "U" | "R" | "Tu" | "Tr" }?

code-point-attributes &=
 attribute RI { boolean }?

4.4.20 Properties related to boundaries

The properties Grapheme_Base, Grapheme_Extend, Other_Grapheme_Extend, Grapheme_Link, Grapheme_Cluster_Break, Word_Break and Sentence_Break each have a corresponding attribute:

```
"ZWJ"
                  j?
code-point-attributes &=
                   "CR"
"DQ"
"EB"
  attribute WB
                         | "EBG" | "EM" | "EX" | "Extend"
                   "FO"
                   "GAZ"
                   "HL"
                    "КА"
                           "LF"
"ML" |
"NU"
                   "LE"
                   "MB"
                                   "MN'
                   "NL"
                   "RI"
"SQ"
                   "WSegSpace"
                   "XX'
                   "ZWJ"
code-point-attributes &=
                   "AT"
"CL" | "CR"
  attribute SB
                   "EX"
                   "F0"
                   "LE" | "LF" | "LO"
                   "NU"
                   "SC" | "SE" | "SP" | "ST"
                   "UP"
                   "XX" }?
```

4.4.21 Properties related to ideographs

The properties Ideographic, Unified_Ideograph, Equivalent_Unified_Ideograph, IDS_Binary_Operator, IDS_Trinary_Operator, IDS_Unary_Operator, and Radical have corresponding attributes:

```
[properties related to ideographs, 48] =
   code-point-attributes &=
    attribute Ideo { boolean }?
   code-point-attributes &=
    attribute UIdeo { boolean }?
   code-point-attributes &=
    attribute EQUIdeo { single-code-point }?
   code-point-attributes &=
    attribute IDSB { boolean }?
   code-point-attributes &=
    attribute IDST { boolean }?
   code-point-attributes &=
    attribute IDSU { boolean }?
   code-point-attributes &=
    attribute Radical { boolean }?
   foolean }?
   foolean }?
```

The properties Deprecated, Variation_Selector, and Noncharacter_Code_Point have corresponding attributes:

```
[miscellaneous properties, 49] =
code-point-attributes &=
attribute Dep { boolean }?
code-point-attributes &=
attribute VS { boolean }?
code-point-attributes &=
```

attribute NChar { boolean }?

4.4.23 Unihan properties

The Unihan properties (from the Unihan database) are represented as attributes.

```
[Unihan properties, 50] =
```

```
code-point-attributes &= attribute kAccountingNumeric
{ xsd:string {pattern="[0-9]+"} }?
code-point-attributes &= attribute kAlternateHanYu
{ text }? #old
code-point-attributes &= attribute kAlternateJEF
{ text }? #old
code-point-attributes &= attribute kAlternateKangXi
{ text }?
code-point-attributes &= attribute kAlternateMorohashi
{ text }?
code-point-attributes &= attribute kAlternateTotalStrokes
{ "-" | list { xsd:string {pattern="[0-9A-F]{4}'?" }?
code-point-attributes &= attribute kCCCII
{ xsd:string {pattern="[0-9A-F]{6}"} }?
```

code-point-attributes &= attribute kCNS1986
 { xsd:string {pattern="[12E]-[0-9A-F]{4}"} }?

code-point-attributes &= attribute kIRGHanyuDaZidian
{ xsd:string {pattern="[1-8][0-9]{4}\.[0-3][0-9][01]"} }?

16/26

<pre>code-point-attributes &= attribute kEACC { xsd:string {pattern="[0-9A-F]{6}"} }?</pre>
code-point-attributes &= attribute kFangie { list { xsd:string {pattern="[\x{3400}-\x{4DBF}\x{4E00}-\x{9FFF}\x{20000}-\x{2A6DF}]{2}"} +}}?
<pre>code-point-attributes &= attribute kFenn { list { xsd:string {pattern="[0-9]+a?[A-KP*]"} +}}?</pre>
code-point-attributes &= attribute kFennIndex { list { xsd:string {pattern="[0-9][0-9]{0,2}\.[01][0-9]"} +}}?
<pre>code-point-attributes &= attribute kFourCornerCode { list { xsd:string {pattern="[0-9]{4}(\.[0-9])?"} +}}?</pre>
<pre>code-point-attributes &= attribute kFrequency { xsd:string {pattern="[1-5]"} }?</pre>
<pre>code-point-attributes &= attribute kGB0 { xsd:string {pattern="[0-9A-F]{4}"} }?</pre>
<pre>code-point-attributes &= attribute kGB1 { xsd:string {pattern="[0-9A-F]{4}"} }?</pre>
<pre>code-point-attributes &= attribute kGB3 { xsd:string {pattern="[0-9A-F]{4}"} }?</pre>
<pre>code-point-attributes &= attribute kGB5 { xsd:string {pattern="[0-9A-F]{4}"} }?</pre>
<pre>code-point-attributes &= attribute kGB7 { xsd:string {pattern="[0-9A-F]{4}"} }?</pre>
<pre>code-point-attributes &= attribute kGB8 { xsd:string {pattern="[0-9]{4}"} }?</pre>
<pre>code-point-attributes &= attribute kGradeLevel { xsd:string {pattern="[1-6]"} }?</pre>
<pre>code-point-attributes &= attribute kGSR { list { xsd:string {pattern="[0-9]{4}[a-vx-z]'*"} +}}?</pre>
code-point-attributes &= attribute kHangul { text }?
code-point-attributes &= attribute kHanYu { list { xsd:string {pattern="[1-8][0-9]{4}\.[0-9]{2}[0-3]"} +}}?
code-point-attributes &= attribute kHanyuPinlu { list { xsd:string {pattern="[a-z\x{300}-\x{302}\x{304}\x{308}\x{30C}]+\([0-9]+\)"} +}?
code-point-attributes &= attribute kHanyuPinyin { list { xsd:string {pattern="([0-9]{5}\.[0-9]{2}0,)*[0-9]{5}\.[0-9]{2}0:([a-z\x{300}-\x{302}\x{304}\x{308}\x{30C}]+,)*[a-z\x{300}-\x{302}\x{304}\x{308}\x{30C}]+
code-point-attributes &= attribute kHDZRadBreak { xsd:string {pattern="[一-龠]\[U\+2?[0-9A-F]{4}\]:[1-8][0-9]{4}\.[0-9]{2}[012]"} }?
<pre>code-point-attributes &= attribute kHKGlyph { list { xsd:string {pattern="[0-9]{4}"} +}}?</pre>
<pre>code-point-attributes &= attribute kHKSCS { xsd:string {pattern="[0-9A-F]{4}"} }?</pre>
<pre>code-point-attributes &= attribute kIBMJapan { xsd:string {pattern="F[ABC][0-9A-F]{2}"} }?</pre>
<pre>code-point-attributes &= attribute kIICore { xsd:string {pattern="[1-9]\.[1-9]"} xsd:string {pattern="[ABC][GHJKMPT]{1,7}"} }?</pre>
code-point-attributes &= attribute kIRGDaeJaweon { xsd:string {pattern="([0-9]{4}\.[0-9]{2}[01]) (0000\.555)"} }?
<pre>code-point-attributes &= attribute kIRGDaiKanwaZiten { xsd:string {pattern="[0-9]{5}'?"} }?</pre>

