
Technical Reports

Proposed Update Unicode® Standard Annex #44

UNICODE CHARACTER DATABASE
Version Unicode 16.0.0 (draft 7)

Editors Ken Whistler

Date 2024-05-09

This Version https://www.unicode.org/reports/tr44/tr44-33.html

Previous Version https://www.unicode.org/reports/tr44/tr44-32.html

Latest Version https://www.unicode.org/reports/tr44/

Latest Proposed
Update

https://www.unicode.org/reports/tr44/proposed.html

Revision 33

Summary

This annex provides the core documentation for the Unicode Character Database (UCD). It describes the layout and organization of the
Unicode Character Database and how it specifies the formal definitions of the Unicode Character Properties.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any time. Publication does not imply
endorsement by the Unicode Consortium. This is not a stable document; it is inappropriate to cite this document as other than a work in
progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but is published online as a separate document. The
Unicode Standard may require conformance to normative content in a Unicode Standard Annex, if so specified in the Conformance
chapter of that version of the Unicode Standard. The version number of a UAX document corresponds to the version of the Unicode
Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding
this annex is found in Unicode Standard Annex #41, “Common References for Unicode Standard Annexes.” For the latest version of the
Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For more information about versions of the
Unicode Standard, see [Versions]. For any errata which may apply to this annex, see [Errata].

Contents

1 Introduction
2 Conformance

2.1 Simple and Derived Properties
2.2 Use of Default Values
2.3 Stability of Releases

3 Documentation
3.1 Character Properties in the Standard
3.2 The Character Property Model
3.3 NamesList.html
3.4 StandardizedVariants.html
3.5 Emoji Variation Sequences
3.6 Unihan and UAX #38
3.7 UTC-Source Ideographs and UAX #45
3.8 Data File Comments
3.9 Obsolete Documentation Files

4 UCD Files
4.1 Directory Structure
4.2 File Format Conventions
4.3 File List
4.4 Zipped Files
4.5 UCD in XML

5 Properties
5.1 Property Index
5.2 About the Property Table
5.3 Property Definitions
5.4 Derived Extracted Properties
5.5 Contributory Properties
5.6 Case and Case Mapping
5.7 Property Value Lists
5.8 Property and Property Value Aliases
5.9 Matching Rules
5.10 Invariants

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 1/43

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
https://www.unicode.org/reports/tr44/tr44-33.html
https://www.unicode.org/reports/tr44/tr44-32.html
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/reports/tr41/tr41-33.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
https://www.unicode.org/errata/
Michelle Perham
L2/24-195

5.11 Validation
5.12 Deprecation
5.13 Property APIs
5.14 Character Age

6 Test Files
6.1 NormalizationTest.txt
6.2 Segmentation Test Files and Documentation
6.3 Bidirectional Test Files

7 UCD Change History
Acknowledgments
References
Modifications

Note: the information in this annex is not intended as an exhaustive description of the use and interpretation of Unicode character
properties and behavior. It must be used in conjunction with the data in the other files in the Unicode Character Database, and relies on
the notation and definitions supplied in The Unicode Standard. All chapter references are to Version 16.0.0 of the standard unless
otherwise indicated.

1 Introduction

The Unicode Standard is far more than a simple encoding of characters. The standard also associates a rich set of semantics with each
encoded character—properties that are required for interoperability and correct behavior in implementations, as well as for Unicode
conformance. These semantics are cataloged in the Unicode Character Database (UCD), a collection of data files which contain the Unicode
character code points and character names. The data files define the Unicode character properties and mappings between Unicode
characters (such as case mappings).

This annex describes the UCD and provides a guide to the various documentation files associated with it. Additional information about
character properties and their use is contained in the Unicode Standard and its annexes. In particular, implementers should familiarize
themselves with the formal definitions and conformance requirements for properties detailed in Section 3.5, Properties in [Unicode] and with
the material in Chapter 4, Character Properties in [Unicode]. Additional discussion about the Unicode character property model can be found in
[UTR23].

The latest version of the UCD is always located on the Unicode website at:

https://www.unicode.org/Public/UCD/latest/

The specific files for the UCD associated with this version of the Unicode Standard (16.0.0) are located at:

https://www.unicode.org/Public/16.0.0/

Stable, archived versions of the UCD associated with all earlier versions of the Unicode Standard can be accessed from:

https://www.unicode.org/ucd/

For a description of the changes in the UCD for this version and earlier versions, see the UCD Change History.

2 Conformance

The Unicode Character Database is an integral part of the Unicode Standard.

The UCD contains normative property and mapping information required for implementation of various Unicode algorithms such as the
Unicode Bidirectional Algorithm, Unicode Normalization, and Unicode Casefolding. The data files also contain additional informative and
provisional character property information.

Each specification of a Unicode algorithm, whether specified in the text of [Unicode] or in one of the Unicode Standard Annexes, designates
which data file(s) in the UCD are needed to provide normative property information required by that algorithm.

For information on the meaning and application of the terms, normative, informative, contributory, and provisional, see Section 3.5, Properties
in [Unicode].

For information about the applicable terms of use for the UCD, see the Unicode Terms of Use.

2.1 Simple and Derived Properties

2.1.1 Simple Properties

Some character properties in the UCD are simple properties. This status has no bearing on whether or not the properties are normative, but
merely indicates that their values are not derived from some combination of other properties.

2.1.2 Derived Properties

Other character properties are derived. This means that their values are derived by rule from some other combination of properties. Generally
such rules are stated as set operations, and may or may not include explicit exception lists for individual characters.

Certain simple properties are defined merely to make the statement of the rule defining a derived property more compact or general. Such
properties are known as contributory properties. Sometimes these contributory properties are defined to encapsulate the messiness inherent
in exception lists. At other times, a contributory property may be defined to help stabilize the definition of an important derived property which
is subject to stability guarantees.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 2/43

https://www.unicode.org/standard/standard.html
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UTR23
https://www.unicode.org/Public/UCD/latest/
https://www.unicode.org/Public/16.0.0/
https://www.unicode.org/Public/16.0.0/
https://www.unicode.org/Public/16.0.0/
https://www.unicode.org/ucd/
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/copyright.html

Derived character properties are not considered second-class citizens among Unicode character properties. They are defined to make
implementation of important algorithms easier to state. Included among the first-class derived properties important for such implementations
are: Uppercase, Lowercase, XID_Start, XID_Continue, Math, and Default_Ignorable_Code_Point, all defined in DerivedCoreProperties.txt, as
well as derived properties for the optimization of normalization, defined in DerivedNormalizationProps.txt.

Implementations should simply use the derived properties, and should not try to rederive them from lists of simple properties and collections of
rules, because of the chances for error and divergence when doing so.

Definitions of property derivations are provided for information only, typically in comment fields in the data files. Such definitions may be
refactored, refined, or corrected over time. These definitions are presented in a modified set notation, expressed as set additions and/or
subtractions of various other property values. For example:

Derived Property: ID_Start
Characters that can start an identifier.
Generated from:
Lu + Ll + Lt + Lm + Lo + Nl
+ Other_ID_Start
- Pattern_Syntax
- Pattern_White_Space

When interpreting definitions of derived properties of this sort, keep in mind that set subtraction is not a commutative operation. Thus "Lo + Lm
- Pattern_Syntax" defines a different set than "Lo - Pattern_Syntax + Lm". The order of property set operations stated in the definitions affects
the composition of the derived set.

If there are any cases of mismatches between the definition of a derived property as listed in DerivedCoreProperties.txt or similar data files in
the UCD, and the definition of a derived property as a set definition rule, the explicit listing in the data file should always be taken as the
normative definition of the property. As described in Stability of Releases the property listing in the data files for any given version of the
standard will never change for that version.

2.1.3 Properties Dependent on External Specifications

In limited cases, a Unicode character property defined in the Unicode Character Database may have an external dependency on another
specification which is not a part of the Unicode Standard, and whose data is not formally part of the UCD. In such cases, version stability for
the UCD is attained by requiring that dependency to be based on a known, published version of the external specification.

Starting with Version 10.0 of the UCD and continuing through Version 12.1, the clear example of such an external dependency was the
derivation of some segmentation-related character properties, in part based on emoji properties associated with UTS #51, "Unicode Emoji"
[UTS51]. The details of the derivation were described in the respective annexes, [UAX14] and [UAX29], as well as in the documentation
portions of the associated UCD property files. See [Data14] and [Props]. The version of UTS #51 used for those segmentation properties in
each of the relevant versions of the UCD was clearly identified in those annexes and data files. Starting with Version 13.0 of the UCD,
however, the emoji properties which the UCD previously depended on have been formally incorporated into the UCD, so that they no longer
constitute an external dependency.

An external dependency may impact either a simple or a derived property.

2.2 Use of Default Values

Unicode character properties have default values. Default values are the value or values that a character property takes for an unassigned
code point, or in some instances, for designated subranges of code points, whether assigned or unassigned. For example, the default value of
a binary Unicode character property is always "N".

For the formal discussion of default values, see D26 in Section 3.5, Properties in [Unicode]. For conventions related to default values in
various data files of the UCD and for documentation regarding the particular default values of individual Unicode character properties, see
Default Values.

2.3 Stability of Releases

Just as for the Unicode Standard as a whole, each version of the UCD, once published, is absolutely stable and will never change. Each
released version is archived in a directory on the Unicode website, with a directory number associated with that version. URLs pointing to that
version's directory are also stable and will be maintained in perpetuity.

Any errors discovered for a released version of the UCD are noted in [Errata], and if appropriate will be corrected in a subsequent version of
the UCD.

Stability guarantees constraining how Unicode character properties can (or cannot) change between releases of the UCD are documented in
the Unicode Consortium Stability Policies [Stability].

2.3.1 Changes to Properties Between Releases

Updates to character properties in the Unicode Character Database may be required for any of three reasons:

1. To cover new characters added to the standard
2. To add new character properties to the standard
3. To change the assigned values for a property for some characters already in the standard

While the Unicode Consortium endeavors to keep the values of all character properties as stable as possible between versions, occasionally
circumstances may arise which require changing them. In particular, as less well-documented scripts, such as those for minority languages, or
historic scripts are added to the standard, the exact character properties and behavior may not fully be known when the script is first encoded.
The properties for some of these characters may change as further information becomes available or as implementations turn up problems in
the initial property assignments. As far as possible, any readjustment of property values based on growing implementation experience is made
to be compatible with established practice.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 3/43

https://www.unicode.org/reports/tr41/tr41-33.html#UTS51
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#Data14
https://www.unicode.org/reports/tr41/tr41-33.html#Props0
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Errata
https://www.unicode.org/reports/tr41/tr41-33.html#Stability

All changes to normative or informative property values, to the status or type of a property, or to property or property value aliases, must be
approved by an explicit decision taken by the Unicode Technical Committee. Changes to provisional property values are subject to less
stringent oversight.

Occasionally, a character property value is changed to prevent incorrect generalizations about a character's use based on its nominal property
values. For example, U+200B ZERO WIDTH SPACE was originally classified as a space character (General_Category=Zs), but it was
reclassified as a Format character (General_Category=Cf) to clearly distinguish it from space characters in its function as a format control for
line breaking.

There is no guarantee that a particular value for an enumerated property will actually have characters associated with it. Also, because of
changes in property value assignments between versions of the standard, a property value that once had characters associated with it may
later have none. Such conditions and changes are rare, but implementations must not assume that all property values are associated with
non-null sets of characters. For example, currently the special Script property value Katakana_Or_Hiragana has no characters associated with
it.

2.3.2 Obsolete Properties

In some instances an entire property may become obsolete. For example, the ISO_Comment property was once used to keep track of
annotations for characters used in the production of name lists for ISO/IEC 10646 code charts. As of Unicode 5.2.0 that property became
obsolete, and its value is now defaulted to the null string for all Unicode code points.

An obsolete property is never removed from the UCD.

2.3.3 Deprecated Properties

Occasionally an obsolete property may also be formally deprecated. This is an indication that the property is no longer recommended for use,
perhaps because its original intent has been replaced by another property or because its specification was somehow defective. See also the
general discussion of Deprecation.

A deprecated property is never removed from the UCD.

Table 1 lists the properties that are formally deprecated as of this version of the Unicode Standard.

Table 1. Deprecated Properties

Property Name Deprecation Version Reason

Grapheme_Link 5.0.0 Duplication of ccc=9

Hyphen 6.0.0 Supplanted by Line_Break property values

ISO_Comment 6.0.0 No longer needed for chart generation; otherwise not useful

Expands_On_NFC 6.0.0 Less useful than UTF-specific calculations

Expands_On_NFD 6.0.0 Less useful than UTF-specific calculations

Expands_On_NFKC 6.0.0 Less useful than UTF-specific calculations

Expands_On_NFKD 6.0.0 Less useful than UTF-specific calculations

FC_NFKC_Closure 6.0.0 Supplanted in usage by NFKC_Casefold; otherwise not useful

2.3.4 Stabilized Properties

Another possibility is that an obsolete property may be declared to be stabilized. Such a determination does not indicate that the property
should or should not be used; instead it is a declaration that the UTC (Unicode Technical Committee) will no longer actively maintain the
property or extend it for newly encoded characters. The property values of a stabilized property are frozen as of a particular release of the
standard.

A stabilized property is never removed from the UCD.

Table 2 lists the properties that are formally stabilized as of this version of the Unicode Standard.

Table 2. Stabilized Properties

Property Name Stabilization Version

Hyphen 4.0.0

ISO_Comment 6.0.0

3 Documentation

This annex provides the core documentation for the UCD, but additional information about character properties is available in other parts of the
standard and in additional documentation files contained within the UCD.

3.1 Character Properties in the Standard

The formal definitions related to character properties used by the Unicode Standard are documented in Section 3.5, Properties in [Unicode].
Understanding those definitions and related terminology is essential to the appropriate use of Unicode character properties.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 4/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

See Section 4.1, Unicode Character Database, in [Unicode] for a general discussion of the UCD and its use in defining properties. The rest of
Chapter 4 provides important explanations regarding the meaning and use of various normative character properties.

3.2 The Character Property Model

For a general discussion of the property model which underlies the definitions associated with the UCD, see Unicode Technical Report #23,
"The Unicode Character Property Model" [UTR23]. That technical report is informative, but over the years various content from it has been
incorporated into normative portions of the Unicode Standard, particularly for the definitions in Chapter 3.

UTR #23 presents the important distinction between properties defined for strings (in contrast to properties defined for characters or code
points) and character properties that have values that are strings. The latter are referred to as string-valued properties in UTR #23 and in this
annex. UTR #23 also discusses string functions and their relation to character properties.

3.3 NamesList.html

NamesList.html formally describes the format of the NamesList.txt data file in BNF. That data file is used to drive the PDF formatting of the
Unicode code charts and names list. See also Section 24.1, Character Names List, in [Unicode] for a detailed discussion of the conventions
used in the Unicode names list as formatted for the online code charts.

3.4 StandardizedVariants.html

StandardizedVariants.html has been obsoleted as of Version 9.0 of the UCD. This file formerly documented standardized variants, showing a
representative glyph for each. It was closely tied to the data file, StandardizedVariants.txt, which defines those sequences normatively.

The function of StandardizedVariants.html to show representative glyphs for standardized variants has been superseded. There are now better
means of illustrating the glyphs. Many standardized variation sequences are shown in the Unicode code charts directly, in summary sections
at the ends of the names list for any block which contains them. Glyphs for standardized variants of CJK compatibility ideographs are also
shown directly in the Unicode code charts.

3.5 Emoji Variation Sequences

Emoji variation sequences are a special class of variation sequences involving emoji characters. They are divided into two subtypes: an emoji
presentation sequence, consisting of an emoji character base followed by the variation selector U+FE0F, and a text presentation sequence,
consisting of an emoji character base followed by the variation selector U+FE0E. Such sequences come in pairs: the text presentation
sequence shown with a black and white presentation, as seen in the Unicode code charts, and the emoji presentation sequence shown with a
colorful icon, as usually seen in implementations on mobile devices and elsewhere.

Starting with Version 9.0.0, the following page in the Unicode emoji subsite area shows appropriate representative glyphs for all emoji variation
sequences, with separate columns for text presentation sequences and for emoji presentation sequences:

https://www.unicode.org/emoji/charts/emoji-variants.html

The data file which defines the exact list of emoji variation sequences is emoji-variation-sequences.txt. That file is maintained in the UCD, but
emoji variation sequences are documented in Unicode Technical Standard #51, Unicode Emoji [UTS51].

3.6 Unihan and UAX #38

Unicode Standard Annex #38, "Unicode Han Database (Unihan)" [UAX38] describes the format and content of the Unihan Database [Unihan],
which collects together all property information for CJK unified ideographs. That annex also specifies in detail which of the Unihan character
properties are normative, informative, or provisional.

The Unihan Database contains extensive and detailed mapping information for CJK unified ideographs encoded in the Unicode Standard, but
it is aimed only at those ideographs, not at other characters used in the East Asian context in general. In contrast, East Asian legacy character
sets, including important commercial and national character set standards, contain many non-CJK characters. As a result, the Unihan
Database must be supplemented from other sources to establish mapping tables for those character sets.

The majority of the content of the Unihan Database is released for each version of the Unicode Standard as a collection of Unihan data files in
the UCD. Because of their large size, these data files are released only as a zipped file, Unihan.zip. The details of the particular data files in
Unihan.zip and the CJK properties each one contains are provided in [UAX38]. For versions of the UCD prior to Version 5.2.0, all of the CJK
properties were listed together in a very large, single file, Unihan.txt.

3.7 UTC-Source Ideographs and UAX #45

Unicode Standard Annex #45, "U-Source Ideographs" [UAX45] describes the format of USourceData.txt, which lists all of the information for
UTC-Source ideographs.

3.8 Data File Comments

In addition to the specific documentation files for the UCD, individual data files often contain extensive header comments describing their
content and any special conventions used in the data.

In some instances, individual property definition sections also contain comments with information about how the property may be derived.
Such comments are informative; while they are intended to convey the intent of the derivation, in case of any mismatch between a statement
of a derivation in a comment field and the actual listing of the derived property, the list is considered to be definitive. See Simple and Derived
Properties.

3.9 Obsolete Documentation Files

UCD.html was formerly the primary documentation file for the UCD. As of Version 5.2.0, its content has been wholly incorporated into this
document.