- { text }?
- code-point-attributes &= attribute kDefinition
- code-point-attributes &= attribute kDaeJaweon
 { xsd:string {pattern="[0-9]{4}\.[0-9]{2}[0158]"} }?
- code-point-attributes &= attribute kCowles
 { list { xsd:string {pattern="[0-9]{1,4}(\.[0-9]{1,2})?"} +}}?
- code-point-attributes &= attribute kCompatibilityVariant
 { "" | xsd:string {pattern="U\+2?[0-9A-F]{4}"} }?
- code-point-attributes &= attribute kCihaiT
 { list { xsd:string {pattern="[1-9][0-9]{0,3}\.[0-9]{3}"} +}}?
- code-point-attributes &= attribute kCheungBauerIndex
 { list { xsd:string {pattern="[0-9]{3}\.[0-9]{2}"} +}}?
- { text }?
- code-point-attributes &= attribute kCheungBauer
- code-point-attributes &= attribute kCantonese
 { list { xsd:string {pattern="[a-z]+[1-6]"} +}}?
- code-point-attributes &= attribute kCangjie
 { xsd:string {pattern="[A-Z]+"} }?

7/15/24, 1:53 PM

- code-point-attributes &= attribute kCNS1992 { xsd:string {pattern="[123]-[0-9A-F]{4}"} }?
- UAX #42: Unicode Character Database in XML

code-point-attributes &= attribute kIRGKangXi

{ xsd:string {pattern="[01][0-9]{3}\.[0-7][0-9][01]"} }?

xsd:string {pattern="G9-[0-9A-F]{4,8}"}
xsd:string {pattern="G9-[0-9A-F]{4,8}"} Xs0:string {pattern="G4-[0-9A-F]{4}"}
xsd:string {pattern="G4K-[0-9A-F]{5}"}
xsd:string {pattern="G4K-[0-9A-F]{5}"}
xsd:string {pattern="G8K"}
xsd:string {pattern="G6K-[0-9]{4}\.[0-9]{2}"}
xsd:string {pattern="GCE-[0-9]{3}"}
xsd:string {pattern="GCH"}
xsd:string {pattern="GCH"} xsd:string {pattern="GCH-[0-9]{4}\.[0-9]{2}"} xsd:string {pattern="GCY"}
xsd:string {pattern="GCY-[0-9]{4}\.[0-9]{2}"} xsd:string {pattern="G(Y-[0-9]{4}\.[0-9]{2}"}
xsd:string {pattern="G(Y-[0-9]{5}")
xsd:string {pattern="GOP-[0-9]{5}"}
xsd:string {pattern="GOZ-[0-9]{4}\.[0-9]{2}"}
xsd:string {pattern="GFZ-[0-9]{4}"}
xsd:string {pattern="GFZ"}
xsd:string {pattern="GFZ"} xsd:string {pattern="GFZ-[0-9A-F]{4,5}"}
xsd:string {pattern="GGFZ-[0-9]{6}"} xsd:string {pattern="GGFZ-[0-9]{6}"}
xsd:string {pattern="GGH-[0-9]{4}\.[0-9]{2}"}
xsd:string {pattern="GHC-[0-9]{4}\.[0-9]{2}"}
xsd:string {pattern="GHC-[0-9]{4}\.[0-9]{2}"}
xsd:string {pattern="GHZ-[0-9]{4}"}
xsd:string {pattern="GHZ-[0-9]{5}\.[0-9]{2}"}
xsd:string {pattern="GHZ-[0-9]{5}\.[0-9]{2}"}
xsd:string {pattern="GIDC-[0-9]{3}"}
xsd:string {pattern="GIDC2-[0-9]{3}"} {Pattern= GIDD={0-9A-F}{4} } xsd:string {pattern="GID223-[0-9]{3}"} xsd:string {pattern="GIZ-[0-9]{5}"} xsd:string {pattern="GK7-[0-9A-F]{4}"} xsd:string {pattern="GK7-[0-9]{4}\.[0-9]{2,3}"} xsd:string {pattern="GK7-[0-9]{4}\.[0-9]{2,3}"} xsd:string {pattern="GLK-[0-9]{7}"}
xsd:string {pattern="GOCD-[0-9]{3}" xsd:string {pattern="GOCD-[0-9]{3}"} xsd:string {pattern="GFGLG-[0-9]{4}"} xsd:string {pattern="GFM-[0-9]{4}"} xsd:string {pattern="GT-[0-9A-F]{4}"} xsd:string {pattern="GU-[0-9A-F]{5}"} xsd:string {pattern="GWZ-[0-9]{4}\.[0-9]{2}"} xsd:string {pattern="GXZ-[0-9]{4}\.[0-9]{2}"} xsd:string {pattern="GXL-[0-9]{4}\.[0-9]{2}"} xsd:string {pattern="GXH-[0-9]{3}"} xsd:string {pattern="GXH-[0-9]{5}"} xsd:string {pattern="GXH-[0-9]{7}"} Xs0:string {pattern= 0Ar-[0-9]{3} }
xs0:string {pattern="GZ4-[0-9]{7}"}
xs0:string {pattern="GZ4-[0-9]{6}"}
xs0:string {pattern="GZFY-[0-9]{5}"}
xs0:string {pattern="GZH_[0-9]{4}, [0-9]{2}"}
xs0:string {pattern="GZUW-[0-9]{5}"}
xs0:string {pattern="GZYS-[0-9]{5}"} }? xsd:string {pattern="H-[0-9A-F][4}"} xsd:string {pattern="H3-[0-9A-F]{4}"} xsd:string {pattern="HB0-[0-9A-F]{4}"} xsd:string {pattern="HB1-[0-9A-F]{4}"} xsd:string {pattern="HD2-[0-9A-F]{4}"} xsd:string {pattern="HD-[23]?[0-9A-F]{4}"} xsd:string {pattern="HU-[0-9A-F]{5}"} }? t-attributes &= attribute kIRG_JSource xsd:string {pattern="(0|1|3|(3A)|4|A|(ARIB)|K)-[0-9A-F]{4,5}"} xsd:string {pattern="J0-[0-9A-F]{4}"} xsd:string {pattern="J1-[0-9A-F]{4}"} xsd:string {pattern="J3-[0-9A-F]{4}"} xsd:string {pattern="JA-[0-9A-F]{4}"} xsd:string {pattern=[JA-[0-9A-F]{4}"} x code-point-attributes &= attribute kIRG_JSource code-point-attributes &= attribute kIRG_KPSource xd:string {pattern="KP0-[0-9A-F]{4}"} xsd:string {pattern="KP1-[0-9A-F]{4}"} xsd:string {pattern="KP1-[0-9A-F]{4}"} code-point-attributes &= attribute kIRG_KSource t-attributes &= attribute kIRG_KSource
xsd:string {pattern="((0|1|2|3|4|5)-[0-9A-F]{4})|(KZ[0-9]{6})"}
xsd:string {pattern="K0-[0-9A-F]{4}"}
xsd:string {pattern="K1-[0-9A-F]{4}"}
xsd:string {pattern="K2-[0-9A-F]{4}"}
xsd:string {pattern="K3-[0-9A-F]{4}"}
xsd:string {pattern="K3-[0-9A-F]{4}"}
xsd:string {pattern="K3-[0-9A-F]{4}"}
xsd:string {pattern="K3-[0-9A-F]{4}"}
xsd:string {pattern="K3-[0-9A-F]{4}"}
xsd:string {pattern="K5-[0-9A-F]{4}"}
xsd:string {pattern="K6-[0-9A-F]{4}"}
xsd:string {pattern="K6-[0-9A-F]{4}"} xsd:string {pattern="KU-[0-9A-F]{5}"} }?