Unihan.html was formerly the primary documentation file for the Unihan Database. As of Version 5.1.0, its content has been wholly
incorporated into [UAX38].

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 5/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UTR23
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/emoji/charts/emoji-variants.html
https://www.unicode.org/reports/tr41/tr41-33.html#UTS51
https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/reports/tr41/tr41-33.html#Unihan
https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/reports/tr41/tr41-33.html#UAX45
https://www.unicode.org/reports/tr41/tr41-33.html#UAX38

Versions of the Unicode Standard prior to Version 4.0.0 contained small, focused documentation files, UnicodeCharacterDatabase.html,
PropList.html, and DerivedProperties.html, which were later consolidated into UCD.html.

StandardizedVariants.html has been obsoleted as of Version 9.0.0. See Section 3.4, StandardizedVariants.html.

4 UCD Files

The heart of the UCD consists of the data files themselves. This section describes the directory structure for the UCD, the format conventions
for the data files, and provides documentation for data files not documented elsewhere in this annex.

4.1 Directory Structure

Each version of the UCD is released in a separate, numbered directory under the Public directory on the Unicode website. The content of that
directory is complete for that release. It is also stable—once released, it will be archived permanently in that directory, unchanged, at a stable
URL.

The specific files for the UCD associated with this version of the Unicode Standard (16.0.0) are located at:

https://www.unicode.org/Public/16.0.0/

The latest released version of the UCD is always accessible via the following stable URL:

https://www.unicode.org/Public/UCD/latest/

Zipped copies of the latest released version of the UCD are always accessible via the following stable URL:

https://www.unicode.org/Public/zipped/latest/

Prior to Version 6.3.0, access to the latest released version of the UCD was via the following stable URL:

https://www.unicode.org/Public/UNIDATA/

That "UNIDATA" URL will be maintained, but is no longer recommended, because it points to the ucd subdirectory of the latest release, rather
than to the parent directory for the release. The "UNIDATA" naming convention is also very old, and does not follow the directory naming
conventions currently used for other data releases in the Public directory on the Unicode website.

4.1.1 UCD Files Proper

The UCD proper is located in the ucd subdirectory of the numbered version directory. That directory contains all of the documentation files and
most of the data files for the UCD, including some data files for derived properties.

Although all UCD data files are version-specific for a release and most contain internal date and version stamps, the file names of the released
data files do not differ from version to version. When linking to a version-specific data file, the version will be indicated by the version number
of the directory for the release.

All files for derived extracted properties are in the extracted subdirectory of the ucd subdirectory. See Derived Extracted Properties for
documentation regarding those data files and their content.

A number of auxiliary properties are specified in files in the auxiliary subdirectory of the ucd subdirectory. It contains data files specifying
properties associated with Unicode Standard Annex #29, "Unicode Text Segmentation" [UAX29] and with Unicode Standard Annex #14,
"Unicode Line Breaking Algorithm" [UAX14], as well as test data for those algorithms. See Segmentation Test Files and Documentation for
more information about the test data.

Certain data files associated with emoji properties are maintained in the emoji subdirectory of the ucd subdirectory. Those data files define the
simple character properties associated with emoji characters, as well as the emoji variation sequences. Other data files associated with emoji,
including those which define the RGI ("recommended for general interchange") sets of various types of emoji sequences, as well as emoji test
data, are maintained elsewhere, and are not considered formally a part of the UCD. See [UTS51] for documentation regarding those data files
and their content.

4.1.2 UCD XML Files

The XML version of the UCD is located in the ucdxml subdirectory of the numbered version directory. See the UCD in XML for more details.

4.1.3 Charts

The code charts specific to a version of Unicode are archived as a single large PDF file in the charts subdirectory of the numbered version
directory. See the readme.txt in that subdirectory and the general web page explaining the Unicode Code Charts for more details.

4.1.4 Beta Review Considerations

Prior to the formal release of a version of the UCD, draft files are made available for review in a subdirectory named draft, under the /Public
directory on the Unicode server. The files in this directory may include temporary files, including documentation of differences between draft
versions. The number of reviews is not fixed—a beta review will always take place, but an alpha review is optional.

Notices contained in a ReadMe.txt file in the draft/UCD directory during the beta review period also make it clear that that directory contains
preliminary material under review, rather than a final, stable release.

4.1.5 File Directory Differences for Early Releases

The UCD in XML was introduced in Version 5.1.0, so UCD directories prior to that do not contain the ucdxml subdirectory.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 6/43

https://www.unicode.org/Public/16.0.0/
https://www.unicode.org/Public/16.0.0/
https://www.unicode.org/Public/16.0.0/
https://www.unicode.org/Public/UCD/latest/
https://www.unicode.org/Public/zipped/latest/
https://www.unicode.org/Public/UNIDATA/
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#UTS51
https://www.unicode.org/charts/About.html
https://www.unicode.org/Public/draft/
https://www.unicode.org/Public/
https://www.unicode.org/Public/draft/UCD/

UCD directories prior to Version 13.0.0 do not contain the emoji subdirectory.

UCD directories prior to Version 4.1.0 do not contain the auxiliary subdirectory.

UCD directories prior to Version 3.2.0 do not contain the extracted subdirectory.

The general structure of the file directory for a released version of the UCD described above applies to Versions 4.1.0 and later. Prior to
Version 4.1.0, versions of the UCD were not self-contained, complete sets of data files for that version, but instead only contained any new
data files or any data files which had changed since the prior release.

Because of this, the property files for a given version prior to Version 4.1.0 can be spread over several directories. Consult the component
listings at Enumerated Versions to find out which files in which directories comprise a complete set of data files for that version.

The directory naming conventions and the file naming conventions also differed prior to Version 4.1.0. So, for example, Version 4.0.0 of the
UCD is contained in a directory named 4.0-Update, and Version 4.0.1 of the UCD in a directory named 4.0-Update1. Furthermore, for these
earlier versions, the data file names do contain explicit version numbers.

4.2 File Format Conventions

Files in the UCD use the format conventions described in this section, unless otherwise specified.

4.2.1 Data Fields

Each line of data consists of fields separated by semicolons. The fields are numbered starting with zero.
The first field (0) of each line in the Unicode Character Database files represents a code point or range. The remaining fields (1..n) are
properties associated with that code point.
Leading and trailing spaces within a field are not significant. However, no leading or trailing spaces are allowed in any field of
UnicodeData.txt. For legacy reasons, no spaces are allowed before or after the semicolon in LineBreak.txt and in EastAsianWidth.txt.
The Unihan data files [Unihan] in the UCD have a separate format, using tab characters instead of semicolons to separate fields. See
[UAX38] for the detailed specification of the format of the Unihan data files. The data files TangutSources.txt and NushuSources.txt also
use this format.

4.2.2 Code Points and Sequences

Code points are expressed as hexadecimal numbers with four to six digits. (See Appendix A, Notational Conventions in [Unicode] for a
full, formal definition of this convention.) They are written without the "U+" prefix in all data files except the Unihan data files. The Unihan
data files use the "U+" prefix for all Unicode code points, to distinguish them from other decimal and hexadecimal numerical references
occurring in their data fields.
When a data field contains a sequence of code points, spaces separate the code points.

4.2.3 Code Point Ranges

A range of code points is specified by the form "X..Y".
Each code point in a range has the associated property value specified on a data file. For example (from Blocks.txt):

0000..007F; Basic Latin
0080..00FF; Latin-1 Supplement

For backward compatibility, ranges in the file UnicodeData.txt are specified by entries for the start and end characters of the range,
rather than by the form "X..Y". The start character is indicated by a range identifier, followed by a comma and the string "First", in angle
brackets. This entry takes the place of a regular character name in field 1 for that line. The end character is indicated on the next line with
the same range identifier, followed by a comma and the string "Last", in angle brackets:

4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;
9FEF;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;

For character ranges using this convention, the names of all characters in the range are algorithmically derivable. See Section 4.8, Name
in [Unicode] for more information on derivation of character names for such ranges.

4.2.4 Comments

U+0023 NUMBER SIGN ("#") is used to indicate comments: all characters from the number sign to the end of the line are considered
part of the comment, and are disregarded when parsing data.
In many files, the comments on data lines use a common format, as illustrated here (from Scripts.txt):

09B2 ; Bengali # Lo BENGALI LETTER LA

The first part of a comment using this common format is the General_Category value, provided for information. This is followed by the
character name for the code point in the first field (0).
The printing of the General_Category value is suppressed in instances where it would be redundant, as for DerivedGeneralCategory.txt,
in which the value of the property value in the data field is already the General_Category value.
The symbol "L&" indicates characters of General_Category Lu, Ll, or Lt (uppercase, lowercase, or titlecase letter). For example:

0386 ; Greek # L& GREEK CAPITAL LETTER ALPHA WITH TONOS

L& as used in these comments is an alias for the derived LC value (cased letter) for the General_Category property, as documented in
PropertyValueAliases.txt.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 7/43

https://www.unicode.org/versions/enumeratedversions.html
https://www.unicode.org/reports/tr41/tr41-33.html#Unihan
https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

When the data line contains a range of code points, this common format for a comment also indicates a range of character names,
separated by "..", as illustrated here (from DerivedNumericType.txt):

00BC..00BE ; Numeric # No [3] VULGAR FRACTION ONE QUARTER..VULGAR FRACTION THREE QUARTERS

Normally, consecutive characters with the same property value would be represented by a single code point range. In data files using
this comment convention, such ranges are subdivided so that all characters in a range also have the same General_Category value (or
LC). While this convention results in more ranges than are strictly necessary, it makes the contents of the ranges clearer.
When a code point range occurs, the number of items in the range is included in the comment (in square brackets), immediately
following the General_Category value.
The comments are purely informational, and may change format or be omitted in the future. They should not be parsed for content.
However, see Section 4.2.10 @missing Conventions.

4.2.5 Code Point Labels

Surrogate code points, private-use characters, control codes, noncharacters, and unassigned code points have no names. When such
code points are listed in the data files, for example to list their General_Category values, the comments use code point labels instead of
character names. For example (from DerivedCoreProperties.txt):

2065 ; Default_Ignorable_Code_Point # Cn <reserved-2065>

Although code point labels are not formally character names and are not considered values of the Name property for characters, they are
designed to be maintained as unique values within the namespace for Unicode character names. Hence, implementations can safely use
them as identifiers for code points without overlap with actual character names.
Code point labels use one of the tags as documented in Section 4.8, Name in [Unicode] and as shown in Table 3, followed by "-" and the
code point expressed in hexadecimal. The entire label is then enclosed in angle brackets when listed in data files of the UCD.

Table 3. Code Point Label Tags

Tag General_Category Note

reserved Cn Noncharacter_Code_Point=F

noncharacter Cn Noncharacter_Code_Point=T

control Cc

private-use Co

surrogate Cs

4.2.6 Multiple Properties in One Data File

When a file contains the specification for multiple properties, the second field specifies the name of the property and the third field
specifies the property value. For example (from DerivedNormalizationProps.txt):

03D2 ; FC_NFKC; 03C5 # L& GREEK UPSILON WITH HOOK SYMBOL
03D3 ; FC_NFKC; 03CD # L& GREEK UPSILON WITH ACUTE AND HOOK SYMBOL

4.2.7 Binary Property Values

For binary properties, the second field specifies the name of the applicable property, with the implied value of the property being "True".
Only the ranges of characters with the binary property value of "Y" (= True) are listed. For example (from PropList.txt):

1680 ; White_Space # Zs OGHAM SPACE MARK
2000..200A ; White_Space # Zs [11] EN QUAD..HAIR SPACE

4.2.8 Multiple Values for Properties

When a data file defines a property which may take multiple values for a single code point, the multiple values are expressed in a space-
delimited list. For example (from ScriptExtensions.txt):

0640 ; Adlm Arab Mand Mani Phlp Rohg Sogd Syrc # Lm ARABIC TATWEEL

In some cases—but not all—the order of multiple elements in a space-delimited list may be significant. When the order of multiple
elements is significant, it is documented along with the property itself. For example (from Unihan_Readings.txt), for the tag kMandarin,
when there are two values for a code point, the first value is used to indicate a preferred pronunciation for zh-Hans (CN) and the second
a preferred pronunciation for zh-Hant (TW).
For further discussion, see Section 5.7.6 Properties Whose Values Are Sets of Values.

4.2.9 Default Values

Entries for a code point may be omitted in a data file if the code point has a default value for the property in question.
For most string-valued properties, including the definition of foldings and mappings, the default value is the code point of the character
itself.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 8/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

For some string-valued properties which define a property that applies primarily to a small, defined set of code points, the default value is
<none>, which is interpreted as no value is defined. (This contrasts with specification of an actual value consisting of an empty string.
See Section 4.2.11 Empty Fields.) Current examples include Bidi_Paired_Bracket, as well as some Unihan-related properties.
For miscellaneous properties which take strings as values, such as the Unicode Name property, the default value is an empty string.
For binary properties except for Extended_Pictographic, the default value is always "N" (= False) and is always omitted.
For enumerated and catalog properties, the default value is listed in a comment. For example (from Scripts.txt):

All code points not explicitly listed for Script
have the value Unknown (Zzzz).

A few properties of the enumerated type have multiple default values. In those cases, comments in the file explain the code point ranges
for applicable values. See also Table 4.
Default values are also listed in specially-formatted comment lines, using the keyword "@missing". Parsers which extract and process
these lines can algorithmically determine the default values for all code points. See @missing Conventions for details about the syntax
and use of these lines.
Because of the legacy format constraints for UnicodeData.txt, that file contains no specific information about default values for
properties. The default values for fields in UnicodeData.txt are documented in Table 4 below if they cannot be derived from the general
rules about default values for properties.
The file ArabicShaping.txt is also exceptional, because it omits the listing of many characters whose property value (jt=T) can be derived
by rule. Adding an "@missing" line to that file would result in the wrong interpretation of Joining_Type values for omitted characters. The
full explicit listing of Joining_Type values and the correct "@missing" line for the default Joining_Type value (jt=U) can be found in the file
DerivedJoiningType.txt instead. The values of Joining_Type listed in DerivedJoiningType.txt should be taken as definitive, because of the
difficulty of deriving the correct values for all characters based only on the entries in ArabicShaping.txt.

Default values for common catalog, enumeration, and numeric properties are listed in Table 4, along with the exceptional binary property,
Extended_Pictographic. Further explanation is provided below the table, in those cases where the default values are complex, as indicated in
the third column.

Table 4. Default Values for Properties

Property Name Default Value(s) Complex?

Age Unassigned (= NA) No

Bidi_Class L, AL, R, BN, ET Yes

Block No_Block No

Canonical_Combining_Class Not_Reordered (= 0) No

Decomposition_Type None No

East_Asian_Width Neutral (= N), Wide (= W) Yes

Extended_Pictographic N (= False), Y (= True) Yes

General_Category Cn No

Line_Break Unknown (= XX), ID, PR Yes

Numeric_Type None No

Numeric_Value NaN No

Script Unknown (= Zzzz) No

Vertical_Orientation Rotated (= R), Upright (= U) Yes

4.2.9.1 Complex Default Values

Complex default values are those which take multiple values, contingent on code point ranges or other conditions. Complex default values
other than those specified in the "@missing" line are explicitly listed in the relevant property file, except for instances noted in this section. This
means that a parser extracting property values from the UCD should never encounter an ambiguous condition for which the default value of a
property for a particular code point is unclear.

Bidi_Class:
See Unicode Standard Annex #9, "Unicode Bidirectional Algorithm" [UAX9] and DerivedBidiClass.txt for full details.
East_Asian_Width:
This property defaults to Neutral for most code points, but defaults to Wide for unassigned code points in blocks associated with CJK
ideographs. See Unicode Standard Annex #11, "East Asian Width" [UAX11] and EastAsianWidth.txt for documentation of the default
values and DerivedEastAsianWidth.txt for the full listing of values.
Line_Break:
This property defaults to Unknown for most code points, but defaults to ID for unassigned code points in blocks associated with CJK
ideographs, and in blocks in the ranges U+1F000..U+1FAFF and U+1FC00..U+1FFFD. The property defaults to PR for unassigned code
points in the Currency Symbols block. See Unicode Standard Annex #14, "Unicode Line Breaking Algorithm" [UAX14] and LineBreak.txt
for documentation of the default values and DerivedLineBreak.txt for the full listing of values.
Extended_Pictographic:
This property defaults to N (= False) for most code points, but defaults to Y (= True) for unassigned code points in blocks in the ranges
U+1F000..U+1FAFF and U+1FC00..U+1FFFD. Those ranges are correlated with the ranges associated with default values for the
Line_Break property, and have the same rationale. They help future-proof the behavior of Unicode segmentation algorithms for code
point ranges most likely to be used for future assignment of new emoji characters.
Vertical_Orientation:
This property defaults to Rotated (R) for most code points, but defaults to Upright (U) for unassigned code points in blocks associated

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 9/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#UAX11
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14

with scripts that are themselves predominantly Upright, in blocks for some notational systems, and in blocks predominantly associated
with pictographic symbols and emoji. See Unicode Standard Annex #50, "Unicode Vertical Text Layout" [UAX50] and
VerticalOrientation.txt for full details.

4.2.10 @missing Conventions

Specially-formatted comment lines with the keyword "@missing" are used to define default property values for ranges of code points not
explicitly listed in a data file. These lines follow regular conventions that make them machine-readable.

An @missing line starts with the comment character "#", followed by a space, then the "@missing" keyword, followed by a colon, another
space, a code point range, and a semicolon. Then the line typically continues with a semicolon-delimited list of one or more default property
values. For example:

@missing: 0000..10FFFF; Unknown

In general, the code point range and semicolon-delimited list follow the same syntactic conventions as the data file in which the @missing line
occurs, so that any parser which interprets that data file can easily be adapted to also parse and interpret an @missing line to pick up default
property values for code points.

@missing lines are also supplied for many properties in the file PropertyValueAliases.txt. In this case, because there are many @missing lines
in that single data file, each @missing line in that file uses the syntactic pattern code_point_range; property_name; default_prop_val.

An @missing line is never provided for a binary property, because the default value for binary properties is always "N" and need not be defined
redundantly for each binary property.

Because of the addition of property names when @missing lines are included in PropertyValueAliases.txt, there are currently two syntactic
patterns used for @missing lines, as summarized schematically below:

1. code_point_range; default_prop_val
2. code_point_range; property_name; default_prop_val

In this schematic representation, "default_prop_val" stands in for either an explicit property value or for a special tag such as <none> or
<script>.

Pattern #1 is used in most primary and derived UCD files. For example:

@missing: 0000..10FFFF; <none>

Pattern #2 is used in PropertyValueAliases.txt and in DerivedNormalizationProps.txt, both of which contain values associated with many
properties. For example:

@missing: 0000..10FFFF; NFD_QC; Yes

The special tag values which may occur in the default_prop_val field in an @missing line are interpreted as follows:

Tag Interpretation

<none> no value is defined

<code point> the string representation of the code point value

<script> the value equal to the Script property value for this code point

Starting with Version 15.0, some data files in the UCD may contain multiple @missing lines defined for the same property. When multiple
@missing lines are defined this way, they are to be interpreted as follows: Each successive @missing line specifies an overriding range value
for all previous @missing definitions. This convention allows a generic default value to be specified first for the entire Unicode code point
range, followed by other specific default values for more constrained, specific sub-ranges. This enables an easy-to-understand and easy-to-
maintain way of handling complex default values, as for the Bidi_Class or Line_Break properties. (See Complex Default Values.) The following
simple example for East_Asian_Width, extracted from DerivedEastAsianWidth.txt, illustrates this mechanism:

@missing: 0000..10FFFF; Neutral
@missing: 3400..4DBF; Wide
@missing: 4E00..9FFF; Wide
@missing: F900..FAFF; Wide
@missing: 20000..2FFFD; Wide
@missing: 30000..3FFFD; Wide

Implementation of parsing for multiple @missing lines for a single property is straightforward. Each time an @missing line is encountered,
simply assign the given default value to the specified range. With this strategy, each successive @missing line will automatically override any
prior assigned values for a given sub-range.

4.2.11 Empty Fields

The data file UnicodeData.txt defines many property values in each record. When a field in a data line for a code point is empty, that indicates
that the property takes the default value for that code point. For example:

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 10/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX50

0022;QUOTATION MARK;Po;0;ON;;;;;N;;;;;

In that data line, the empty numeric fields indicate that the value of Numeric_Value for U+0022 is NaN and that the value of Numeric_Type is
None. The empty case mapping fields indicate that the value of Simple_Uppercase_Mapping for U+0022 takes the default value, namely the
code point itself, and so forth.

The interpretation of empty fields in other data files of the UCD differs. In the case of data files which define string-valued properties, the
omission of an entry for a code point indicates that the property takes the default value for that code point. However, if there is an entry for a
code point, but the property value field for that entry is empty, that indicates that the property value is an explicit empty string (""). For example,
the derived property NFKC_Casefold may map a code point to a sequence of code points, to a single different code point, to the same single
code point, or to no code point at all (an empty string). See the following entries from the data file DerivedNormalizationProps.txt:

00AA ; NFKC_CF; 0061 # Lo FEMININE ORDINAL INDICATOR
00AD ; NFKC_CF; # Cf SOFT HYPHEN
00AF ; NFKC_CF; 0020 0304 # Sk MACRON

The empty field for U+00AD indicates that the property NFKC_Casefold maps SOFT HYPHEN to an empty string. By contrast, the absence of
the entry for U+00AE in the data file indicates that the property NFKC_Casefold maps U+00AE REGISTERED SIGN to itself—the default
value.

4.2.12 Text Encoding

The data files use UTF-8. Unless otherwise noted, non-ASCII characters only appear in comments.
The Unihan data files [Unihan] in the UCD make extensive use of UTF-8 in data fields. (See [UAX38] for details.)
For legacy reasons, NamesList.txt was exceptional; it was encoded in Latin-1 prior to Unicode 6.2. For Unicode 6.2 and later, the
encoding is UTF-8. See NamesList.html.
Segmentation test data files, such as WordBreakTest.txt, make use of non-ASCII (UTF-8) characters as delimiters for data fields.

4.2.13 Line Termination

All data files in the UCD use LF line termination (not CRLF line termination). When copied to different systems, these line endings may
be automatically changed to use the native line termination conventions for that system. Make sure your editor (or parser) can deal with
the line termination style in the local copy of the data files.

4.2.14 Other Conventions

In some test data files, segments of the test data are distinguished by a line starting with an "@" sign. For example (from
NormalizationTest.txt):

@Part1 # Character by character test

4.2.15 Other File Formats

The data format for Unihan data files and for TangutSources.txt and NushuSources.txt in the UCD differs from the standard format. See
the discussion of Unihan and UAX #38 earlier in this annex for more information.
The format for NamesList.txt, which documents the Unicode names list and which is used programmatically to drive the formatting
program for Unicode code charts, also differs significantly from regular UCD data files. See NamesList.html
Index.txt is another exception. It uses a tab-delimited format, with field 0 consisting of an index entry string, and field 1 a code point.
Index.txt is used to maintain the Unicode Character Name Index.
The various segmentation test data files make use of "#" to delimit comments, but have distinct conventions for their data fields. See the
documentation in their header sections for details of the data field formats for those files.
The XML version of the UCD has its own file format conventions. In those files, "#" is used to stand for the code point in algorithmically
derivable character names such as CJK UNIFIED IDEOGRAPH-4E00 or TANGUT IDEOGRAPH-17000, so as to allow for name sharing
in more compact representations of the data. See Unicode Standard Annex #42, "Unicode Character Database in XML" [UAX42] for
details.

4.3 File List

The exact list of files associated with any particular version of the UCD is available on the Unicode website by referring to the component
listings at Enumerated Versions.

The majority of the data files in the UCD provide specifications of character properties for Unicode characters. Those files and their contents
are documented in detail in the Property Definitions section below.

The data files in the extracted subdirectory constitute reformatted listings of single character properties extracted from UnicodeData.txt or
other primary data files. The reformatting is provided to make it easier to see the particular set of characters having certain values for
enumerated properties, or to separate the statement of that property from other properties defined together in UnicodeData.txt. These files
also include explicit listings of default values for the respective properties. These extracted, derived data files are further documented in the
Derived Extracted Properties section below.

The UCD also contains a number of test data files, whose purpose is to provide standard test cases useful in verifying the implementation of
complex Unicode algorithms. See the Test Files section below for more documentation.

The remaining files in the Unicode Character Database do not directly specify Unicode character properties. The important ones files and
their functions are listed in Table 5. The Status column indicates whether the file (and its content) is considered Normative, Informative, or
Provisional.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 11/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unihan
https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/charts/charindex.html
https://www.unicode.org/reports/tr41/tr41-33.html#UAX42
https://www.unicode.org/versions/enumeratedversions.html

Table 5. UCD Files That Do Not Specify Character Properties

File Name Reference Status Description

CJKRadicals.txt [UAX38] I List of Unified CJK Ideographs and CJK Radicals that correspond to specific radical
numbers used in the CJK radical stroke counts.

USourceData.txt [UAX45] N The list of formal references for UTC-Source ideographs, together with data regarding
their status and sources.

USourceGlyphs.pdf [UAX45] I A table containing a representative glyph for each UTC-Source ideograph.

USourceRSChart.pdf [UAX45] I A radical-stroke index of all the UTC-Source ideographs.

TangutSources.txt Chapter 18 N Specifies normative source mappings for Tangut ideographs and components. This data
file also includes informative radical-stroke values that are used in the preparation of the
code charts for the Tangut blocks.
kTGT_MergedSrc: normative source mapping to various Tangut source references
kRSTUnicode: informative radical-stroke value

NushuSources.txt Chapter 18 N Specifies normative source mappings for Nushu ideographs. This data file also includes
informative readings for Nushu characters.
kSrc_NushuDuben: normative source mapping to the Nushu Duben
kReading: informative example phonetic reading

Unikemet.txt [UAX57] I Specifies informative source mappings for Egyptian hieroglyphs. This data also includes
provisional data about hieroglyph functions which are listed as annotations in the code
charts for Egyptian hieroglyphs. Details about all the fields and their formats can be
found in UAX #57.

EmojiSources.txt Chapter 22 N Specifies source mappings to SJIS values for emoji symbols in the original
implementations of these symbols by Japanese telecommunications companies.

Index.txt Chapter 24 I Index to Unicode characters.

NamesList.txt Chapter 24 I Names list used for production of the code charts, derived from UnicodeData.txt. It
contains additional annotations.

NamesList.html Chapter 24 I Documents the format of NamesList.txt.

StandardizedVariants.txt Chapter 23 N Lists all the standardized variant sequences that have been defined, plus a textual
description of their desired appearance.

StandardizedVariants.html Chapter 23 N An obsolete derived documentation file.

NamedSequences.txt [UAX34] N Lists the names for all approved named sequences. This is a string-valued property of
strings.

NamedSequencesProv.txt [UAX34] P Lists the names for all provisional named sequences. This is a (provisional) string-valued
property of strings.

emoji-variation-sequences.txt [UTS51] N Lists all emoji presentation sequences and text presentation sequences involving
currently encoded emoji characters.

DoNotEmit.txt -- I This file lists characters and sequences that should not ordinarily be emitted, for
example, by keyboards and input methods, along with mappings to preferred
sequences. (This data is gathered from various sources, including the “Do Not Use”
tables in numerous sections of the core specification.)

For more information about these files and their use, see the referenced annexes or chapters of Unicode Standard, or, in the case of emoji
sequences data, [UTS51].

4.4 Zipped Files

Starting with Version 4.1.0, zipped versions of all of the UCD files, both data files and documentation files, are available under the
Public/zipped directory on the Unicode website. Each collection of zipped files is located there in a numbered subdirectory corresponding to
that version of the UCD.

Two different zipped files are provided for each version:

Unihan.zip is the zipped version of the very large Unihan data files
UCD.zip is the zipped version of all of the rest of the UCD data files, excluding the Unihan data files.

This bifurcation allows for better management of downloading version-specific information, because Unihan.zip contains all the pertinent CJK-
related property information, while UCD.zip contains all of the rest of the UCD property information, for those who may not need the
voluminous CJK data.

Starting with Version 6.1.0 the main versioned directories for the UCD also contain a copy of UCD.zip, for convenience in access.

In versions of the UCD prior to Version 4.1.0, zipped copies of the Unihan data files (which for those versions were released as a single large
text file, Unihan.txt) are provided in the same directory as the UCD data files. These zipped files are only posted for versions of the UCD in
which Unihan.txt was updated.

4.5 UCD in XML

Starting with Version 5.1.0, a set of XML data files are also released with each version of the UCD. Those data files make it possible to import
and process the UCD property data using standard XML parsing tools, instead of the specialized parsing required for the various individual
data files of the UCD.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 12/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/reports/tr41/tr41-33.html#UAX45
https://www.unicode.org/reports/tr41/tr41-33.html#UAX45
https://www.unicode.org/reports/tr41/tr41-33.html#UAX45
https://www.unicode.org/reports/tr41/tr41-33.html#UAX57
https://www.unicode.org/reports/tr41/tr41-33.html#UAX34
https://www.unicode.org/reports/tr41/tr41-33.html#UAX34
https://www.unicode.org/reports/tr41/tr41-33.html#UTS51
https://www.unicode.org/reports/tr41/tr41-33.html#UTS51

4.5.1 UAX #42

Unicode Standard Annex #42, "Unicode Character Database in XML" [UAX42] defines an XML schema which is used to incorporate all of the
Unicode character property information into the XML version of the UCD. See that annex for details of the schema and conventions regarding
the grouping of property values for more compact representations.

4.5.2 XML File List

The XML version of the UCD is contained in the ucdxml subdirectory of the UCD. The files are all zipped. The list of files is shown in Table 6.

Table 6. XML File List

File Name CJK non-CJK

ucd.all.flat.zip x x

ucd.all.grouped.zip x x

ucd.nounihan.flat.zip x

ucd.nounihan.grouped.zip x

ucd.unihan.flat.zip x

ucd.unihan.grouped.zip x

The "flat" file versions simply list all attributes with no particular compression. The "grouped" file versions apply the grouping mechanism
described in [UAX42] to cut down on the size of the data files.

5 Properties

This section documents the Unicode character properties, relating them in detail to the particular UCD data files in which they are specified.
For enumerated properties in particular, this section also documents the actual values which those properties can have.

5.1 Property Index

Table 7 provides a summary list of the Unicode character properties, excluding most of those specific to the Unihan data files [Unihan]. For a
comparable index of CJK character properties, see Unicode Standard Annex #38, "Unicode Han Database (Unihan)" [UAX38].

The properties are roughly organized into groups based on their usage. This grouping is primarily for documentation convenience and except
for contributory properties, has no normative implications. Contributory properties are shown in this index with a gray background, to better
distinguish them visually from ordinary (simple or derived) properties. Deprecated properties and other properties not recommended for
support in public property APIs are also shown with a gray background. The link on each property leads to its description in Table 9, Property
Table. Any property marked as deprecated in this index is also automatically considered obsolete.

Table 7. Property Index by Scope of Use

General

Name

Name_Alias

Block

Age

General_Category

Script

Script_Extensions

White_Space

Alphabetic

Hangul_Syllable_Type

Noncharacter_Code_Point

Default_Ignorable_Code_Point

Deprecated

Logical_Order_Exception

Variation_Selector

Case

Uppercase

Lowercase

Lowercase_Mapping

Titlecase_Mapping

Uppercase_Mapping

Case_Folding

Numeric

Numeric_Value

Numeric_Type

Hex_Digit

ASCII_Hex_Digit

Normalization

Canonical_Combining_Class

Decomposition_Mapping

Composition_Exclusion

Full_Composition_Exclusion

Decomposition_Type

FC_NFKC_Closure (deprecated)

NFC_Quick_Check

NFKC_Quick_Check

NFD_Quick_Check

NFKD_Quick_Check

Expands_On_NFC (deprecated)

Expands_On_NFD (deprecated)

Expands_On_NFKC (deprecated)

Expands_On_NFKD (deprecated)

NFKC_Casefold

Changes_When_NFKC_Casefolded

NFKC_Simple_Casefold

Segmentation

Line_Break

Grapheme_Cluster_Break

Sentence_Break

Word_Break

CJK

Ideographic

Unified_Ideograph

Radical

IDS_Unary_Operator

IDS_Binary_Operator

IDS_Trinary_Operator

Unicode_Radical_Stroke

Equivalent_Unified_Ideograph

Miscellaneous

Math

Quotation_Mark

Dash

Hyphen (deprecated, stabilized)

Sentence_Terminal

Terminal_Punctuation

Diacritic

Extender

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 13/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX42
https://www.unicode.org/reports/tr41/tr41-33.html#UAX42
https://www.unicode.org/reports/tr41/tr41-33.html#Unihan
https://www.unicode.org/reports/tr41/tr41-33.html#UAX38

Simple_Lowercase_Mapping

Simple_Titlecase_Mapping

Simple_Uppercase_Mapping

Simple_Case_Folding

Soft_Dotted

Cased

Case_Ignorable

Changes_When_Lowercased

Changes_When_Uppercased

Changes_When_Titlecased

Changes_When_Casefolded

Changes_When_Casemapped

Emoji

Emoji

Emoji_Presentation

Emoji_Modifier

Emoji_Modifier_Base

Emoji_Component

Extended_Pictographic

Shaping and Rendering

Join_Control

Joining_Group

Joining_Type

Modifier_Combining_Mark

Vertical_Orientation

East_Asian_Width

Prepended_Concatenation_Mark

Bidirectional

Bidi_Class

Bidi_Control

Bidi_Mirrored

Bidi_Mirroring_Glyph

Bidi_Paired_Bracket

Bidi_Paired_Bracket_Type

Identifiers

ID_Continue

ID_Start

XID_Continue

XID_Start

ID_Compat_Math_Continue

ID_Compat_Math_Start

Pattern_Syntax

Pattern_White_Space

Grapheme_Base

Grapheme_Extend

Grapheme_Link (deprecated)

Unicode_1_Name

ISO_Comment (deprecated, stabilized)

Regional_Indicator

Indic_Conjunct_Break

Indic_Positional_Category

Indic_Syllabic_Category

Contributory Properties

Other_Alphabetic

Other_Default_Ignorable_Code_Point

Other_Grapheme_Extend

Other_ID_Start

Other_ID_Continue

Other_Lowercase

Other_Math

Other_Uppercase

Jamo_Short_Name

5.2 About the Property Table

Table 9, Property Table specifies the list of character properties defined in the UCD. That table is divided into separate sections for each data
file in the UCD. Data files which define a single property or a small number of properties are listed first, followed by the data files which define
a large number of properties: DerivedCoreProperties.txt, DerivedNormalizationProps.txt, PropList.txt, UnicodeData.txt, and emoji-data.txt. In
some instances for these files defining many properties, the entries in the property table are grouped by type, for clarity in presentation, rather
than being listed alphabetically.

In Table 9, Property Table each property is described as follows:

First Column. This column contains the name of each of the character properties specified in the respective data file. Any special status for a
property, such as whether it is obsolete, deprecated, or stabilized, is also indicated in the first column.

Second Column. This column indicates the type of the property, according to the key in Table 8.

Table 8. Property Type Key

Property Type Symbol Examples

Catalog C Age, Block

Enumeration E Joining_Type, Line_Break

Binary B Uppercase, White_Space

String-valued S Uppercase_Mapping, Case_Folding

Numeric N Numeric_Value

Miscellaneous M Name, Jamo_Short_Name

Catalog properties have enumerated values which are expected to be regularly extended in successive versions of the Unicode
Standard. This distinguishes them from Enumeration properties.
Enumeration properties have enumerated values which constitute a logical partition space; new values will generally not be added to
them in successive versions of the standard.
Binary properties are a special case of Enumeration properties, which have exactly two values: Yes and No (or True and False).
String-valued properties are typically mappings from a Unicode code point to another Unicode code point or sequence of Unicode code
points; examples include case mappings and decomposition mappings.
Properties of strings are properties defined for strings; in other words, their domain is a set of strings rather than a set of characters or
code points. Properties of strings are sometimes called "string properties" for short. For example, the file NamedSequences.txt defines
names (which are themselves string values) for a certain set of specific character sequences. Properties of strings are not explicitly listed
for the UCD in the Property Table, and hence are given no specific type symbol in the Property Type Key.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 14/43

Numeric properties specify the actual numeric values for digits and other characters associated with numbers in some way.
Miscellaneous properties are those properties that do not fit neatly into the other property categories; they currently include character
names, comments about characters, the Script_Extensions property, and the Unicode_Radical_Stroke property (a combination of
numeric values) documented in Unicode Standard Annex #38, "Unicode Han Database (Unihan)" [UAX38].