code-point-attributes &= attribute kIRG_MSource
<pre>{ "" xsd:string {pattern="MAC[0-9]{5}"}</pre>
<pre>xsd:string {pattern="MAC-[0-9]{5}"}</pre>
<pre>xsd:string {pattern="MA-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="MB1-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="MB2-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="MC-[0-9]{5}"}</pre>
<pre>xsd:string {pattern="MD-[0-9A-F]{4,5}"}</pre>
<pre>xsd:string {pattern="MDH-[0-9A-F]{4,5}"}</pre>
}?

code-point-attributes &= attribute kIRG_SSource
 { "" | xsd:string {pattern="SAT-[0-9]{5}"} }?

{ "" xsd:string {pattern="SAT-[0-9]{5}"} }?
code-point-attributes &= attribute kIRG_TSource
$\{ "" \mid xsd \cdot string \{ nattern="1-[0-9A-F] \{ 4 \} " \}$
xsd:string {pattern="2-[0-9A-F]{4}"} xsd:string {pattern="3-[0-9A-F]{4}"}
<pre>xsd:string {pattern="3-[0-9A-F]{4}"} xsd:string {pattern="4-[0-9A-F]{4}"}</pre>
xsd:string {pattern="5-[0-9A-F]{4}"}
<pre>xsd:string {pattern="6-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="7-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="F-[0-9A-F]{4}"} vsd.string {pattern="F-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="C-[0-9A-F]{4}"} xsd:string {pattern="D_[0-9A-F]{4}"}</pre>
xd:string {pattern="D-[0-9A-F]{4}"} xsd:string {pattern="E-[0-9A-F]{4}"}
xsd:string {pattern="T1-[0-9A-F]{4}"}
<pre>xsd:string {pattern="T2-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="T3-[0-9A-F]{4}"} xsd:string {pattern="T4-[0-9A-F]{4}"}</pre>
xsd:string {pattern="T5-[0-9A-F]{4}"}
<pre>xsd:string {pattern="T6-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="T7-[0-9A-F]{4}"} xsd:string {pattern="T7-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="T12-[0-9A-F]{4}"} xsd:string {pattern="T13-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="TA-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="TB-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="TC-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="TD-[0-9A-F]{4}"} xsd:string {pattern="TE-[0-9A-F]{4}"}</pre>
xsd:string {pattern="TF-[0-9A-F]{4}"}
<pre>xsd:string {pattern="TU-[0-9A-F]{5}"} }?</pre>
<pre>code-point-attributes &= attribute kIRG_USource { "" xsd:string {pattern="(U\+2?[0-9A-F]{4}) (UTC[0-9]{5})"}</pre>
xsd:string {pattern="UTC-[0-9]{5}"}
<pre>xsd:string {pattern="UCI-[0-9]{5}"}</pre>
<pre>xsd:string {pattern="USAT-[0-9]{5}"} }?</pre>
code-point-attributes &= attribute kIRG_UKSource
{ "" xsd:string {pattern="UK-[0-9]{5}"} }?
code-point-attributes &= attribute kIRG_VSource
<pre>{ "" xsd:string {pattern="(0 1 2 3 4)-[0-9A-F]{4}"} xsd:string {pattern="V0-[0-9A-F]{4}"}</pre>
<pre>xsd:string {pattern="V1-[0-9A-F]{4}"}</pre>
xd:string {pattern="V2-[0-9A-F]{4}"} xsd:string {pattern="V3-[0-9A-F]{4}"}
<pre>xsd:string {pattern="V3-[0-9A-F]{4}"}</pre>
<pre> xsd:string {pattern="V4-[0-9A-F]{4}"} xsd:string {pattern="VN-[0-9A-F]{5}"}</pre>
xsd:string {pattern="VU-[0-9A-F]{4,5}"} }?
code-point-attributes &= attribute kJa
<pre>{ xsd:string {pattern="[0-9A-F]{4}S?"} }?</pre>
code-point-attributes &= attribute kJapanese
{ list { xsd:string {pattern="[ぁ-ゖ゚ァ-ヺー]+"} +}}?
code-point-attributes &= attribute kJHJ
{ text }?
code-point-attributes &= attribute kJinmeiyoKanji
{ xsd:string {pattern="(20[0-9]{2})(:U\+2?[0-9A-F]{4})?"} }?
<pre>code-point-attributes &= attribute kJoyoKanji { xsd:string {pattern="(20[0-9]{2}) (U\+2?[0-9A-F]{4})?"} }?</pre>
{ XSU.Stifling {partern= (20[0-5]{2}) (0(#2:[0-5A-F]{4}): } }:
code-point-attributes &= attribute kKoreanEducationHanja
{ xsd:string {pattern="(20[0-9]{2})"} }?
code-point-attributes &= attribute kKoreanName
{ xsd:string {pattern="(20[0-9]{2})(:U\+2?[0-9A-F]{4})*"} }?
code-point-attributes &= attribute kTGH
<pre>{ xsd:string {pattern="20[0-9]{2}:[1-9][0-9]{0,3}"} }?</pre>
code-point-attributes &= attribute kJIS0213
{ xsd:string {pattern="[12],[0-9]{2},[0-9]{1,2}"} }?
<pre>code-point-attributes &= attribute kJapaneseKun { list { xsd:string {pattern="[A-Z]+"}+ } }?</pre>
code-point-attributes &= attribute kJapaneseOn
<pre>{ list { xsd:string {pattern="[A-Z]+"}+ } }?</pre>
code-point-attributes &= attribute kJis0
{ xsd:string {pattern="[0-9]{4}"} }?
code-point-attributes &= attribute kJis1
<pre>{ xsd:string {pattern="[0-9]{4}"} }?</pre>
code-point-attributes &= attribute kKPS0
<pre>{ xsd:string {pattern="[0-9A-F]{4}"} }?</pre>