For a more complete discussion of types of character properties, including formal definitions, see Unicode Technical Report 23, "The
Unicode Character Property Model" [UTR23].

Third Column. This column indicates the status of the property: Normative or Informative or Contributory or Provisional.

Fourth Column. This column provides a description of the property or properties. This includes information on derivation for derived
properties, as well as references to locations in the standard where the property is defined or discussed in detail.

In the section of the table for UnicodeData.txt, the data field numbers are also supplied in parentheses at the start of the description.

For a few entries in the property table, values specified in the fields in a data file only contribute to a full definition of a Unicode character
property. For example, the values in field 1 (Name) in UnicodeData.txt do not provide all the values for the Name property for all code points;
Jamo.txt must also be used, and the Name property for CJK unified ideographs, Tangut ideographs, Khitan Small Script ideographs, and
Nushu ideographs is derived by rule.

None of the Unicode character properties should be used simply on the basis of the descriptions in the property table without consulting the
relevant discussions in the Unicode Standard. Because of the enormous variety of characters in the repertoire of the Unicode Standard,
character properties tend not to be self-evident in application, even when the names of the properties may seem familiar from their usage with
much smaller legacy character encodings.

5.3 Property Definitions

This section contains the table which describes each character property and defines its status, organized by data file in the UCD. Table 9
provides general descriptions of the Unicode character properties, their derivations, and/or their usage, as well as pointers to the respective
parts of the standard where formal property definitions or additional information about the properties can be found. The property status column
and any formal statement of the derivation of derived properties are definitive; however, Table 9 does not provide formal definitions of the other
properties and should not be interpreted as such. For details on the columns and overall organization of the table, see Section 5.2 About the
Property Table.

Table 9. Property Table

ArabicShaping.txt

Joining_Type
Joining_Group

E N Basic Arabic and Syriac character shaping properties, such as initial, medial and final
shapes. See Section 9.2, Arabic in [Unicode].

Note: The correct derivation of Joining_Type based on the data field in ArabicShaping.txt is
difficult, and implementations should instead rely on the explicit listing of that property in
DerivedJoiningType.txt.

BidiBrackets.txt

Bidi_Paired_Bracket_Type E N Type of a paired bracket, either opening or closing. This property is used in the
implementation of parenthesis matching. See Unicode Standard Annex #9, "Unicode
Bidirectional Algorithm" [UAX9].

Bidi_Paired_Bracket S N For an opening bracket, the code point of the matching closing bracket. For a closing bracket,
the code point of the matching opening bracket. This property is used in the implementation
of parenthesis matching. See Unicode Standard Annex #9, "Unicode Bidirectional Algorithm"
[UAX9].

BidiMirroring.txt

Bidi_Mirroring_Glyph S I Informative mapping for substituting characters in an implementation of bidirectional
mirroring. This maps a subset of characters with the Bidi_Mirrored property to other
characters that normally are displayed with the corresponding mirrored glyph. When a
character with the Bidi_Mirrored property has the default value for Bidi_Mirroring_Glyph, that
means that no other character exists whose glyph is appropriate for character-based glyph
mirroring. Implementations must then use other mechanisms to implement mirroring of those
characters for the Unicode Bidirectional Algorithm. See Unicode Standard Annex #9,
"Unicode Bidirectional Algorithm" [UAX9]. Do not confuse this property with the Bidi_Mirrored
property itself.

Blocks.txt

Block C N Blocks.txt specifies the Block property, which consists of the list of block names for ranges of
code points. See D10b in Section 3.4, Characters and Encoding, of [Unicode]. See also the
code charts in [Unicode].

CompositionExclusions.txt

Composition_Exclusion B N A property used in normalization. See Unicode Standard Annex #15, "Unicode Normalization
Forms" [UAX15]. Unlike other files, CompositionExclusions.txt simply lists the relevant code
points.

CaseFolding.txt

Simple_Case_Folding
Case_Folding

S N Mapping from characters to their case-folded forms. This is an informative file containing
normative derived properties.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 15/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/reports/tr41/tr41-33.html#UTR23
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX15

Derived from UnicodeData and SpecialCasing.

Note: The case foldings are omitted in the data file if they are the same as the code point
itself.

DerivedAge.txt

Age C N A property defining when various code points were designated/assigned in successive
versions of the Unicode Standard. For a detailed discussion of the Age property, see Section
5.14, Character Age.

EastAsianWidth.txt

East_Asian_Width E N A property for determining the choice of wide versus narrow glyphs in East Asian contexts.
Property values are described in Unicode Standard Annex #11, "East Asian Width" [UAX11].

Note: Some values of the East_Asian_Width property are used in the derivation of
Line_Break property values, and hence are pertinent to line breaking behavior. See Unicode
Standard Annex #14, "Unicode Line Breaking Algorithm" [UAX14].

EquivalentUnifiedIdeograph.txt

Equivalent_Unified_Ideograph S I A property which maps most CJK radicals and CJK strokes to the most reasonably equivalent
CJK unified ideograph.

HangulSyllableType.txt

Hangul_Syllable_Type E N The values L, V, T, LV, and LVT used in Chapter 3, Conformance in [Unicode].

IndicPositionalCategory.txt

Indic_Positional_Category E I A property informally defining the positional categories for dependent vowels, viramas,
combining marks, and other characters used in Indic scripts. General descriptions of the
property values are provided in the header section of the data file IndicPositionalCategory.txt.

IndicSyllabicCategory.txt

Indic_Syllabic_Category E I A property informally defining the structural categories of syllabic components in Indic scripts.
General descriptions of the property values are provided in the header section of the data file
IndicSyllabicCategory.txt.

Jamo.txt

Jamo_Short_Name M C The Hangul Syllable names are derived from the Jamo Short Names, as described in
Chapter 3, Conformance in [Unicode].

LineBreak.txt

Line_Break E N A property for line breaking. For more information, see Unicode Standard Annex #14,
"Unicode Line Breaking Algorithm" [UAX14].

GraphemeBreakProperty.txt

Grapheme_Cluster_Break E I See Unicode Standard Annex #29, "Unicode Text Segmentation" [UAX29]

SentenceBreakProperty.txt

Sentence_Break E I See Unicode Standard Annex #29, "Unicode Text Segmentation" [UAX29]

WordBreakProperty.txt

Word_Break E I See Unicode Standard Annex #29, "Unicode Text Segmentation" [UAX29]

NameAliases.txt

Name_Alias M N Normative formal aliases for characters with erroneous names, for control characters and
some format characters, and for character abbreviations, as described in Chapter 4,
Character Properties in [Unicode]. Aliases tagged with the type "correction", as well as a
selection of aliases of other types, are published in the Unicode Standard code charts.

NormalizationCorrections.txt

used in Decomposition Mappings S N NormalizationCorrections lists code point differences for Normalization Corrigenda. For more
information, see Unicode Standard Annex #15, "Unicode Normalization Forms" [UAX15].

Scripts.txt

Script C I Script values for use in regular expressions and elsewhere. For more information, see
Unicode Standard Annex #24, "Unicode Script Property" [UAX24].

ScriptExtensions.txt

Script_Extensions M I Enumerated sets of Script values for use in regular expressions and elsewhere. For more
information, see Unicode Standard Annex #24, "Unicode Script Property" [UAX24].

SpecialCasing.txt

Uppercase_Mapping
Lowercase_Mapping
Titlecase_Mapping

S I Data for producing (in combination with the simple case mappings from UnicodeData.txt) the
full case mappings.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 16/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX11
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/versions/corrigenda.html
https://www.unicode.org/reports/tr41/tr41-33.html#UAX15
https://www.unicode.org/reports/tr41/tr41-33.html#UAX24
https://www.unicode.org/reports/tr41/tr41-33.html#UAX24

Unihan data files [Unihan] (for more information, see [UAX38])

Numeric_Type
Numeric_Value

E,
N

I The characters tagged in the Unihan data files with either kPrimaryNumeric,
kAccountingNumeric, or kOtherNumeric are given the property value
Numeric_Type=Numeric, and their Numeric_Value is set to the first value indicated in those
tags. (These three tags occasionally contain space-separated multiple values, which is why
the Numeric_Value is specified as the first of those values in the data file. The three tags,
kPrimaryNumeric, kAccountingNumeric, and kOtherNumeric are mutually exclusive, so no
character has more than one of those tags.)

Most characters have these numeric properties based on values from UnicodeData.txt. See
Numeric_Type.

Unicode_Radical_Stroke M I The Unicode radical-stroke count, based on the tag kRSUnicode.

VerticalOrientation.txt

Vertical_Orientation E I A property used to establish a default for the correct orientation of characters when used in
vertical text layout, as described in Unicode Standard Annex #50, "Unicode Vertical Text
Layout" [UAX50].

DerivedCoreProperties.txt

Lowercase B I Characters with the Lowercase property. For more information, see Chapter 4, Character
Properties in [Unicode].

Generated from: Ll + Other_Lowercase

Uppercase B I Characters with the Uppercase property. For more information, see Chapter 4, Character
Properties in [Unicode].

Generated from: Lu + Other_Uppercase

Cased B I Characters which are considered to be either uppercase, lowercase or titlecase characters.
This property is not identical to the Changes_When_Casemapped property. For more
information, see D135 in Section 3.13, Default Case Algorithms in [Unicode].

Generated from: Lowercase + Uppercase + Lt

Case_Ignorable B I Characters which are ignored for casing purposes. For more information, see D136 in
Section 3.13, Default Case Algorithms in [Unicode].

Generated from: Mn + Me + Cf + Lm + Sk + Word_Break=MidLetter +
Word_Break=MidNumLet + Word_Break=Single_Quote

Changes_When_Lowercased B I Characters whose normalized forms are not stable under a toLowercase mapping. For more
information, see D139 in Section 3.13, Default Case Algorithms in [Unicode].

Generated from: toLowercase(toNFD(X)) != toNFD(X)

Changes_When_Uppercased B I Characters whose normalized forms are not stable under a toUppercase mapping. For more
information, see D140 in Section 3.13, Default Case Algorithms in [Unicode].

Generated from: toUppercase(toNFD(X)) != toNFD(X)

Changes_When_Titlecased B I Characters whose normalized forms are not stable under a toTitlecase mapping. For more
information, see D141 in Section 3.13, Default Case Algorithms in [Unicode].

Generated from: toTitlecase(toNFD(X)) != toNFD(X)

Changes_When_Casefolded B I Characters whose normalized forms are not stable under case folding. For more information,
see D142 in Section 3.13, Default Case Algorithms in [Unicode].

Generated from: toCasefold(toNFD(X)) != toNFD(X)

Changes_When_Casemapped B I Characters which may change when they undergo case mapping. For more information, see
D143 in Section 3.13, Default Case Algorithms in [Unicode].

Generated from: Changes_When_Lowercased(X) or Changes_When_Uppercased(X) or
Changes_When_Titlecased(X)

Alphabetic B I Characters with the Alphabetic property. The use of the contributory Other_Alphabetic
property in the derivation of the Alphabetic property enables the inclusion of various
combining marks, such as dependent vowels in many Indic scripts, which function as basic

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 17/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unihan
https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/reports/tr41/tr41-33.html#UAX50
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

elements to spell out words of those writing systems. The Alphabetic property is used in
tooling which assigns default primary weights for characters, for generation of the DUCET
table used by the Unicode Collation Algorithm (UCA). For more information, see Chapter 4,
Character Properties in [Unicode].

Generated from: Lowercase + Uppercase + Lt + Lm + Lo + Nl + Other_Alphabetic

Default_Ignorable_Code_Point B N For programmatic determination of default ignorable code points. New characters that should
be ignored in rendering (unless explicitly supported) will be assigned in these ranges,
permitting programs to correctly handle the default rendering of such characters when not
otherwise supported. For more information, see the FAQ Display of Unsupported Characters,
and Section 5.21, Ignoring Characters in Processing in [Unicode].

Generated from:
Other_Default_Ignorable_Code_Point
+ Cf (Format characters)
+ Variation_Selector
- White_Space
- FFF9..FFFB (Interlinear annotation format characters)
- 13430..1343F (Egyptian hieroglyph format characters)
- Prepended_Concatenation_Mark (Exceptional format characters that should be visible)

Grapheme_Base B N Property used together with the definition of Standard Korean Syllable Block to define
"Grapheme base". See D58 in Chapter 3, Conformance in [Unicode].

Generated from: [0..10FFFF] - Cc - Cf - Cs - Co - Cn - Zl - Zp - Grapheme_Extend

Note: Grapheme_Base is a property of individual characters. That usage contrasts with
"grapheme base", which is an attribute of Unicode strings; a grapheme base may consist of a
Korean syllable which is itself represented by a sequence of conjoining jamos.

Grapheme_Extend B N Property used to define "Grapheme extender". See D59 in Chapter 3, Conformance in
[Unicode].

Generated from: Me + Mn + Other_Grapheme_Extend

Note: The set of characters for which Grapheme_Extend=Yes is used in the derivation of the
property value Grapheme_Cluster_Break=Extend. Grapheme_Cluster_Break=Extend
consists of the set of characters for which Grapheme_Extend=Yes or Emoji_Modifier=Yes.
See [UAX29] and [UTS51].

Grapheme_Link (Deprecated as of
5.0.0)

B I Formerly proposed for programmatic determination of grapheme cluster boundaries.
Generated from: Canonical_Combining_Class=Virama

Indic_Conjunct_Break E I This property defines values used in Grapheme Cluster Break algorithm in [UAX29].

Generated as follows:

Define the set of applicable scripts. For Unicode 15.1, the set is defined as
S = [\p{sc=Beng}\p{sc=Deva}\p{sc=Gujr}\p{sc=Mlym}\p{sc=Orya}\p{sc=Telu}]
Then for any character C:

1. InCB = Linker iff C in [S &\p{Indic_Syllabic_Category=Virama}]
2. InCB = Consonant iff C in [S &\p{Indic_Syllabic_Category=Consonant}]
3. InCB = Extend iff C in

[[\p{gcb=Extend}-\p{ccc=0}]
\p{gcb=ZWJ}
-\p{Indic_Syllabic_Category=Virama InCB=Linker}
-\p{Indic_Syllabic_Category=Consonant InCB=Consonant}]
-[\u200C]]

4. Otherwise, InCB = None (the default value)

Math B I Characters with the Math property. For more information, see Chapter 4, Character
Properties in [Unicode].

Generated from: Sm + Other_Math

ID_Start B I Used to determine programming identifiers, as described in Unicode Standard Annex #31,
"Unicode Identifier and Pattern Syntax" [UAX31].

ID_Continue B I

XID_Start B I

XID_Continue B I

DerivedNormalizationProps.txt

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 18/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/faq/unsup_char.html
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UTS51
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX31

Full_Composition_Exclusion B N Characters that are excluded from composition: those listed explicitly in
CompositionExclusions.txt, plus the derivable sets of Singleton Decompositions and Non-
Starter Decompositions, as documented in that data file.

Expands_On_NFC
Expands_On_NFD
Expands_On_NFKC
Expands_On_NFKD
(Deprecated as of 6.0.0)

B N Characters that expand to more than one character in the specified normalization form.

FC_NFKC_Closure
(Deprecated as of 6.0.0)

S N Characters that require extra mappings for closure under Case Folding plus Normalization
Form KC.
The mapping is listed in Field 2.

NFD_Quick_Check
NFKD_Quick_Check
NFC_Quick_Check
NFKC_Quick_Check

E N For property values, see Decompositions and Normalization. (Abbreviated names: NFD_QC,
NFKD_QC, NFC_QC, NFKC_QC)

NFKC_Casefold S I A mapping designed for best behavior when doing caseless matching of strings interpreted
as identifiers. (Abbreviated name: NFKC_CF)
For the definition of the related string transform toNFKC_Casefold() based on this mapping,
see Section 3.13, Default Case Algorithms in [Unicode].

The mapping is listed in Field 2.

Changes_When_NFKC_Casefolded B I Characters which are not identical to their NFKC_Casefold mapping.
Generated from: (cp != NFKC_CaseFold(cp))

NFKC_Simple_Casefold S I A mapping designed for best behavior when doing simple caseless matching of strings
interpreted as identifiers. (Abbreviated name: NFKC_SCF)
The mapping is listed in Field 2.

PropList.txt

ASCII_Hex_Digit B N ASCII characters commonly used for the representation of hexadecimal numbers.

Bidi_Control B N Format control characters which have specific functions in the Unicode Bidirectional
Algorithm [UAX9].

Dash B I Punctuation characters explicitly called out as dashes in the Unicode Standard, plus their
compatibility equivalents. Most of these have the General_Category value Pd, but some have
the General_Category value Sm because of their use in mathematics.

Deprecated B N For a machine-readable list of deprecated characters. No characters will ever be removed
from the standard, but the usage of deprecated characters is strongly discouraged.

Diacritic B I Characters that linguistically modify the meaning of another character to which they apply.
Some diacritics are not combining characters, and some combining characters are not
diacritics. Typical examples include accent marks, tone marks or letters, and phonetic
modifier letters. The Diacritic property is used in tooling which assigns default primary
weights for characters, for generation of the DUCET table used by the Unicode Collation
Algorithm (UCA).

Extender B I Characters whose principal function is to extend the value of a preceding alphabetic
character or to extend the shape of adjacent characters. Typical of these are length marks,
gemination marks, repetition marks, iteration marks, and the Arabic tatweel. The Extender
property is used in tooling which assigns default primary weights for characters, for
generation of the DUCET table used by the Unicode Collation Algorithm (UCA).

Hex_Digit B I Characters commonly used for the representation of hexadecimal numbers, plus their
compatibility equivalents.

Hyphen (Stabilized as of 4.0.0;
Deprecated as of 6.0.0)

B I Dashes which are used to mark connections between pieces of words, plus the Katakana
middle dot. The Katakana middle dot functions like a hyphen, but is shaped like a dot rather
than a dash.