code-point-attributes &= attribute kKPS1
{ xsd:string {pattern="[0-9A-F]{4}"} }?

code-point-attributes &= attribute kTraditionalVariant

code-point-attributes &= attribute kTotalStrokes { list { xsd:string {pattern="[1-9][0-9]{0,2}"} +}}?

code-point-attributes &= attribute kTGHZ2013 { text }?

code-point-attributes &= attribute kTang { list { xsd:string {pattern="*?[A-Za-z\(\)aaae\x{300}\x{30C}]+"} +}}?

code-point-attributes &= attribute kTaiwanTelegraph { list { xsd:string {pattern="[0-9]{4}"} +}}

code-point-attributes &= attribute kSpoofingVariant
{ list { xsd:string {pattern="U\+[0-9A-F]{4,5}"} + }}?

{ list { xsd:string {pattern="U\+[0-9A-F]{4,5}(<[ks][A-Za-z0-9]+(:[TBZJF]+)?(,[ks][A-Za-z0-9]+(:[TBZJF]+)?)*)?"} +}?

code-point-attributes &= attribute kSpecializedSemanticVariant

code-point-attributes &= attribute kSMSZD2003Readings $\{ list \{ xsd:string \{pattern="[a-z]x\{300\}-x\{302,x+x\}-x\{302}-x\{302)-x\{302}-x\{302)-x\{302}-x(x+x)-x($

code-point-attributes &= attribute kSMSZD2003Index { list { xsd:string {pattern="[0-9]{1,3}\.[0-9]{2}"} +}}?

 $\label{eq:code-point-attributes &= attribute kSimplifiedVariant $ list { xsd:string {pattern="U\+[0-9A-F]{4,5}"} +}? $ }$

{ list { xsd:string {pattern="U\+[0-9A-F]{4,5}(<[ks][A-Za-z0-9]+(:[TBZJF]+)?(,[ks][A-Za-z0-9]+(:[TBZJF]+)?)*)?"} +}}?

{ list { xsd:string {pattern="[0-9]{3}\.[0-9]{2}"} +}}?

code-point-attributes &= attribute kSBGY

code-point-attributes &= attribute kRSUnicode { list { xsd:string {pattern=" $[0-9]{1,3}'{0,3}...?[0-9]{1,2}"} +}}?$

code-point-attributes &= attribute kRSMerged { text }?

code-point-attributes &= attribute kSemanticVariant

code-point-attributes &= attribute kRSKorean
{ xsd:string {pattern="[0-9]{1,3}\.[0-9]{1,2}"} }?

code-point-attributes &= attribute kRSKangXi { xsd:string {pattern="[0-9]{1,3}\.\-?[0-9]{1,2}"} }?

code-point-attributes &= attribute kRSKanWa { xsd:string {pattern="[0-9]{1,3}\.[0-9]{1,2}"} }?

code-point-attributes &= attribute kRSJapanese
{ xsd:string {pattern="[0-9]{1,3}\.[0-9]{1,2}"} }?

code-point-attributes &= attribute kRSAdobe_Japan1_6 { list { xsd:string {pattern="[CV]\+[0-9]{1,5}\+[1-9][0-9]{0,2}\.[1-9][0-9]?\.[0-9]{1,2}"} +}?

code-point-attributes &= attribute kPseudoGB1 { xsd:string {pattern="[0-9]{4}"} }?

code-point-attributes &= attribute kPrimaryNumeric { list { xsd:string {pattern="[0-9]+"} +}}?

code-point-attributes &= attribute kPhonetic { list { xsd:string {pattern="[1-9][0-9]{0,3}[A-Dx]?*?"} +}}?

code-point-attributes &= attribute kOtherNumeric { list { xsd:string {pattern="[0-9]+"} +}}?

code-point-attributes &= attribute kNelson
{ list { xsd:string {pattern="[0-9]{4}"} +}}?

code-point-attributes &= attribute kMorohashi { list { xsd:string {pattern="([0-9]{5}'{0,2}|H[0-9]{3})(:(FE0[01]|E010[0-9A-F]))?"} +}}?

code-point-attributes &= attribute kMojiJoho { list { xsd:string {pattern="MJ[0-9]{6}(:(FE0[01]|E01[01][0-9A-F]))?"} +}}?

code-point-attributes &= attribute kMeyerWempe
{ list { xsd:string {pattern="[1-9][0-9]{0,3}[a-t*]?"} +}}?