Ideographic B I Characters considered to be CJKV (Chinese, Japanese, Korean, and Vietnamese) or other
siniform (Chinese writing-related) ideographs. This property roughly defines the class of
"Chinese characters" and does not include characters of other logographic scripts such as
Cuneiform or Egyptian Hieroglyphs. The Ideographic property is used in the definition of
Ideographic Description Sequences.

ID_Compat_Math_Start B I Used in mathematical identifier profile in UAX #31.

ID_Compat_Math_Continue B I Used in mathematical identifier profile in UAX #31.

IDS_Unary_Operator B N Used in Ideographic Description Sequences.

IDS_Binary_Operator B N Used in Ideographic Description Sequences.

IDS_Trinary_Operator B N Used in Ideographic Description Sequences.

Join_Control B N Format control characters which have specific functions for control of cursive joining and
ligation.

Logical_Order_Exception B N A small number of spacing vowel letters occurring in certain Southeast Asian scripts such as
Thai and Lao, which use a visual order display model. These letters are stored in text ahead

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 19/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9

of syllable-initial consonants, and require special handling for processes such as searching
and sorting.

Modifier_Combining_Mark B N Arabic combining marks potentially reordered by the AMTRA algorithm specified in UAX #53.

Noncharacter_Code_Point B N Code points permanently reserved for internal use.

Other_Alphabetic B C Used in deriving the Alphabetic property.

Other_Default_Ignorable_Code_Point B C Used in deriving the Default_Ignorable_Code_Point property.

Other_Grapheme_Extend B C Used in deriving the Grapheme_Extend property.

Other_ID_Continue B C Used to maintain backward compatibility of ID_Continue.

Other_ID_Start B C Used to maintain backward compatibility of ID_Start.

Other_Lowercase B C Used in deriving the Lowercase property.

Other_Math B C Used in deriving the Math property.

Other_Uppercase B C Used in deriving the Uppercase property.

Pattern_Syntax B N Used for pattern syntax as described in Unicode Standard Annex #31, "Unicode Identifier and
Pattern Syntax" [UAX31].

Pattern_White_Space B N

Prepended_Concatenation_Mark B I A small class of visible format controls, which precede and then span a sequence of other
characters, usually digits. These have also been known as "subtending marks", because
most of them take a form which visually extends underneath the sequence of following digits.

Quotation_Mark B I Punctuation characters that function as quotation marks.

Radical B N Used in the definition of Ideographic Description Sequences.

Regional_Indicator B N Property of the regional indicator characters, U+1F1E6..U+1F1FF. This property is referenced
in various segmentation algorithms, to assist in correct breaking around emoji flag
sequences.

Sentence_Terminal B I Punctuation characters that generally mark the end of sentences. Used in Unicode Standard
Annex #29, "Unicode Text Segmentation" [UAX29].

Soft_Dotted B N Characters with a "soft dot", like i or j. An accent placed on these characters causes the dot
to disappear. An explicit dot above can be added where required, such as in Lithuanian. See
Section 7.1, Latin in [Unicode].

Terminal_Punctuation B I Punctuation characters that generally mark the end of textual units.

Unified_Ideograph B N A property which specifies the exact set of Unified CJK Ideographs in the standard. This set
excludes CJK Compatibility Ideographs (which have canonical decompositions to Unified
CJK Ideographs), as well as characters from the CJK Symbols and Punctuation block. The
class of Unified_Ideograph=Y characters is a proper subset of the class of Ideographic=Y
characters.

Variation_Selector B N Indicates characters that are Variation Selectors. For details on the behavior of these
characters, see Section 23.4, Variation Selectors in [Unicode], and Unicode Technical
Standard #37, "Unicode Ideographic Variation Database" [UTS37].

White_Space B N Spaces, separator characters and other control characters which should be treated by
programming languages as "white space" for the purpose of parsing elements. See also
Line_Break, Grapheme_Cluster_Break, Sentence_Break, and Word_Break, which classify
space characters and related controls somewhat differently for particular text segmentation
contexts.

UnicodeData.txt

Name M N (1) When a string value not enclosed in <angle brackets> occurs in this field, it specifies the
character's Name property value, which matches exactly the name published in the code
charts. The Name property value for most ideographic characters and for Hangul syllables is
derived instead by various rules. See Section 4.8, Name in [Unicode] for a full specification of
those rules. Strings enclosed in <angle brackets> in this field either provide label information
used in the name derivation rules, or—in the case of characters which have a null string as
their Name property value, such as control characters—provide other information about their
code point type.

General_Category E N (2) This is a useful breakdown into various character types which can be used as a default
categorization in implementations. For the property values, see General Category Values.

Canonical_Combining_Class N N (3) The classes used for the Canonical Ordering Algorithm in the Unicode Standard. This
property could be considered either an enumerated property or a numeric property: the
principal use of the property is in terms of the numeric values. For the property value names
associated with different numeric values, see DerivedCombiningClass.txt and Canonical
Combining Class Values.

Bidi_Class E N (4) These are the categories required by the Unicode Bidirectional Algorithm. For the property
values, see Bidirectional Class Values. For more information, see Unicode Standard Annex
#9, "Unicode Bidirectional Algorithm" [UAX9].

The default property values depend on the code point, and are explained in
DerivedBidiClass.txt

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 20/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX31
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UTS37
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9

Decomposition_Type
Decomposition_Mapping

E,
S

N (5) This field contains both values, with the type in angle brackets. The decomposition
mappings exactly match the decomposition mappings published with the character names in
the Unicode Standard. For more information, see Character Decomposition Mappings.

Numeric_Type
Numeric_Value

E,
N

N (6) If the character has the property value Numeric_Type=Decimal, then the Numeric_Value
of that digit is represented with an integer value (limited to the range 0..9) in fields 6, 7, and 8.
Characters with the property value Numeric_Type=Decimal are restricted to digits which can
be used in a decimal radix positional numeral system and which are encoded in the standard
in a contiguous ascending range 0..9. See the discussion of decimal digits in Chapter 4,
Character Properties in [Unicode].

E,
N

N (7) If the character has the property value Numeric_Type=Digit, then the Numeric_Value of
that digit is represented with an integer value (limited to the range 0..9) in fields 7 and 8, and
field 6 is null. This covers digits that need special handling, such as the compatibility
superscript digits.
Starting with Unicode 6.3.0, no newly encoded numeric characters will be given
Numeric_Type=Digit, nor will existing characters with Numeric_Type=Numeric be changed to
Numeric_Type=Digit. The distinction between those two types is not considered useful.

E,
N

N (8) If the character has the property value Numeric_Type=Numeric, then the Numeric_Value
of that character is represented with a positive or negative integer or rational number in this
field, and fields 6 and 7 are null. This includes fractions such as, for example, "1/5" for
U+2155 VULGAR FRACTION ONE FIFTH.
Some characters have these properties based on values from the Unihan data files. See
Numeric_Type, Han.

Bidi_Mirrored B N (9) If the character is a "mirrored" character in bidirectional text, this field has the value "Y";
otherwise "N". See Section 4.7, Bidi Mirrored of [Unicode]. Do not confuse this with the
Bidi_Mirroring_Glyph property.

Unicode_1_Name (Obsolete as of
6.2.0)

M I (10) Old name as published in Unicode 1.0 or ISO 6429 names for control functions. This
field is empty unless it is significantly different from the current name for the character. No
longer used in code chart production. See Name_Alias.

ISO_Comment (Obsolete as of 5.2.0;
Deprecated and Stabilized as of 6.0.0)

M I (11) ISO 10646 comment field. It was used for notes that appeared in parentheses in the
10646 names list, or contained an asterisk to mark an Annex P note.
As of Unicode 5.2.0, this field no longer contains any non-null values.

Simple_Uppercase_Mapping S N (12) Simple uppercase mapping (single character result). If a character is part of an alphabet
with case distinctions, and has a simple uppercase equivalent, then the uppercase equivalent
is in this field. The simple mappings have a single character result, where the full mappings
may have multi-character results. For more information, see Case and Case Mapping.

Simple_Lowercase_Mapping S N (13) Simple lowercase mapping (single character result).

Simple_Titlecase_Mapping S N (14) Simple titlecase mapping (single character result).
Note: If this field is null, then the Simple_Titlecase_Mapping is the same as the
Simple_Uppercase_Mapping for this character.

emoji-data.txt

Emoji B N = Yes for characters that are emoji.

Emoji_Presentation B N = Yes for characters that have emoji presentation by default.

Emoji_Modifier B N = Yes for characters that are emoji modifiers. Currently this includes only the skin tone
modifier characters.

Emoji_Modifier_Base B N = Yes for characters that can serve as a base for emoji modifiers.

Emoji_Component B N = Yes for characters used in emoji sequences that normally do not appear on emoji
keyboards as separate choices, such as base characters for emoji keycaps. Also included
are Regional_Indicator characters and U+FE0F VARIATION SELECTOR-16.

Note: All characters in emoji sequences are either Emoji=Yes or Emoji_Component=Yes.
However, implementations must not assume that all Emoji_Component=Yes characters are
also Emoji=Yes. There are some non-emoji characters that are used in various emoji
sequences, such as tag characters and ZWJ.

Extended_Pictographic B N = Yes for pictographic symbols, as well as reserved ranges in blocks largely associated with
emoji characters. This enables segmentation rules involving emoji to be specified stably,
even in cases where an existing non-emoji pictographic symbol later comes to be treated as
an emoji.

Note: This property is used in the regex definitions for the Default Grapheme Cluster
Boundary Specification and in rule GB11 in UAX #29, Unicode Text Segmentation [UAX29],
in rule LB30b in UAX #14, Unicode Line Breaking Algorithm [UAX14], as well as for the
definition ED-4 in UTS #51, Unicode Emoji [UTS51].

5.4 Derived Extracted Properties

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 21/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#UTS51

A number of Unicode character properties have been separated out, reformatted, and listed in range format, one property per file. These files
are located under the extracted directory of the UCD. The exact list of derived extracted files and the extracted properties they represent are
given in Table 10.

The derived extracted files are provided primarily as a reformatting of data for properties specified in other data files. For nondefault values of
properties, if there is any inadvertent mismatch between the primary data files specifying those properties and these lists of extracted
properties, the primary data files are taken as definitive. However, for default values of properties, the extracted data files are definitive. This is
particularly true for properties which have multiple default values; those properties are identified with an asterisk in the table. See Section
4.2.9, Default Values.

Table 10. Extracted Properties

File Status Property Extracted from

DerivedBidiClass.txt N Bidi_Class* UnicodeData.txt, field 4

DerivedBinaryProperties.txt N Bidi_Mirrored UnicodeData.txt, field 9

DerivedCombiningClass.txt N Canonical_Combining_Class UnicodeData.txt, field 3

DerivedDecompositionType.txt N/I Decomposition_Type the <tag> in UnicodeData.txt, field 5

DerivedEastAsianWidth.txt I East_Asian_Width* EastAsianWidth.txt, field 1

DerivedGeneralCategory.txt N General_Category UnicodeData.txt, field 2

DerivedJoiningGroup.txt N Joining_Group ArabicShaping.txt, field 3

DerivedJoiningType.txt N Joining_Type* ArabicShaping.txt, field 2

DerivedLineBreak.txt N Line_Break* LineBreak.txt, field 1

DerivedName.txt N Name UnicodeData.txt, field 1

DerivedNumericType.txt N Numeric_Type UnicodeData.txt, fields 6 through 8

DerivedNumericValues.txt N Numeric_Value UnicodeData.txt, field 8

For the extraction of Decomposition_Type, characters with canonical decomposition mappings in field 5 of UnicodeData.txt have no tag. For
those characters, the extracted value is Decomposition_Type=Canonical. For characters with compatibility decomposition mappings, there are
explicit tags in field 5, and the value of Decomposition_Type is equivalent to those tags. The value Decomposition_Type=Canonical is
normative. Other values for Decomposition_Type are informative.

The value of the Name property is extracted based on the actual string value of the data in field 1 of UnicodeData.txt, omitting any code points
with the default null string value. Then for code points in the Hangul Syllables block, the Hangul Syllable Name Generation algorithm defined in
Section 3.12, Conjoining Jamo Behavior of [Unicode] is applied, to create the explicit formal names of all Hangul syllables. Characters whose
names are algorithmically defined based on suffixing the code point to a specific identifying string prefix, such as CJK UNIFIED IDEOGRAPH-
4E00, are listed with a compact range convention in DerivedName.txt, using an asterisk "*" character as the placeholder for the code point.
See Section 4.8, Name of [Unicode] for more information about how the Name property is derived.

Numeric_Value is extracted based on the actual numeric value of the data in field 8 of UnicodeData.txt or the first of the values of the
kPrimaryNumeric, kAccountingNumeric, or kOtherNumeric tags, for characters listed in the Unihan data files.

Numeric_Type is extracted as follows. If fields 6, 7, and 8 in UnicodeData.txt are all non-empty, then Numeric_Type=Decimal. Otherwise, if
fields 7 and 8 are both non-empty, then Numeric_Type=Digit. Otherwise, if field 8 is non-empty, then Numeric_Type=Numeric. For characters
listed in the Unihan data files, Numeric_Type=Numeric for characters that have kPrimaryNumeric, kAccountingNumeric, or kOtherNumeric
tags. The default value is Numeric_Type=None.

The listing of Joining_Type in DerivedJoiningType.txt should be considered as definitive, because of the complexity of trying to derive the
correct values directly from field 2 of ArabicShaping.txt.

5.5 Contributory Properties

Contributory properties contain sets of exceptions used in the generation of other properties derived from them. The contributory properties
specifically concerned with identifiers and casing contribute to the maintenance of stability guarantees for properties and/or to invariance
relationships between related properties. Other contributory properties are simply defined as a convenience for property derivation.

Most contributory properties have names using the pattern "Other_XXX" and are used to derive the corresponding "XXX" property. For
example, the Other_Alphabetic property is used in the derivation of the Alphabetic property.

Contributory properties are typically defined in PropList.txt and the corresponding derived property is then listed in DerivedCoreProperties.txt.

Jamo_Short_Name is an unusual contributory property, both in terms of its name and how it is used. It is defined in its own property file,
Jamo.txt, and is used to derive the Name property value for Hangul syllable characters, according to the rules spelled out in Section 3.12,
Conjoining Jamo Behavior in [Unicode].

Contributory is considered to be a distinct status for a Unicode character property. Contributory properties are neither normative nor
informative. This distinct status is marked with the symbol "C" in the status column in the property table. For convenience of reference, all
contributory properties are also listed in Table 10a, along with the properties whose derivation they contribute to.

Table 10a. Contributory Properties

File Property Used in Derivation of

Jamo.txt Jamo_Short_Name Name

PropList.txt Other_Alphabetic Alphabetic

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 22/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

Other_Default_Ignorable_Code_Point Default_Ignorable_Code_Point

Other_Grapheme_Extend Grapheme_Extend

Other_ID_Start ID_Start, XID_Start

Other_ID_Continue ID_Continue, XID_Continue

Other_Lowercase Lowercase

Other_Math Math

Other_Uppercase Uppercase

Contributory properties are incomplete by themselves and are not intended for independent use. For example, an API returning Unicode
property values should implement the derived core properties such as Alphabetic or Default_Ignorable_Code_Point, rather than the
corresponding contributory properties, Other_Alphabetic or Other_Default_Ignorable_Code_Point.

5.6 Case and Case Mapping

Case for bicameral scripts and case mapping of characters are complicated topics in the Unicode Standard—both because of their inherent
algorithmic complexity and because of the number of characters and special edge cases involved.

This section provides a brief roadmap to discussions about these topics, and specifications and definitions in the standard, as well as
explaining which case-related properties are defined in the UCD.

Section 3.13, Default Case Algorithms in [Unicode] provides formal definitions for a number of case-related concepts (cased, case-
ignorable, ...), for case conversion (toUppercase(X), ...), and for case detection (isUppercase(X), ...). It also provides the formal definition of
caseless matching for the standard, taking normalization into account.

Section 4.2, Case in [Unicode] introduces case and case mapping properties. Table 4-3, Sources for Case Mapping Information in [Unicode]
describes the kind of case-related information that is available in various data files of the UCD. Table 11 lists those data files again, giving the
explicit list of case-related properties defined in each. The link on each property leads its description in Table 9, Property Table.

Table 11. UCD Files and Case Properties

File Name Case Properties

UnicodeData.txt Simple_Uppercase_Mapping, Simple_Lowercase_Mapping, Simple_Titlecase_Mapping

SpecialCasing.txt Uppercase_Mapping, Lowercase_Mapping, Titlecase_Mapping

CaseFolding.txt Simple_Case_Folding, Case_Folding

DerivedCoreProperties.txt Uppercase, Lowercase, Cased, Case_Ignorable, Changes_When_Lowercased,
Changes_When_Uppercased, Changes_When_Titlecased, Changes_When_Casefolded,
Changes_When_Casemapped

DerivedNormalizationProps.txt NFKC_Casefold, Changes_When_NFKC_Casefolded

PropList.txt Soft_Dotted, Other_Uppercase, Other_Lowercase

For compatibility with existing parsers, UnicodeData.txt only contains case mappings for characters where they constitute one-to-one
mappings; it also omits information about context-sensitive case mappings. Information about these special cases can be found in the
separate data file, SpecialCasing.txt, expressed as separate properties.

Section 5.18, Case Mappings, in [Unicode] discusses various implementation issues for handling case, including language-specific case
mapping, as for Greek and for Turkish. That section also describes case folding in particular detail.

The special casing conditions associated with case mapping for Greek, Turkish, and Lithuanian are specified in an additional field in
SpecialCasing.txt. For example, the lowercase mapping for sigma in Greek varies according to its position in a word. The condition list does
not constitute a formal character property in the UCD, because it is a statement about the context of occurrence of casing behavior for a
character or characters, rather than a semantic attribute of those characters. Versions of the UCD from Version 3.2.0 to Version 5.0.0 did list
property aliases for Special_Case_Condition (scc), but this was determined to be an error when the UCD was analyzed for representation in
XML; consequently, the Special_Case_Condition property aliases were removed as of Version 5.1.0.

Caseless matching is of particular concern for a number of text processing algorithms, so is also discussed at some length in Unicode
Standard Annex #31, "Unicode Identifier and Pattern Syntax" [UAX31] and in Unicode Technical Standard #10, "Unicode Collation Algorithm"
[UTS10].

Further information about locale-specific casing conventions can be found in the Unicode Common Locale Data Repository [CLDR].

5.7 Property Value Lists

The following subsections give summaries of property values for certain Enumeration properties. Other property values are documented in
other, topically-specific annexes; for example, the Line_Break property values are documented in Unicode Standard Annex #14, "Unicode Line
Breaking Algorithm" [UAX14] and the various segmentation-related property values are documented in Unicode Standard Annex #29,
"Unicode Text Segmentation" [UAX29].

5.7.1 General Category Values

The General_Category property of a code point provides for the most general classification of that code point. It is usually determined based
on the primary characteristic of the assigned character for that code point. For example, is the character a letter, a mark, a number,
punctuation, or a symbol, and if so, of what type? Other General_Category values define the classification of code points which are not
assigned to regular graphic characters, including such statuses as private-use, control, surrogate code point, and reserved unassigned.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 23/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX31
https://www.unicode.org/reports/tr41/tr41-33.html#UTS10
https://www.unicode.org/reports/tr41/tr41-33.html#CLDR
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29

Many characters have multiple uses, and not all such cases can be captured entirely by the General_Category value. For example, the
General_Category value of Latin, Greek, or Hebrew letters does not attempt to cover (or preclude) the numerical use of such letters as Roman
numerals or in other numerary systems. Conversely, the General_Category of ASCII digits 0..9 as Nd (decimal digit) neither attempts to cover
(or preclude) the occasional use of these digits as letters in various orthographies. The General_Category is simply the first-order, most usual
categorization of a character.

For more information about the General_Category property, see Chapter 4, Character Properties in [Unicode].

The values in the General_Category field in UnicodeData.txt make use of the short, abbreviated property value aliases for General_Category.
For convenience in reference, Table 12 lists all the abbreviated and long value aliases for General_Category values, reproduced from
PropertyValueAliases.txt, along with a brief description of each category.

Table 12. General_Category Values

Abbr Long Description

Lu Uppercase_Letter an uppercase letter

Ll Lowercase_Letter a lowercase letter

Lt Titlecase_Letter a digraph encoded as a single character, with first part uppercase

LC Cased_Letter Lu | Ll | Lt

Lm Modifier_Letter a modifier letter

Lo Other_Letter other letters, including syllables and ideographs

L Letter Lu | Ll | Lt | Lm | Lo

Mn Nonspacing_Mark a nonspacing combining mark (zero advance width)

Mc Spacing_Mark a spacing combining mark (positive advance width)

Me Enclosing_Mark an enclosing combining mark

M Mark Mn | Mc | Me

Nd Decimal_Number a decimal digit

Nl Letter_Number a letterlike numeric character

No Other_Number a numeric character of other type

N Number Nd | Nl | No

Pc Connector_Punctuation a connecting punctuation mark, like a tie

Pd Dash_Punctuation a dash or hyphen punctuation mark

Ps Open_Punctuation an opening punctuation mark (of a pair)

Pe Close_Punctuation a closing punctuation mark (of a pair)

Pi Initial_Punctuation an initial quotation mark

Pf Final_Punctuation a final quotation mark

Po Other_Punctuation a punctuation mark of other type

P Punctuation Pc | Pd | Ps | Pe | Pi | Pf | Po

Sm Math_Symbol a symbol of mathematical use

Sc Currency_Symbol a currency sign

Sk Modifier_Symbol a non-letterlike modifier symbol

So Other_Symbol a symbol of other type

S Symbol Sm | Sc | Sk | So

Zs Space_Separator a space character (of various non-zero widths)

Zl Line_Separator U+2028 LINE SEPARATOR only

Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only

Z Separator Zs | Zl | Zp

Cc Control a C0 or C1 control code

Cf Format a format control character

Cs Surrogate a surrogate code point

Co Private_Use a private-use character

Cn Unassigned a reserved unassigned code point or a noncharacter

C Other Cc | Cf | Cs | Co | Cn

Note that the value gc=Cn does not actually occur in UnicodeData.txt, because that data file does not list unassigned code points.

The distinctions between some General_Category values are somewhat arbitrary for edge cases, particularly those involving symbols and
punctuation. For example, a number of multiple-function ASCII characters, including "@", "#", "%", and "&", have long been classified as

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 24/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

Other_Punctuation (gc=Po), although they are not among the characters used as punctuation marks in traditional Western typography. Other
characters may also be ambiguous between functioning to organize and delimit textual units (punctuation-like) or to represent concepts
(symbol-like). Likewise, it may not always be clear whether some symbols are primarily used for mathematics or whether they are general
symbols with occasional or even common use in mathematics. For example, many arrow symbols are classed as Other_Symbol, although
they are widely used in mathematics. The General_Category values constitute a rough partitioning of characters to make distinctions for
algorithmic processing, but do not provide a definitive classification for such overlapping or ambiguous usage of characters.

Characters with the quotation-related General_Category values Pi or Pf may behave like opening punctuation (gc=Ps) or closing punctuation
(gc=Pe), depending on usage and quotation conventions.

General_Category values in the table highlighted in light blue (LC, L, M, N, P, S, Z, C) stand for groupings of related General_Category values.
The classes they represent can be derived by unions of the relevant simple values, as shown in the table. The abbreviated and long value
aliases for these classes are provided as a convenience for implementations, such as regex, which may wish to match more generic
categories, such as "letter" or "number", rather than the detailed subtypes for General_Category. These aliases for groupings of
General_Category values do not occur in UnicodeData.txt, which instead always specifies the enumerated subtype for the General_Category
of a character.

The symbol "L&" is a label used to stand for any combination of uppercase, lowercase or titlecase letters (Lu, Ll, or Lt), in the first part of
comments in the data files of the UCD. It is equivalent to gc=LC, but is only a label in comments, and is not expected to be used as an
identifier for regular expression matching.

The Unicode Standard does not assign nondefault property values to control characters (gc=Cc), except for certain well-defined exceptions
involving the Unicode Bidirectional Algorithm, the Unicode Line Breaking Algorithm, and Unicode Text Segmentation. Also, implementations
will usually assign behavior to certain line breaking control characters—most notably U+000D and U+000A (CR and LF)—according to
platform conventions. See Section 5.8, Newline Guidelines in [Unicode] for more information.

5.7.2 Bidirectional Class Values

The values in the Bidi_Class field in UnicodeData.txt make use of the short, abbreviated property value aliases for Bidi_Class. For
convenience in reference, Table 13 lists all the abbreviated and long value aliases for Bidi_Class values, reproduced from
PropertyValueAliases.txt, along with a brief description of each category.

Table 13. Bidi_Class Values

Abbr Long Description

Strong Types

L Left_To_Right any strong left-to-right character

R Right_To_Left any strong right-to-left (non-Arabic-type) character

AL Arabic_Letter any strong right-to-left (Arabic-type) character

Weak Types

EN European_Number any ASCII digit or Eastern Arabic-Indic digit

ES European_Separator plus and minus signs

ET European_Terminator a terminator in a numeric format context, includes currency signs

AN Arabic_Number any Arabic-Indic digit

CS Common_Separator commas, colons, and slashes

NSM Nonspacing_Mark any nonspacing mark

BN Boundary_Neutral most format characters, control codes, or noncharacters

Neutral Types

B Paragraph_Separator various newline characters

S Segment_Separator various segment-related control codes

WS White_Space spaces

ON Other_Neutral most other symbols and punctuation marks

Explicit Formatting Types

LRE Left_To_Right_Embedding U+202A: the LR embedding control

LRO Left_To_Right_Override U+202D: the LR override control

RLE Right_To_Left_Embedding U+202B: the RL embedding control

RLO Right_To_Left_Override U+202E: the RL override control

PDF Pop_Directional_Format U+202C: terminates an embedding or override control

LRI Left_To_Right_Isolate U+2066: the LR isolate control

RLI Right_To_Left_Isolate U+2067: the RL isolate control

FSI First_Strong_Isolate U+2068: the first strong isolate control

PDI Pop_Directional_Isolate U+2069: terminates an isolate control

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 25/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

Please refer to Unicode Standard Annex #9, "Unicode Bidirectional Algorithm" [UAX9] for an an explanation of the significance of these values
when formatting bidirectional text.

The four enumerated values for the isolate controls were added in Unicode 6.3. That means there is a discontinuity in the enumeration for
Bidi_Class between Unicode 6.2 and Unicode 6.3 (and later versions) which parsers of UnicodeData.txt and DerivedBidiClass.txt must take
into account.

5.7.3 Character Decomposition Mapping

The value of the Decomposition_Mapping property for a character is provided in field 5 of UnicodeData.txt. This is a string-valued property,
consisting of a sequence of one or more Unicode code points. The default value of the Decomposition_Mapping property is the code point of
the character itself. The use of the default value for a character is indicated by leaving field 5 empty in UnicodeData.txt. Informally, the value of
the Decomposition_Mapping property for a character is known simply as its decomposition mapping. When a character's decomposition
mapping is other than the default value, the decomposition mapping is printed out explicitly in the names list for the Unicode code charts.

The prefixed tags supplied with a subset of the decomposition mappings generally indicate formatting information. Where no such tag is given,
the mapping is canonical. Conversely, the presence of a formatting tag also indicates that the mapping is a compatibility mapping and not a
canonical mapping. In the absence of other formatting information in a compatibility mapping, the tag is used to distinguish it from canonical
mappings.

In some instances a canonical mapping or a compatibility mapping may consist of a single character. For a canonical mapping, this indicates
that the character is a canonical equivalent of another single character. For a compatibility mapping, this indicates that the character is a
compatibility equivalent of another single character.

A canonical mapping may also consist of a pair of characters, but is never longer than two characters. When a canonical mapping consists of
a pair of characters, the first character may itself be a character with a decomposition mapping, but the second character never has a
decomposition mapping.

Compatibility mappings can be much longer than canonical mappings. For historical reasons, the longest compatibility mapping is 18
characters long. Compatibility mappings are guaranteed to be no longer than 18 characters, although most consist of just a few characters.

The compatibility formatting tags used in the UCD are listed in Table 14.

Table 14. Compatibility Formatting Tags

Tag Description

 Font variant (for example, a blackletter form)

<noBreak> No-break version of a space or hyphen

<initial> Initial presentation form (Arabic)

<medial> Medial presentation form (Arabic)

<final> Final presentation form (Arabic)

<isolated> Isolated presentation form (Arabic)

<circle> Encircled form

<super> Superscript form

<sub> Subscript form

<vertical> Vertical layout presentation form

<wide> Wide (or zenkaku) compatibility character

<narrow> Narrow (or hankaku) compatibility character

<small> Small variant form (CNS compatibility)

<square> CJK squared font variant

<fraction> Vulgar fraction form

<compat> Otherwise unspecified compatibility character

Note: There is a difference between decomposition and the Decomposition_Mapping property. The Decomposition_Mapping property is a
string-valued property whose values (mappings) are defined in UnicodeData.txt, while the decomposition (also termed "full decomposition") is
defined in Section 3.7, Decomposition in [Unicode] to use those mappings recursively.

The canonical decomposition is formed by recursively applying the canonical mappings, then applying the Canonical Ordering Algorithm.
The compatibility decomposition is formed by recursively applying the canonical and compatibility mappings, then applying the Canonical
Ordering Algorithm.

Starting from Unicode 2.1.9, the decomposition mappings in UnicodeData.txt can be used to derive the full decomposition of any single
character in canonical order, without the need to separately apply the Canonical Ordering Algorithm. However, canonical ordering of combining
character sequences must still be applied in decomposition when normalizing source text which contains any combining marks.

The normalization of Hangul conjoining jamos and of Hangul syllables depends on algorithmic mapping, as specified in Section 3.12,
Conjoining Jamo Behavior in [Unicode]. That algorithm specifies the full decomposition of all precomposed Hangul syllables, but effectively it is
equivalent to the recursive application of pairwise decomposition mappings, as for all other Unicode characters. Formally, the
Decomposition_Mapping property value for a Hangul syllable is the pairwise decomposition and not the full decomposition.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 26/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

Each character with the Hangul_Syllable_Type value LVT will have a Decomposition_Mapping consisting of a character with an LV value and a
character with a T value. Thus for U+CE31 the Decomposition_Mapping is <U+CE20, U+11B8>, rather than <U+110E, U+1173, U+11B8>.

The Unihan property kCompatibilityVariant consists of a listing of the canonical Decomposition_Mapping property values just for CJK
compatibility ideographs. Because its values are derived from UnicodeData.txt, it is formally considered to be a derived property. The exact
statement of the derivation for kCompatibilityVariant is listed in Unicode Standard Annex #38, "Unicode Han Database (Unihan)" [UAX38].

5.7.4 Canonical Combining Class Values

The values in the Canonical_Combining_Class field in UnicodeData.txt are numerical values used in the Canonical Ordering Algorithm. Some
of those numerical values also have explicit symbolic labels as property value aliases, to make their intended application more
understandable. For convenience in reference, Table 15 lists the long symbolic aliases for Canonical_Combining_Class values, reproduced
from PropertyValueAliases.txt, along with a brief description of each category. The listing for fixed position classes, with long symbolic aliases
of the form "Ccc10", and so forth, is abbreviated, as when those labels occur they are predictable in form, based on the numeric values.

Table 15. Canonical_Combining_Class Values

Value Long Description

0 Not_Reordered Spacing and enclosing marks; also many vowel and consonant signs, even if nonspacing

1 Overlay Marks which overlay a base letter or symbol

6 Han_Reading Diacritic reading marks for CJK unified ideographs

7 Nukta Diacritic nukta marks in Brahmi-derived scripts

8 Kana_Voicing Hiragana/Katakana voicing marks

9 Virama Viramas

10 Ccc10 Start of fixed position classes

... ...

199 End of fixed position classes

200 Attached_Below_Left Marks attached at the bottom left

202 Attached_Below Marks attached directly below

204 Marks attached at the bottom right

208 Marks attached to the left

210 Marks attached to the right

212 Marks attached at the top left

214 Attached_Above Marks attached directly above

216 Attached_Above_Right Marks attached at the top right

218 Below_Left Distinct marks at the bottom left

220 Below Distinct marks directly below

222 Below_Right Distinct marks at the bottom right

224 Left Distinct marks to the left

226 Right Distinct marks to the right

228 Above_Left Distinct marks at the top left

230 Above Distinct marks directly above

232 Above_Right Distinct marks at the top right

233 Double_Below Distinct marks subtending two bases

234 Double_Above Distinct marks extending above two bases

240 Iota_Subscript Greek iota subscript only

Some of the Canonical_Combining_Class values in the table are not currently used for any characters but are specified here for
completeness. Some values do not have long symbolic aliases and are not listed in PropertyValueAliases.txt. Do not assume that absence of
a long symbolic alias implies non-use of a particular Canonical_Combining_Class. See DerivedCombiningClass.txt for a complete listing of the
use of Canonical_Combining_Class values for any particular version of the UCD.

For use in regular expression matching, fixed position classes (ccc=10 through ccc=199) which actually occur in the Unicode Character
Database for any version are given predictable aliases of the form "Ccc10", "Ccc11", and so forth. The complete list of such aliases which are
actually defined can be found in PropertyValueAliases.txt.

The character property invariants regarding Canonical_Combining_Class guarantee that values, once assigned, will never change, and that all
values used will be in the range 0..254. See Invariants in Implementations.

Combining marks with ccc=224 (Left) follow their base character in storage, as for all combining marks, but are rendered visually on the left
side of them. For all past versions of the UCD and continuing with this version of the UCD, only two tone marks used in certain notations for
Hangul syllables have ccc=224. Those marks are actually rendered visually on the left side of the preceding grapheme cluster, in the case of
Hangul syllables resulting from sequences of conjoining jamos.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 27/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX38

Those few instances of combining marks with ccc=Left should be distinguished from the far more numerous examples of left-side vowel signs
and vowel letters in Brahmi-derived scripts. The Canonical_Combining_Class value is zero (Not_Reordered) for both ordinary, left-side
(reordrant) vowel signs such as U+093F DEVANAGARI VOWEL SIGN I and for Thai-style left-side (Logical_Order_Exception=Yes) vowel
letters such as U+0E40 THAI CHARACTER SARA E. The "Not_Reordered" of ccc=Not_Reordered refers to the behavior of the character in
terms of the Canonical Ordering Algorithm as part of the definition of Unicode Normalization; it does not refer to any issues of visual reordering
of glyphs involved in display and rendering. See "Canonical Ordering Algorithm" in Section 3.11, Normalization Forms in [Unicode].

5.7.5 Decompositions and Normalization

Decomposition is specified in Chapter 3, Conformance of [Unicode]. That chapter also specifies the interaction between decomposition and
normalization.

A number of derived properties related to Unicode normalization are called the "Quick_Check" properties. These are defined to enable various
optimizations for implementations of normalization, as explained in Section 9, Detecting Normalization Forms, in Unicode Standard Annex #15,
"Unicode Normalization Forms" [UAX15]. The values for the four Quick_Check properties for all code points are listed in
DerivedNormalizationProps.txt. The interpretations of the possible property values are summarized in Table 16.

Table 16. Quick_Check Property Values

Property Value Description

NFC_QC, NFKC_QC, NFD_QC, NFKD_QC No Characters that cannot ever occur in the respective normalization form.

NFC_QC, NFKC_QC Maybe Characters that may occur in the respective normalization, depending on the context.

NFC_QC, NFKC_QC, NFD_QC, NFKD_QC Yes All other characters. This is the default value for Quick_Check properties.

The Quick_Check property values are recommended for exposure in a public library API which supports Unicode character properties,
because they can be used to optimize code that needs to normalize Unicode strings. They enable fast checking of whether some input strings
are already in the desired normalization form. This may make it possible to bypass the more time-consuming call to run the complete Unicode
Normalization Algorithm on the input string.

In contrast, some normalization-related Unicode character properties are not recommended for exposure in a public library API. Notably, these
include Decomposition_Mapping, Composition_Exclusion, and the derived Full_Composition_Exclusion. These properties are only used
internally in a conformant implementation of the Unicode Normalization Algorithm. Exposing them in a public API can lead to confusion by
users of the API. In particular, Decomposition_Mapping is very easy to misinterpret as designating the decomposition of a character, also
known as the character's full decomposition. See Definitions D62 and D64 in Section 3.7, Decomposition in [Unicode].