{ xsd:string {pattern="[0-9]{1,4}(a|\.5)?"} }?

code-point-attributes &= attribute kMatthews

{ xsd:string {pattern="[0-9]{4}"} }?

code-point-attributes &= attribute kMainlandTelegraph

{ list { xsd:string {pattern="[1-9][0-9]{0,3}"} +}}?

code-point-attributes &= attribute kLau

{ list { xsd:string {pattern="[A-Z]+"} +}}?

code-point-attributes &= attribute kKorean

{ xsd:string {pattern="[1-9][0-9]{0,3}[A*]?"} }?

code-point-attributes &= attribute kKarlgren

{ list { xsd:string {pattern="[0-9]{4}\.[0-9]{2}[01]"} +}}?

code-point-attributes &= attribute kKangXi

code-point-attributes &= attribute kKSC0 { xsd:string {pattern="[0-9]{4}"} }?

7/15/24 1:53 PM

code-point-attributes &= attribute kUnihanCore2020
{ xsd:string {pattern="G?H?J?K?M?P?T?"} }?

code-point-attributes &= attribute kVietnamese

{ list { xsd:string {pattern="U\+[0-9A-F]{4,5}"} +}}?

{ list { xsd:string {pattern="[A-Za-zà-u'x{300}-\x{306}\x{309}\x{31b}\x{323}a-y]+"} +}}?

code-point-attributes &= attribute kVietnameseNumeric
{ xsd:string {pattern="[0-9]+"} }?

code-point-attributes &= attribute kXerox
 { xsd:string {pattern="[0-9]{3}:[0-9]{3}"} }?

code-point-attributes &= attribute kXHC1983
{ list { xsd:string {pattern="[0-9,.*]+:[a-zů]+"} +}} ?

code-point-attributes &= attribute kZhuang { list { xsd:string {pattern="[a-z]+*?"} +}}?

code-point-attributes &= attribute kZhuangNumeric
{ xsd:string {pattern="[0-9]+"} }?

code-point-attributes &= attribute kZVariant
{ list { xsd:string {pattern="U\+[23]?[0-9A-F]{4}((<[ks][A-Za-z0-9]+(:[TBZ]+)?(,[ks][A-Za-z0-9]+(:[TBZ]+)?)*)|(:k[A-Za-z]+))?"} +} ?</pre>

4.4.24 Tangut data

[Tangut data, 51] =

The Tangut data are represented as attributes.

```
code-point-attributes &= attribute kRSTUnicode
{ xsd:string {pattern="[0-9]+\.[0-9]+"} }?
code-point-attributes &= attribute kTGT_MergedSrc
{ xsd:string {pattern="L2006-[0-9]{4,5}(-[0-9]{4,5})?"}
| xsd:string {pattern="L1997-[0-9]{4}"}
| xsd:string {pattern="L1997-[0-9]{4}"}
| xsd:string {pattern="L1986-[0-9]{4}"}
| xsd:string {pattern="L1986-[0-9]{4}"}
| xsd:string {pattern="L1986-[0-9]{4}"}
| xsd:string {pattern="L1966-[0-9]{3}(-[0-9A-Z]{3,4})?"}
| xsd:string {pattern="L2004-[A-Z]-[0-9]{4}"}
| xsd:string {pattern="L2012-[0-9]{4}"}
| xsd:string {pattern="L2012-[0-9]{4}"}
| xsd:string {pattern="L2012-[0-9]{4}"}
| xsd:string {pattern="L2012-[0-9]{3}"}
]?
```

4.4.25 Nushu data

The Nushu data are represented as attributes.

```
[Nushu data, 52] =
code-point-attributes &= attribute kSrc_NushuDuben
{ xsd:string {pattern="[0-9]+\.[0-9]+"} }?
```

code-point-attributes &= attribute kReading
{ xsd:string }?

4.4.26 Emoji properties

The Emoji properties are represented as attributes.

[Emoji properties, 53] =

```
code-point-attributes &= attribute Emoji { boolean }?
code-point-attributes &= attribute EPres { boolean }?
code-point-attributes &= attribute EMod { boolean }?
code-point-attributes &= attribute EEase { boolean }?
code-point-attributes &= attribute EComp { boolean }?
code-point-attributes &= attribute ExtPict { boolean }?
```

5 Blocks

The blocks child of the ucd describes the blocks. It has one child block element per block, with attributes to describe the extent and name of the block.

```
[blocks, 54] =
ucd.content &=
element blocks {
    element block {
        attribute first-cp { single-code-point },
        attribute last-cp { single-code-point },
        attribute name { text }} + }?
```

6 Named Sequences

The named-sequences child of the ucd describes the named sequences. It has one child named-sequence element per named sequence, with attributes to describe the name and sequence.

Similarly, the provisional-named-sequences child of the ucd describes the provisional named sequences.

```
[named sequences, 55] =
  ucd.content &=
    element named-sequences {
      element named-sequence {
        attribute cps { one-or-more-code-points },
        attribute name { text }} + }?
```

ucd.content &=

element provisional-named-sequences { element named-sequence {
 attribute cps { one-or-more-code-points },
 attribute name { text }} + }?

7 Normalization Corrections

The normalization-corrections child of the ucd describes the normalization corrections. It has one child normalization-correction element per correction, with attributes to describe the code point affected, its old normalization, its new normalization and the version of Unicode in which the correction was made.

```
[normalization corrections. 56] =
   ucd.content &=
      element normalization-corrections {
        element normalization-correction ·
           attribute of { single-code-point },
attribute old { one-or-more-code-points },
attribute new { one-or-more-code-points },
           attribute version { text }} + }?
```

8 Standardized Variants

The standardized-variants child of the ucd describes the standardized variant. It has one child element standardized-variant per variant. The attributes on that last element capture the variation sequence, the description of the desired appearance, and the shaping environment under which the appearance is different.

```
[standardized variants, 57] =
   ucd.content &=
     element standardized-variants {
        element standardized-variant {
           attribute cps { two-code-points },
attribute desc { text },
attribute when { text }} + }?
```

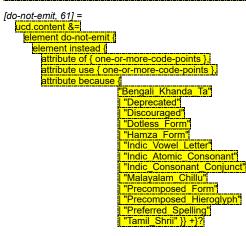
9 CJK Radicals

The cjk-radicals child of the ucd describes the CJK radicals. It has one child element cjk-radical per radical. The attributes on that last element capture the radical number, the corresponding CJK radical character, and the corresponding CJK unified ideograph.