5.7.6 Properties Whose Values Are Sets of Values

Most properties have a single value associated with each code point. However, some properties may instead associate a set of multiple
different values with each code point. For example, the provisional kVietnamese property, which lists Vietnamese pronunciations for unified
CJK ideographs, has values which consist of a set of zero or more pronunciation strings. Thus, the Unihan Database contains an entry:

U+6258 kVietnamese thác thách thốc thước thướt

This line is to be interpreted as associating a set of five string values, {"thác", "thách", "thốc", "thước", "thướt"} with the kVietnamese property
for U+6258.

Similarly, the Script_Extensions property has values which consist of a set of one or more Script property values. Thus the property file
ScriptExtensions.txt in the UCD contains an entry:

0640 ; Adlm Arab Mand Mani Phlp Rohg Sogd Syrc # Lm ARABIC TATWEEL

This line is to be interpreted as associating a set of eight enumerated Script property values, {Adlm, Arab, Mand, Mani, Phlp, Rohg, Sogd,
Syrc}, with the Script_Extensions property for U+0640.

In the case of Script_Extensions, in particular, the set of sets which constitute meaningful values of the property is relatively small, and could
be explicitly evaluated for any particular Unicode version. For example:

{{Adlm, Arab, Mand, Mani, Phlp, Rohg, Sogd, Syrc}, {Arab, Copt}, {Arab, Rohg}, {Arab, Syrc}, {Arab, Thaa}, {Arab, Syrc, Thaa}, {Armn, Geor}, ...}

However, an enumeration of this set of set values is unlikely to be of much implementation value, and would be likely to change significantly
between versions of the standard. In other cases, such as for properties defining pronunciation readings for unified CJK ideographs, these
sets of sets are completely open-ended, and there is no point to attempting to provide explicit enumerations of such sets in the UCD.

The order of the element values in such sets may or may not be significant. For example, the order among the element values for kCantonese
and for Script_Extensions is not significant. By way of contrast, when the kMandarin property shows two values for a code point, the first value
is used to indicate a preferred pronunciation for zh-Hans (CN) and the second a preferred pronunciation for zh-Hant (TW).

For data file format considerations regarding properties which take sets of values, see Section 4.2.8 Multiple Values for Properties. For
considerations regarding validation of such properties, see Section 5.11.5 Validation of Multivalued Properties. See also Unicode Technical
Standard #18, "Unicode Regular Expressions" [UTS18] for a discussion of how to handle such properties when processing regular
expressions.

5.8 Property and Property Value Aliases

Both Unicode character properties themselves and their values are given symbolic aliases. The formal lists of aliases are provided so that
well-defined symbolic values are available for XML formats of the UCD data, for regular expression property tests, and for other programmatic
textual descriptions of Unicode data. The aliases for properties are defined in PropertyAliases.txt. The aliases for property values are defined
in PropertyValueAliases.txt.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 28/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UAX15
https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#UTS18

Table 17. Alias Files in the UCD

File Name Status Description

PropertyAliases.txt N Names and abbreviations for properties

PropertyValueAliases.txt N Names and abbreviations for property values

Aliases are defined as ASCII-compatible identifiers, using only uppercase or lowercase A-Z, digits, and underscore "_". Case is not significant
when comparing aliases, but the preferred form used in the data files for longer aliases is to titlecase them for clarity. Once a particular alias is
defined in the data files, its spelling is stable and will not be updated in future versions. See Alias Stability Policy. This stability guarantee
makes it possible to use property aliases and property value aliases as stable identifiers.

Each entry in PropertyAliases.txt and PropertyValueAliases.txt contains at least two entries for aliases, and may contain more. The first two
entries have a special status as the preferred aliases. The first of the two preferred aliases is typically a short or abbreviated form, while the
second is a longer, more formal alias, often treated as the official designation of the property or property value in documentation.

In some cases, the entries for preferred aliases may contain identical strings. Formally, this is considered to be a single alias entered twice in
the data file, rather than two distinct aliases. Contrast, for example, the entries for the General_Category property and the Emoji property in
PropertyAliases.txt:

gc ; General_Category
Emoji ; Emoji

In such cases, a future revision of the UCD may introduce a new, distinct alias. The new, distinct alias would then replace either one of the two
occurrences of the single alias.

The purpose of alias stability is to permanently reserve the relation between any specific alias and the property or property value it refers to.
This guarantees that regular expressions or API calls that use a given alias will continue to succeed. However, there is no guarantee as to the
exact order of occurrence of that alias in the data line in PropertyAliases.txt or PropertyValueAliases.txt. A new alias may be introduced,
displacing an existing value from the first or second position to a later position in the line. This means that implementations parsing these data
files for aliases must not assume immutability of the string for an alias in a particular field of the data lines. Alias stability applies rather to the
complete set of aliases defined on each data line.

Aliases may be translated in appropriate environments, and additional aliases may be useful in certain contexts. There is no requirement that
only the aliases defined in the alias files of the UCD be used when referring to Unicode character properties or their values; however, their use
is recommended for interoperability in data formats or in programmatic contexts.

Aliases may be provided for provisional properties. There are stability guarantees for property aliases and property value aliases, but no
stability guarantees for provisional properties or other provisional data files; consequently, there can also be no stability guarantee for property
aliases or property value aliases associated with provisional properties.

5.8.1 Property Aliases

In PropertyAliases.txt, the first field typically specifies an abbreviated symbolic name for the property, and the second field specifies the long
symbolic name for the property. These are the preferred aliases. Additional aliases for a few properties are specified in the third or subsequent
fields.

Aliases for normative and informative properties defined in the Unihan data files are included in PropertyAliases.txt, beginning with Version
5.2.

The long symbolic name alias is self-descriptive, and is treated as the official name of a Unicode character property. For clarity it is used
whenever possible when referring to that property in this annex and elsewhere in the Unicode Standard. For example: "The Line_Break
property is discussed in Unicode Standard Annex #14, "Unicode Line Breaking Algorithm" [UAX14]."

The abbreviated symbolic name alias is usually short and less mnemonic, but is useful for expressions such as "lb=BA" in data or in other
contexts where the meaning is clear. Note that although the UCD documentation refers to this first symbolic name alias as "abbreviated", there
is no requirement that the first field be an actual abbreviation or even that it be shorter than the "long" symbolic name alias. If the long
symbolic name alias is already a short identifier, in many cases the "abbreviated" symbolic name alias is identical to the value in the second
field. There is also one principled class where the "abbreviated" field is actually longer than the "long" field—the property aliases for the Unihan
tags. In that case, the second field deliberately matches the Unihan tags exactly, so that it can serve its function as being the official property
value identifier. Then, because there was no systematic way to abbreviate Unihan tags, while still retaining any reasonable comprehensibility
for them, the first field in PropertyAliases.txt was created by systematically prefixing "cj" to each Unihan tag, resulting in labels with the
mnemonic "cjk" prefix. Thus it is not a mistake that in such cases the first field contains a longer string than the second field. Implementations
should not build in assumptions about the relative length of these symbolic name aliases.

The property aliases specified in PropertyAliases.txt constitute a unique namespace. When using these symbolic values, no alias for one
property will match an alias for another property.

5.8.2 Property Value Aliases

In PropertyValueAliases.txt, the first field contains the abbreviated alias for a Unicode property, the second field specifies an abbreviated
symbolic name for a value of that property, and the third field specifies the long symbolic name for that value of that property. These are the
preferred aliases. Additional aliases for some property values may be specified in the fourth or subsequent fields. For example, for binary
properties, the abbreviated alias for the True value is "Y", and the long alias is "Yes", but each entry also specifies "T" and "True" as additional
aliases for that value, as shown in Table 18.

Table 18. Binary Property Value Aliases

Long Abbreviated Other Aliases

Yes Y True, T

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 29/43

https://www.unicode.org/policies/stability_policy.html#Alias_Stability
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14

No N False, F

Not every property value has an associated alias. Property value aliases are typically supplied for catalog and enumeration properties, which
have well-defined, enumerated values. It does not make sense to specify property value aliases, for example, for the Numeric_Value property,
whose value could be any number, or for a string-valued property such as Simple_Lowercase_Mapping, whose values are mappings from one
code point to another.

The Canonical_Combining_Class property requires special handling in PropertyValueAliases.txt. The values of this property are numeric, but
they comprise a closed, enumerated set of values. The more important of those values are given symbolic name aliases. In
PropertyValueAliases.txt, the second field provides the numeric value, while the third field contains the abbreviated symbolic name alias and
the fourth field contains the long symbolic name alias for that numeric value. For example:

ccc; 230; A ; Above
ccc; 232; AR ; Above_Right

Taken by themselves, property value aliases do not constitute a unique namespace. The abbreviated aliases, in particular, are often re-used
as aliases for values for different properties. All of the binary property value aliases, for example, make use of the same "Y", "Yes", "T", "True"
symbols. Property value aliases may also overlap the symbols used for property aliases. For example, "Sc" is the abbreviated alias for the
"Currency_Symbol" value of the General_Category property, but it is also the abbreviated alias for the Script property. However, the aliases for
values for any single property are always unique within the context of that property. That means that expressions that combine a property alias
and a property value alias, such as "lb=BA" or "gc=Sc" always refer unambiguously just to one value of one given property, and will not match
any other value of any other property.

Prior to Version 6.1.0, the property value alias entries for three properties, Age, Block, and Joining_Group, made use of a special metavalue
"n/a" in the field for the abbreviated alias. This should be understood as meaning that no abbreviated alias was defined for that value for that
property, rather than as an alias per se. Starting with Version 6.1.0, all property values for those three properties have abbreviated aliases, so
there is no current use of the "n/a" metavalue.

In a few cases, because of longstanding legacy practice in referring to values of a property by short identifiers, the abbreviated alias and the
long alias are the same. This can be seen, for example, in Examples include some property value aliases for the Line_Break property and the
Grapheme_Cluster_Break property. In a number of other cases, there is no need for short or abbreviated aliases distinct from longer aliases,
so no abbreviations have been introduced. Examples include property value aliases associated with the Indic_Positional_Category,
Indic_Syllabic_Category, and the Jamo_Short_Name properties.

The property Script_Extensions consists of enumerated sets of Script property values. The set of those sets is potentially open-ended, and no
property value aliases are defined for them.

5.9 Matching Rules

When matching Unicode character property names and values, it is strongly recommended that all Property and Property Value Aliases be
recognized. For best results in matching, rather than using exact binary comparisons, the following loose matching rules should be observed.

5.9.1 Matching Numeric Property Values

For all numeric properties, and for properties such as Unicode_Radical_Stroke which are constructed from combinations of numeric values,
use loose matching rule UAX44-LM1 when comparing property values.

UAX44-LM1. Apply numeric equivalences.

"01.00" is equivalent to "1".
"1.666667" in the UCD is a repeating fraction, and equivalent to "10/6" or "5/3".

5.9.2 Matching Character Names

Unicode character names constitute a special case. Formally, they are values of the Name property. While each Unicode character name for
an assigned character is guaranteed to be unique, names are assigned in such a way that the presence or absence of spaces cannot be used
to distinguish them. Furthermore, implementations sometimes create identifiers from Unicode character names by inserting underscores for
spaces. For best results in comparing Unicode character names, use loose matching rule UAX44-LM2.

UAX44-LM2. Ignore case, whitespace, underscore ('_'), and all medial hyphens except the hyphen in U+1180 HANGUL JUNGSEONG O-E.

"zero-width space" is equivalent to "ZERO WIDTH SPACE" or "zerowidthspace"
"character -a" is not equivalent to "character a"

In this rule "medial hyphen" is to be construed as a hyphen occurring immediately between two alphanumeric characters [A..Z, 0..9] in the
normative Unicode character name, as published in the Unicode names list in the UCD, and not to any hyphen that may transiently occur
medially as a result of removing whitespace before removing hyphens in a particular implementation of matching. (See Section 4.8, Name in
[Unicode] for the normative specification of the Unicode Name property and of name uniqueness.)

Thus the hyphens in the following examples of character names are medial, and should be ignored in loose matching:

U+10089 LINEAR B IDEOGRAM B107M HE-GOAT
U+2F800 CJK COMPATIBILITY IDEOGRAPH-2F800
U+1FB23 BLOCK SEXTANT-136
U+10749 LINEAR A SIGN A709-2 L2
U+1F090 DOMINO TILE VERTICAL-06-03

In contrast, the hyphens in the following examples of character names are not medial, and should not be ignored in loose matching.

U+0F39 TIBETAN MARK TSA -PHRU

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 30/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode

U+11C88 MARCHEN LETTER -A

An implementation of this loose matching rule can obtain the correct results when comparing two strings by doing the following three
operations, in order:

1. remove all medial hyphens (except the medial hyphen in the name for U+1180)
2. remove all whitespace and underscore characters
3. apply toLowercase() to both strings

After applying these three operations, if the two strings compare binary equal, then they are considered to match.

This is a logical statement of how the rule works. If programmed carefully, an implementation of the matching rule can transform the strings in
a single pass. It is also possible to compare two name strings for loose matching while transforming each string incrementally.

Loose matching rule UAX44-LM2 is also appropriate for matching character name aliases, the names of named character sequences, and
code point labels, which all share the unique namespace (and matching behavior) of Unicode character names. See Section 4.8, Name in
[Unicode]

Examples of medial hyphens in character name aliases include:

U+008E SINGLE-SHIFT-2
U+11EC HANGUL JONGSEONG YESIEUNG-KIYEOK

Examples of non-medial hyphens in character name aliases include:

U+0FD0 TIBETAN MARK BKA- SHOG GI MGO RGYAN

Examples of medial hyphens in named character sequences include:

MODIFIER LETTER EXTRA-HIGH EXTRA-LOW CONTOUR TONE BAR;02E5 02E9

Implementations of name matching should use extreme care when matching non-standard, alternative names for particular characters. The
Name Uniqueness Policy in the Unicode Consortium Stability Policies [Stability] guarantees that the Unicode Standard will never add a
character whose name would match an existing encoded character, according to matching rule UAX44-LM2. However, any other name for a
character might be used in the future.

The following is a concrete example of the kind of trouble that can occur. Prior to Unicode 6.0 some implementations of regex allowed
matching of the name "BELL" for the control code U+0007. When Unicode 6.0 added a different encoded character, U+1F514 BELL for emoji
symbols, those regex implementations broke.

As of Version 6.1 of the Unicode Standard, the most commonly occurring alternative names for control codes, as well as many commonly used
abbreviations for Unicode format characters, have been added as character name aliases. This automatically excludes all such alternative
names and abbreviations from the potential pool for future Unicode character names, because name uniqueness is defined over the
namespace which includes both character names and character name aliases. That exclusion should reduce the potential for surprises similar
to the "BELL" case, where implementers assume that a name for a control code is already well-defined.

5.9.3 Matching Symbolic Values

Property aliases and property value aliases are symbolic values. When comparing them, use loose matching rule UAX44-LM3.

UAX44-LM3. Ignore case, whitespace, underscore ('_'), hyphens, and any initial prefix string "is".

"linebreak" is equivalent to "Line_Break" or "Line-break"
"lb=BA" is equivalent to "lb=ba" or "LB=BA"
"Script=Greek" is equivalent to "Script=isGreek" or "Script=Is_Greek"

Loose matching is generally appropriate for the property values of Catalog, Enumeration, and Binary properties, which have symbolic aliases
defined for their values. Loose matching should not be done for the property values of String-valued properties, which do not have symbolic
aliases defined for their values; exact matching for String-valued property values is important, as case distinctions or other distinctions in those
values may be significant.

For loose matching of symbolic values, an initial prefix string "is" is ignored. The reason for this is that APIs returning property values are often
named using the convention of prefixing "is" (or "Is" or "Is_", and so forth) to a property value. Ignoring any initial "is" on a symbolic value
during loose matching is likely to produce the best results in application areas such as regex. Removal of an initial "is" string for a loose
matching comparison only needs to be done once for a symbolic value, and need not be tested recursively. There are no property aliases or
property value aliases of the form "isisisisistooconvoluted" defined just to test implementation edge cases.

Existing and future property aliases and property value aliases are guaranteed to be unique within their relevant namespaces, even if an initial
prefix string "is" is ignored. The existing cases of note for aliases that do start with "is" are: dt=Iso (Decomposition_Type=Isolated) and lb=IS.
The Decomposition_Type value alias does not cause any problem, because there is no contrasting value alias dt=o
(Decomposition_Type=olated). For lb=IS, note that the "IS" is the entire property value alias, and is not a prefix. There is no null value for the
Line_Break property for it to contrast with, but implementations of loose matching should be careful of this edge case, so that "lb=IS" is not
misinterpreted as matching a null value.

Implementations sometimes use other syntactic constructs that interact with loose matching. For example, the property matching expression
\p{L} may be defaulted to refer to the Unicode General_Category property: \p{General_Category=L}. For more information about the use of
property values in regular expressions and other environments, see Section 1.2, Properties, in Unicode Technical Standard #18, "Unicode
Regular Expressions" [UTS18].

5.10 Invariants

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 31/43

https://www.unicode.org/reports/tr41/tr41-33.html#Unicode
https://www.unicode.org/reports/tr41/tr41-33.html#Stability
https://www.unicode.org/reports/tr41/tr41-33.html#UTS18

Property values in the UCD may be subject to correction in subsequent versions of the standard, as errors are found. Furthermore, any new
version of the Unicode Standard may introduce new property values for a given property, except where the set of allowable values is fixed by
the property type (such as for binary properties), or where the set of allowable values is subject to a provision of the Unicode Character
Encoding Stability Policy [Stability]. Finally, a new version may also introduce new properties or new data files in the UCD.

Implementers of the UCD need to be aware of such changes when updating to new versions. However, some property values and some
aspects of the file formats are considered invariant. This section documents such invariants.

5.10.1 Character Property Invariants

All formally guaranteed invariants for properties or property values are described in the Unicode Character Encoding Stability Policy [Stability].
That policy and the list of invariants it enumerates are maintained outside the context of the Unicode Standard per se. They are not part of the
standard, but rather are constraints on what can and cannot change in the standard between versions, and on what decisions the Unicode
Technical Committee can and cannot take regarding the standard.