[cjk radicals, 58] =

```
ucd.content &=
  element cjk-radicals {
      element cjk-radical {
         attribute number { xsd:string {pattern="[0-9]{1,3}'{0,3}"}},
attribute radical { single-code-point? },
attribute ideograph { single-code-point }} + }?
```

10 Emoji sources


The emoji-sources child of the ucd describes the emoji sources.

```
[datatype for code points, 59] =
   jis-code-point = xsd:string { pattern = "[0-9A-F]{4}" }
[emoji sources, 60] =
   ucd.content &=
      element emoji-sources {
         ellement emoji-source {
    attribute unicode { one-or-more-code-points },
    attribute docomo { jis-code-point? },
    attribute kddi { jis-code-point? },
```

attribute softbank { jis-code-point? } } + }?

11 Do Not Emit

The do-not-emit child of the ucd describes the character sequences that should not be emitted or generated in newly authored texts.

12 The full schema

Our schema is just the accumulation of the pieces we have described so far:

```
[UCD RelaxNG schema, 62] =
       [namespace declaration: 1]
       [datatypes: 2, 3, 12, 59]
       [schema start: 4]
       [boolean type: 5]
       [description: 6]
       [repertoire: 7, 8, 9, 10]
       attributes: 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50]
       [Tangut data: 51]
       [Nushu data: 52]
       [blocks: 54]
       [named sequences: 55]
       [normalization corrections: 56]
       [standardized variants: 57]
       [cjk radicals: 58]
       [emoji sources: 60]
       [Emoji properties: 53]
```

An expanded version is linked from the top of this document.

13 Examples

[do-not-emit: 61]

Here is a fragment of the UCD for a few representative characters (only some of the properties are represented):

```
<ucd xmlns="http://www.unicode.org/ns/2003/ucd/1.0">
```

```
<repertoire>
```

<char cp="001F" age="1.1" na="<control>" na1="UNIT SEPARATOR" gc="Cc" bc="S" lb="CM"/>

<char cp="0020" age="1.1" na="SPACE" gc="Zs" bc="WS" ea="Na" lb="SP"/>

<char cp="0026" age="1.1" na="AMPERSAND" gc="Po" bc="ON" ea="Na"/>

<char cp="0028" age="1.1" na="LEFT PARENTHESIS" na1="OPENING PARENTHESIS" gc="Ps" bc="ON" Bidi_M="y" bmg="0029" ea="Na" lb="OP"/>

<char cp="0041" age="1.1" na="LATIN CAPITAL LETTER A" gc="Lu" slc="0061" ea="Na" sc="Latn"/>

<char cp="AC00" age="2.0" na="HANGUL SYLLABLE GA" gc="Lo" dt="can" dm="1100 1161" ea="W" lb="ID" sc="Hang"/>

```
<char cp="20094" age="3.1" na="CJK UNIFIED IDEOGRAPH-20094"
gc="Lo" ea="W" lb="ID" sc="Hani" kIRG_GSource="KX"
kIRGHanyuDaZidian="10036.060" kIRG_TSource="5-214E"
kRSUnicode="4.3" kIRGKangXi="0082.090"/>
```

```
<group age="3.2" gc="Lo" sc="Buhd">
<char cp="1740" na="BUHID LETTER A"/>
<char cp="1741" na="BUHID LETTER I"/>
<char cp="1752" na="BUHID VOWEL SIGN I" gc="Mn"/>
<char cp="1820" age="3.0" na="MONGOLIAN LETTER A" sc="Mong"/>
</group>
```

</repertoire> </ucd>

Acknowledgments

Thanks to Markus Scherer and Mark Davis for their help developing this XML representation. Thanks to the reviewers: Julie Allen, Ernest van den Boogaard, Daniel Bünzli, John Cowan, Asmus Freytag, Felix Sasaki, Andrew West.

Modifications

This section indicates the changes introduced by each revision.

Revision 35

- New value for the age attribute: 16.0.
- New values for the blk attribute: Egyptian_Hieroglyphs_Ext_A, Garay, Gurung_Khema, Kirat_Rai, Myanmar_Ext_C, Ol_Onal, Sunuwar, Symbols_for_Legacy_Computing_Sup, Todhri, Tulu_Tigalari.
- New values for the script attribute: Gara, Gukh, Krai, Onao, Sunu, Todr, Tutg.
- New value for the InSC attribute: Reordering_Killer.
- New attributes: MCM, kFanqie, kZhuang.
- Modified patterns for the cjk-radical/@number, kRSUnicode and kIRG_GSource attributes.
- Added the do-not-emit element.

Revision 34

- New value for the age attribute: 15.1.
- New value for the blk attribute: CJK_Ext_I.

- New values for the 1b attribute: $\ensuremath{\mathsf{AK}}$, $\ensuremath{\mathsf{AP}}$, $\ensuremath{\mathsf{AS}}$, $\ensuremath{\mathsf{VF}}$, $\ensuremath{\mathsf{VI}}$.
- Modified values for the number, radical attributes of the cjk-radical element.
- Changed single value into list for the nv code point attribute.
- New code point attributes: ID_Compat_Math_Continue, ID_Compat_Math_Start, IDSU, NFKC_SCF, InCB.
- Modified patterns for the kBigFive, kIRG_GSource, kMorohashi, kRSUnicode attributes.
- Changed single values into lists for the kMorohashi, kPrimaryNumeric Unihan attributes.
- New Unihan attributes: kJapanese, kMojiJoho, kSMSZD2003Index, kSMSZD2003Readings, kVietnameseNumeric, kZhuangNumeric.

Revision 33 being a proposed update, only changes between revisions 32 and 34 are noted here.

Revision 32

- New value for the age attribute: 15.0.
- New values for the blk attribute: Arabic_Ext_C, CJK_Ext_H, Cyrillic_Ext_D, Devanagari_Ext_A, Kaktovik_Numerals, Kawi, Nag_Mundari.
- New values for the script attribute: Kawi, Nagm.
- New Unihan attribute: kAlternateTotalStrokes.
- Modified patterns for the kIRG_GSource, kIRG_HSource, kIRG_TSource, kSemanticVariant, kSpecializedSemanticVariant, kZVariant attributes.

Revision 31 being a proposed update, only changes between revisions 30 and 32 are noted here.

Revision 30

- New value for the age attribute: 14.0.
- New values for the blk attribute: Arabic_Ext_B, Cypro_Minoan, Ethiopic_Ext_B, Kana_Ext_B, Latin_Ext_F, Latin_Ext_G, Old_Uyghur, Tangsa, Toto, UCAS_Ext_A, Vithkuqi, Znamenny_Music.
- New values for the script attribute: Cpmn, Ougr, Tnsa, Toto, Vith.
- New values for the jg attribute: Thin_Yeh, Vertical_Tail.
- New Unihan attribute: kStrange.
- Modified patterns for the kIRG_GSource, kIRG_MSource, kIRG_VSource, kPhonetic, kSpoofingVariant attributes.

• Removal of the kwubi attribute, which has never been present in released versions of the UCD.

Revision 29 being a proposed update, only changes between revisions 28 and 30 are noted here.

Revision 28

- New value for the age attribute: 13.0.
- New values for the blk attribute: Chorasmian, CJK_Ext_G, Dives_Akuru, Khitan_Small_Script, Lisu_Sup, Symbols_For_Legacy_Computing, Tangut_Sup, Yezidi.
- New values for the script attribute: Chrs, Diak, Kits, Yezi.
- New value for the InPC attribute: Top_And_Bottom_And_Left.
- New Unihan attributes kSpoofingVariant, kUnihanCore2020, kIRG_SSource, kIRG_UKSource, kTGHZ2013.
- New Emoji attributes Emoji, EPres, EMod, EBase, EComp, ExtPict.
- Modified patterns for the kIRG_GSource, kIRG_HSource, kIRG_KPSource, kIRG_KSource, kIRG_TSource, kKangXi, kSemanticVariant, kSimplifiedVariant, kSpecializedSemanticVariant, kTraditionalVariant attributes.

Revision 27 being a proposed update, only changes between revisions 26 and 28 are noted here.

Revision 26

• New value for the age attribute: 12.1.

Revision 25

- New value for the age attribute: 12.0.
- New values for the script attribute: Elym, Hmnp, Nand, Wcho.
- New values for the blk attribute: Egyptian_Hieroglyph_Format_Controls, Elymaic, Nandinagari, Nyiakeng_Puachue_Hmong, Ottoman_Siyaq_Numbers, Small_Kana_Ext, Symbols_And_Pictographs_Ext_A, Tamil_Sup, Wancho.
- Modified patterns for the kIRG_GSource, kIRG_KSource, kIRG_TSource, kTaiwanTelegraph attributes.

Revision 24 being a proposed update, only changes between revisions 23 and 25 are noted here.

Revision 23

- New value for the age attribute: 11.0.
- New Values for the blk attribute: Chess_Symbols, Dogra, Georgian_Ext, Gunjala_Gondi, Hanifi_Rohingya, Indic_Siyaq_Numbers, Makasar, Mayan_Numerals, Medefaidrin, Old_Sogdian, Sogdian.
- New values for the script attribute: Dogr, Gong, Maka, Medf, Rohg, Sogd, Sogo.
- New values for the jg attribute: Hanifi_Rohingya_Kinna_Ya, Hanifi_Rohingya_Pa.

- New value for the wb attribute: WSegSpace.
- New values for the InSC attribute: Consonant_Initial_Postfixed.
- New attributes: EqUIdeo, kJinmeiyoKanji, kJoyoKanji, kKoreanEducationHanja, kKoreanName, kTGH.
- Modified patterns for the kTGT_MergedSrc attribute.
- Modified patterns for the kIRG_GSource, kIRG_HSource and kIRG_VSource attributes.

Revision 22 being a proposed update, only changes between revisions 21 and 23 are noted here.

Revision 21

- New value for the age attribute: 10.0.
- New values for the blk attribute: CJK_Ext_F, Kana_Ext_A, Masaram_Gondi, Nushu, Soyombo, Syriac_Sup, Zanabazar_Square.
- New values for the sc attribute: Gonm, Nshu, Soyo, Zanb.
- New values for the jg attribute: Malayalam_Nga, Malayalam_Ja, Malayalam_Nya, Malayalam_Tta, Malayalam_Nna, Malayalam_Nna, Malayalam_Bha, Malayalam_Ra, Malayalam_Lla, Malayalam_Lla, Malayalam_Lla, Malayalam_Ssa.
- New value for the InPC attribute: Bottom_And_Left.
- Modified patterns for the kIRG_GSource, kIRG_JSource, kIRG_KSource attributes.
- New code point attributes: vo, RI
- New code point attributes for Nushu data: kSrc_NushuDuben and kReading.

Revision 20 being a proposed update, only changes between revisions 19 and 21 are noted here.

Revision 19

- New value for the age attribute: 9.0.
- New values for the sc attribute: Adlm, Bhks, Marc, Newa, Osge, Tang.
- New values for the blk attribute: Adlam, Bhaiksuki, Cyrillic_Ext_C, Glagolitic_Sup, Ideographic_Symbols, Marchen, Mongolian_Sup, Newa, Osage, Tangut, Tangut_Components.
- New values for the gcb attribute: EB, EBG, EM, GAZ, ZWJ.
- New values for the wb attribute: EB, EBG, EM, GAZ, ZWJ.
- New values for the 1b attribute: EB, EM, ZWJ.
- New values for the jg attribute: African_Feh, African_Noon, African_Qaf.
- New code point attributes: PCM, kRSTUnicode and kTGT_MergedSrc.
- Modified patterns for the kRSUnicode, kRSKangXi, kMandarin, kIRG_JSource, kIRG_USource and kFennIndex attributes.

Revision 18 being a proposed update, only changes between revisions 17 and 19 are noted here.

Revision 17

- New value for the age attribute: 8.0.
- New values for the sc attribute: Ahom, Hatr, Hluw, Hung, Mult, Sgnw.
- New values for the blk attribute: Ahom, Anatolian_Hieroglyphs, Cherokee_Sup, CJK_Ext_E, Early_Dynastic_Cuneiform, Hatran, Multani, Old_Hungarian, Sup_Symbols_And_Pictographs, Sutton_SignWriting.
- New values for the InSC attribute: Consonant_Killer, Consonant_Prefixed, Consonant_With_Stacker, Syllable_Modifier.
- New code point attributes: InPC, kJa.
- New patterns for the kIRG_GSource attribute: GFC-, GGFZ-.
- Switched the reference to ISO 19757 from :2003 and :2003 Amd1 to :2008.

Revision 16 being a proposed update, only changes between revisions 15 and 17 are noted here.

Revision 15

- New value for the age attribute: 7.0.
- · New values for the jg attribute.
- New values for the sc attribute.
- New values for the blk attribute.
- New values for the Insc attribute.
- New values for the kIICore attribute.
- New values for the kIRG_GSource attribute.

Revision 14 being a proposed update, only changes between revisions 13 and 15 are noted here.

Revision 13

- New value for the age attribute: 6.3.
- New values ${\tt DQ,\,HL,\,SQ}$ for the ${\tt WB}$ attribute (for Unicode 6.3).
- New code point attributes bpt and bpb (for Unicode 6.3).
- New values for the bc attribute: LRI, RLI, FSI, PDI (for Unicode 6.3).
- Updated the patterns for kHanyuPinlu and kTotalStrokes (for Unicode 6.3).
- Updated the patterns for kIRG_HSource and kIRG_HSource (for Unicode 6.2).
- · Clarified that the child elements list-like elements are in no particular order.

Revision 12 being a proposed update, only changes between revisions 11 and 13 are noted here.

Revision 11

- New value for the age attribute: 6.2.
- New value for the gcb, wb and 1b attributes: RI (for Unicode 6.2).
- Updated the patterns for kIRG_GSource and kIRG_HSource (for Unicode 6.2).

Revision 10 being a proposed update, only changes between revisions 9 and 11 are noted here.

Revision 9

- Clarified the default values.
- · Indicate that property values may change from one release to the next.
- Introduced the blk attributes, for the Block property.
- Introduced the scx attribute, for the ScriptExtensions property.
- Introduced the name-alias element, for the Name_Alias property.
- New value for the age attribute: 6.1.
- New values for the script attribute: Cakm, Merc, Mero, Plrd, Shrd, Sora, Takr.
- New values for the 1b attribute: HL and CJ.
- New value for the jg attribute: Rohingya_Yeh.
- The value of the fc_nfkc attribute must now be either # or one-or-more-code-points.
- For the nv attribute, the absence of a numeric value is now represented by NaN rather than by the empty string.
- The values of the ccc are now restricted to 0..254, instead of 0..255.
- Updated the patterns for kSemanticVariant, kSpecializedSemanticVariant, kIRG_USource and kMandarin.

Revision 8 being a proposed update, only changes between revisions 7 and 9 are noted here.

Revision 7

- New value for the age attribute: 6.0.
- New value for the jg attribute: Teh_Marbuta_Goal
- New values for the script attribute: Batk, Brah, Mand.
- Updated the patterns for kIRG_GSource, kIRG_HSource, kIRG_JSource, kIRG_KSource, kIRG_MSource, kIRG_TSource, kIRG_VSource.
- Added the InSC and InMC elements.
- Added the emoji-sources element.

Revision 6 being a proposed update, only changes between revisions 5 and 7 are noted here.

Revision 5

- Changed the type of block/@first-cp, block/@last-cp and normalization-corrections/@cp from text to single-code-point
- Changed the type of named-sequence/@cps, provisional-named-sequences/@cps, normalization-correction/@old and normalization-correction/@new from text to
 one-or-more-code-points.
- Changed the type of standardized-variants/@cps from text to two-code-points.
- New values for the jg attribute: Farsi_Yeh and Nya.
- New value for the age attribute: 5.2.
- New values for the sc attribute: Lana, Tavt, Avst, Egyp, Samr, Lisu, Bamu, Java, Mtei, Armi, Sarb, Prti, Phli, Orkh, Kthi.
- New value for the 1b attribute: CP.
- New value for the sc attribute: Zinh.
- New code point attributes CI, Cased, CWCF, CWCM, CWL, CWKCF, CWT, CWU, NFKC_CF.
- New attributes kHanyuPinyin and kIRG_MSource.
- New element cjk-radicals

https://www.unicode.org/reports/tr42/tr42-35.html

UAX #42: Unicode Character Database in XML

- Updated the patterns for kIRG_GSource, kIRG_JSource, kIRG_KSource, kIRG_KSource, kIRG_TSource, kIRG_VSource, kHanyuPinlu, kMandarin, kSemanticVariant, kSpecializedSemanticVariant, kVietnamese, kZVariant.
- Point out that Relax NG schemas do not modify or augment the infoset, and that it is possible to convert mechanically our schema to other schema languages.

Revision 4 being a proposed update, only changes between revisions 3 and 5 are noted here.

Revision 3

- First approved version, for Unicode 5.1.0.
- For optional elements which acts as collections, such as repertoire and named-sequences, impose that there be at least one element in the collection.
- Remove the constraint that the value jg is limited when jt has certain values; similarly for bmg/Bidi_M and for nv/nt.
- Value NL added to the WB attribute (for Unicode 5.1).
- Value PP added to the GCB attribute (for Unicode 5.1).
- Corrected the vai script value to vaii.
- Removed the discussion of elements or attributes in different namespace.
- Removed the code-point element.

Revision 2

- Promoted to Draft UAX.
- Changed the title from "An XML representation of the UCD"
- Value 5.1 added to the age attribute (for Unicode 5.1).
- Value sm added to the gcb attribute (for Unicode 5.1).
- Values CR, Extend, LF, MB added to the WB attribute (for Unicode 5.1).
- Values CR, EX, LF, SC added to the SB attribute (for Unicode 5.1).
- Value Burushaski_Yeh_Barree added to the jg attribute (for Unicode 5.1).
- Value Alef_Maqsurah added to the jg attribute (for Unicode 2.x).
- Values Cari, Cham, Kali, Lepc, Lyci, Lydi, Olck, Rjng, Saur, Sund and Vai added to the sc attribute (for Unicode 5.0).
- jamo attribute renamed to JSN
- · sfc attribute renamed to scf
- Attribute kXHC1983 added (for Unicode 5.1.0).
- Pattern for attribute kIRG_USource extended (for Unicode 5.1.0).
- Element provisional-named-sequences added (for Unicode 5.0)

Revision 1

• First working draft.

© 2024 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in connection with or arising out of the use of the information or programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.