In addition to the formally guaranteed invariants described in the Unicode Character Encoding Stability Policy, this section notes a few
additional points regarding character property invariants in the UCD.

Some character properties are simply considered immutable: once assigned, they are never changed. For example, a character's name is
immutable, because of its importance in exact identification of the character. The Canonical_Combining_Class and Decomposition_Mapping of
a character are immutable, because of their importance to the stability of the Unicode Normalization Algorithm [UAX15].

The list of immutable character properties is shown in Table 19.

Table 19. Immutable Properties

Property Name Abbr Name Default Value Assignable to New?

Age Age Unassigned Yes

Name na null string Yes

Name_Alias Name_Alias null string Yes (see note)

Jamo_Short_Name jsn null string No

Canonical_Combining_Class ccc 0 Yes

Decomposition_Mapping dm <code point> Yes

Pattern_Syntax Pat_Syn No No

Pattern_White_Space Pat_WS No No

Noncharacter_Code_Point NChar No No

If a property has "Yes" in the "Assignable to New?" column in Table 19, that means that the property value is immutable once it is initially
assigned to a newly encoded character. The value for a reserved code point takes the default value, as shown in the third column of the table,
but may change from the default value once the character is encoded. On the other hand, if a property has "No" in the "Assignable to New?"
column, that means that it is absolutely immutable: all code points, including reserved code points, have a specific property value assigned,
and that value does not change if a new character is encoded at a particular reserved code point in a future version of the standard.

The Name_Alias property is unusual, in that there can be more than one formal name alias assigned to a given encoded character. The
default value for Name_Alias is the null string, but once any Name_Alias is assigned to an encoded character, that value is immutable. If more
than one formal name alias is assigned to the same encoded character, each of those values is immutable.

A set of binary character properties associated with identifiers have a different kind of immutability, which can be described as locked to Yes.
This results from the way these properties are used in the specification of identifiers. Unicode identifiers have the characteristic of stability
between versions, so that once a string is specified as belonging to a particular class of identifier, it must stay in that class for future versions
of the standard. Because of that requirement for identifier stability, there are associated constraints on how the related character properties
can change. In particular, the identifier-related properties listed in Table 19a may have their values for any particular assigned character
change from No to Yes between versions of the standard, but once a character has the value Yes, that value is locked in, and cannot ever be
changed back to No.

Table 19a. Yes-Locked Properties

Property Name Abbr Name Default Value

ID_Start IDS No

ID_Continue IDC No

XID_Start XIDS No

XID_Continue XIDC No

In some cases, a property is not immutable, but the list of possible values that it can have is considered invariant. For example, while at least
some General_Category values are subject to change and correction, the enumerated set of possible values that the General_Category
property can have is fixed and cannot be added to in the future. However, not all Enumeration properties used by Unicode algorithms have
immutable lists of property values. For example, the enumerated lists of values associated with the Line_Break and the Word_Break
properties have changed in the past, and may be changed again in future versions of the standard.

All characters other than those of General_Category Mn or Mc are guaranteed to have Canonical_Combining_Class=0.

In Unicode 4.0 and thereafter, the General_Category value Decimal_Number (Nd), and the Numeric_Type value Decimal (de) are defined to
be co-extensive; that is, the set of characters having General_Category=Nd will always be the same as the set of characters having

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 32/43

https://www.unicode.org/reports/tr41/tr41-33.html#Stability
https://www.unicode.org/reports/tr41/tr41-33.html#Stability
https://www.unicode.org/reports/tr41/tr41-33.html#UAX15

NumericType=de.

5.10.2 UCD File Format Invariants

There are also some constraints on allowable change in the file formats for UCD files. In general, the file format conventions are changed as
little as possible, to minimize the impact on implementations which parse the machine-readable data files. However, some of the constraints
on allowable file format change go beyond conservatism in format and instead have the status of invariants. These guarantees apply in
particular to UnicodeData.txt, the very first data file associated with the UCD.

The number and order of the fields in UnicodeData.txt is fixed. Any additional information about character properties to be added to the UCD in
the future will appear in separate data files, rather than being added as an additional field to UnicodeData.txt or by reinterpretation of any of
the existing fields.

5.10.3 Invariants in Implementations

Applications may wish to take the various character property and file format invariants into account when choosing how to implement character
properties.

The Canonical_Combining_Class offers a good example. The character property invariants regarding Canonical_Combining_Class guarantee
that values, once assigned, will never change, and that all values used will be in the range 0..254. This means that the
Canonical_Combining_Class can be safely implemented in an unsigned byte and that any value stored in a table for an existing character will
not need to be updated dynamically for a later version.

In practice, for Canonical_Combining_Class far fewer than 256 values are used. Unicode 3.0 used 53 values; Unicode 3.1 through Unicode
4.1 used 54 values; and Unicode 5.0 through Unicode 9.0 used 55 values. New, non-zero Canonical_Combining_Class values are seldom
added to the standard. (For details about this history, see DerivedCombiningClass.txt.) Implementations may take advantage of this fact for
compression, because only the ordering of the non-zero values, and not their absolute values, matters for the Canonical Ordering Algorithm. In
principle, it would be possible for up to 255 values to be used in the future, but the chances of the actual number of values exceeding 128 are
remote at this point. There are implementation advantages in restricting the number of internal class values to 128—for example, the ability to
use signed bytes without implicit widening to the int data type in Java.

5.11 Validation

The Unicode character property values in the UCD files can be validated by means of regular expressions. Such validation can also be useful
in testing of implementations that return property values. The method of validation depends on the type of property, as described below. These
expressions use Perl syntax, but may of course be converted to other formal conventions for use with other regular expression engines.

The regular expressions which are appropriate for validation of particular properties may change in each subsequent version of the UCD.
However, because of stability guarantees for character property aliases, these regular expressions for one version of the Unicode Standard
will match valid values for previous versions of the standard.

5.11.1 Enumerated and Binary Properties

Enumerated and binary character properties can be validated by generating a regular expression using the PropertyValueAliases.txt file.
Because enumerated properties have a defined list of possible values, the validating regular expression simply ORs together all of the
possible values. Binary properties are a special case of enumerated property, with a predefined very short list of possible values.

For example, to validate the East_Asian_Width property in the UCD, or to test an implementation that returns the East_Asian_Width property,
parse the following relevant lines from PropertyValueAliases.txt and produce a regular expression that concatenates each of the short and
long property alias values.

East_Asian_Width (ea)

ea ; A ; Ambiguous
ea ; F ; Fullwidth
ea ; H ; Halfwidth
ea ; N ; Neutral
ea ; Na ; Narrow
ea ; W ; Wide

The resulting regular expression would then be:

 /A|Ambiguous|F|Fullwidth|H|Halfwidth|N|Neutral|Na|Narrow|W|Wide/

For each Unicode binary character property, the regular expression can be precomputed simply as:

 /N|No|F|False|Y|Yes|T|True/

The Catalog properties, Age, Block, and Script, are another type of enumerated character property. All possible values of those properties for
any given version of the Unicode Standard are listed in PropertyValueAliases.txt, so a validating regular expression for a Catalog property for
that given version of the UCD can be generated by concatenating values, as for the other enumerated properties.

5.11.2 Canonical_Combining_Class Property

The Canonical_Combining_Class (ccc) property is a hybrid type. The possible values defined for it in UnicodeData.txt range from 0 to 254 and
are numeric values. However, Canonical_Combining_Class also has symbolic aliases defined for those particular values that are in actual use;
those symbolic aliases are listed in PropertyValueAliases.txt. To produce a validating regular expression for Canonical_Combining_Class,
concatenate together the symbolic aliases from PropertyValueAliases.txt, and then add the numeric range 0..254.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 33/43

The value 255 is reserved for use by implementations. When the ccc values are represented by bytes, that additional value of 255 may be
used by an implementation for other purposes.

The value 133 is reserved. No characters have that value. The property value alias CCC133 is retained in accordance with the stability policy
regarding property value aliases.

5.11.3 Unihan Properties

The validating regular expressions for each property tag defined in the Unihan database are described in detail in [UAX38].

5.11.4 Other Properties

Regular expressions to validate String and Miscellaneous properties in the UCD are provided in Table 21. Although Catalog properties may
use strict tests, as described in Section 5.11.1 Enumerated and Binary Properties, generic patterns for Block and Script are also provided in
Table 21.

To simplify the presentation of these expressions, commonly occurring subexpressions are first abstracted out as variables defined in Table
20.

Table 20. Common Subexpressions for Validation

Variable Value Notes and Examples

$digit [0-9] "0", "3"

$hexDigit [0-9A-F] "1", "A"

$alphaNum [0-9A-Za-z] "1", "A", "z"

$digits $digit+ "0", "12345"

$label $alphaNum+ "A", "Syriac", "NGKWAEN", "123467", "A005A"

$positiveDecimal $digits\.$digits "3.1"

$decimal -?$positiveDecimal "3.5", "-0.5"

$rational -?$digits(/$digits)? "3/4", "-3/4"

$optionalDecimal -?$digits(\.$digits)? "3.5", "-0.5", "2", "1000"

$name $label((-|- |[-_])$label)* name, with potential non-medial hyphens

$name2 $label([-_]$label)* name, no non-medial hyphens allowed

$annotatedName $name2(\(.*\))? name with optional parenthetical annotation

$shortName [A-Z]{0,3} "", "O", "WA", "WAE"

$codePoint (10|$hexDigit)?$hexDigit{4} "00A0", "E0100", "10FFFF"

$codePoints $codePoint(\s$codePoint)* space-delimited list of 1 to n code points

$codePoint0 ($codePoints)? space-delimited list of 0 to n code points

The regular expressions listed in Table 21 cover all the straightforward cases for other property values. These regular expressions do not
cover "NaN" for Numeric_Value nor the special tag values used in @missing Conventions. For properties involving somewhat more irregular
values, such as Age, ISO_Comment, and Unicode_1_Name, details for validation can be found in [UAX42].

Table 21. Regular Expressions for Other Property Values

Abbr Name Regex for Allowable Values

nv Numeric_Value /$decimal/ Field 2

/$optionalDecimal/ Field 3

/$rational/

blk Block /$name2/

sc Script

dm Decomposition_Mapping /$codePoints/

FC_NFKC FC_NFKC_Closure

NFKC_CF NFKC_Casefold /$codePoint0/

cf Case_Folding /$codePoints/

lc Lowercase_Mapping

tc Titlecase_Mapping

uc Uppercase_Mapping

scf Simple_Case_Folding /$codePoint/

slc Simple_Lowercase_Mapping

stc Simple_Titlecase_Mapping

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 34/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX38
https://www.unicode.org/reports/tr41/tr41-33.html#UAX42

suc Simple_Uppercase_Mapping

bmg Bidi_Mirroring_Glyph /$codePoint/

bpb Bidi_Paired_Bracket /$codePoint/

EqUIdeo Equivalent_Unified_Ideograph /$codePoint/

na Name /$name/

Name_Alias Name_Alias

-- Names for named sequences*

na1 Unicode_1_Name /$annotatedName/

JSN Jamo_Short_Name /$shortName/

* The Unicode named character sequences constitute a string-valued property for an enumerated set of strings (the actual sequences
which are given names). They follow the same syntax as the Name and Name_Alias property values and form part of the same
namespace.

5.11.5 Validation of Multivalued Properties

Some properties, such as Script_Extensions of kCantonese, have property values each consisting of a set of element values. In the data files,
these element values are separated by spaces. Validation of the property values is performed by first splitting each set into element values at
the spaces, and then validating each element value individually. For example, the elements for Script_Extensions are values of the Script
property; they are validated according to the validation requirements for the Script property. See also Section 5.7.6 Properties Whose Values
Are Sets of Values.

The Name_Alias property has values which consist of sets of one or more name strings. In the data file for this property, each element value
occurs on a separate line and can be validated as a separate element.

5.12 Deprecation

In the Unicode Standard, the term deprecation is used somewhat differently than it is in some other standards. Deprecation is used to mean
that a character or other feature is strongly discouraged from use. This should not, however, be taken as indicating that anything has been
removed from the standard, nor that anything is planned for removal from the standard. Any such change is constrained by the Unicode
Consortium Stability Policies [Stability].

For the Unicode Character Database, there are two important types of deprecation to be noted. First, an encoded character may be
deprecated. Second, a character property may be deprecated.

When an encoded character is strongly discouraged from use, it is given the property value Deprecated=True. The Deprecated property is a
binary property defined specifically to carry this information about Unicode characters. Very few characters are ever formally deprecated this
way; it is not enough that a character be uncommon, obsolete, disliked, or not preferred. Only those few characters which have been
determined by the UTC to have serious architectural defects or which have been determined to cause significant implementation problems are
ever deprecated. Even in the most severe cases, such as the deprecated format control characters (U+206A..U+206F), an encoded character
is never removed from the standard. Furthermore, although deprecated characters are strongly discouraged from use, and should be avoided
in favor of other, more appropriate mechanisms, they may occur in data. Conformant implementations of Unicode processes such a Unicode
normalization must handle even deprecated characters correctly.

In the Unicode Character Database, a character property may also become strongly discouraged—usually because it no longer serves the
purpose it was originally defined for. In such cases, the property is labelled "deprecated" in Table 9, Property Table. For example, see the
Grapheme_Link property. Deprecated properties are not recommended for exposure in public APIs that support Unicode character properties.

5.13 Property APIs

The Unicode Standard does not specify the exact form of APIs which may be defined in software libraries to surface Unicode character
properties to applications. However, there are some recommendations and general guidelines to follow, which should serve to reduce potential
confusion and to promote better interoperability between applications using the Unicode Character Database.

In the discussion which follows here, the term API is used to refer to a particular function or method, whereas the term API collection is used to
refer to a related group of APIs, which might constitute a set of functions exported from a library, a class definition, or other groupings of
related functionality. A distinction is also made between a public API, which is exported for general application use, and a private API, which
may be kept hidden within a library or class, intended for internal use.

First, if an API surfaces values of a particular Unicode character property and purports that value to represent a Unicode character property, it
should exactly follow the specification of that property in the UCD. This principle follows from the general approach to conformance for the
Unicode Standard: If you say it is Unicode, then it should follow the Unicode Standard specification.

Second, an API should be clear about which version of the UCD it supports. This can be done, for example, with documentation, either
external or included in the source in header files, class definition notes, and so forth. For an API collection, an even better option is to include
an API which explicitly reports which version of the UCD is supported. This provision should reduce confusion regarding particular property
values which might change between versions of the Unicode Standard, as well as making it clear which repertoire of encoded characters is
intended to be covered. There is no principled constraint on an API supporting more than one version of the UCD, as long as it is clear about
how it does so.

Third, although there is no constraint on an API declaring that it only supports a designated subset of Unicode characters, best practice for a
general purpose character property API would be to support the entire range of Unicode code points, providing determinant and well-
documented property values for any valid Unicode code point input. That would include providing correct default property values for any
unassigned code point. See Section 2.2, Use of Default Values for an explanation of that concept.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 35/43

https://www.unicode.org/reports/tr41/tr41-33.html#Stability

Fourth, a Unicode character property API is not precluded from extending or tailoring its support of character properties, as long as such
behavior is clearly documented, so that applications understand the values they will be getting by calling the API. For example, an API might
surface an extended new property such as IsDanda, which is not formally part of the properties specified by the UCD, but which can be
inferred from the documentation of the Unicode Standard. An API supporting a particular tailoring of the Unicode Line Breaking Algorithm could
surface tailored Line_Break property values to support that behavior. Alternatively, an API supporting a particular private use agreement could
surface privately-defined properties for a designated range of PUA characters. All such use of APIs should be considered conformant ways of
extending API collections using the UCD.

Designers of API collections to support Unicode character properties must also be aware that not all Unicode character properties are equal.
There is no requirement, express or implied, that all Unicode character properties should be supported in a given API collection. In fact, an
approach that simply parses the UCD and surfaces all Unicode character properties verbatim is very likely to result in a bad design. Character
properties need to be understood in the context of the various Unicode algorithms they are designed to support.

The following subtypes of Unicode character properties should generally not be exposed in APIs, except in limited circumstances. They may
not be useful, particularly in public API collections, and may instead prove misleading to the users of such API collections.

Contributory properties are not recommended for public APIs.
A subset of Unicode normalization-related properties are not recommended for public APIs. See Section 5.7.5, Decompositions and
Normalization.
Deprecated properties are not recommended for public APIs. See Section 5.12, Deprecation.

5.14 Character Age

The Age property indicates the first version in which a particular Unicode character was assigned. For example, U+20AC € EURO SIGN was
added to Version 2.1 of the Unicode Standard, so it has age=2.1, while U+20B9 ₹ INDIAN RUPEE SIGN was added to Version 6.0 of the
Unicode Standard, so it has age=6.0.

Formally, the Age property is a catalog property whose enumerated values correspond to a list of tuples consisting of a major version integer
and a minor version integer. The major version is a positive integer constrained to the range 1..255. The minor version is a non-negative
integer constrained to the range 0..255. These range limitations are specified so that implementations can be guaranteed that all valid,
assigned Age values can be represented in a sequence of two unsigned bytes. A third value corresponding to the Unicode update version is
not required, because new characters are never assigned in update versions of the standard.

The short values listed in PropertyValueAliases.txt for the Age property for assigned (designated) code points are of the form "m.n", with the
first field corresponding to the major version, and the second field corresponding to the minor version.

The long values listed in PropertyValueAliases.txt for the Age property for assigned code points start with a "V" and use an underscore instead
of a dot between the major and minor version numbers: V2_1, V6_0, and so on. This makes the long format more useful as an identifier in
programming languages. It is also useful in regular expressions, where the dot has other significance.

The default value of the Age property, used for unassigned (undesignated) code points, is expressed with labels that depart from the numerical
versioning scheme of the Age property for assigned code points; the short form for the default is "NA", and the long form for the default is
"Unassigned". Implementations of parsers which manipulate the Age property need to be prepared for this special case, rather than expecting
the default value to be expressed numerically, as "0.0", for example.

The Age property is based on when a character is encoded in the standard. It is normative and immutable, and cannot be meaningfully
tailored.

The minimum value of the Age property is "1.1", instead of "1.0", because of the substantial and incompatible changes to the standard
resulting from the merger of code points and character names between the Unicode Standard and ISO/IEC 10646 for their 1993 publications.
For Hangul syllable characters, which were extensively augmented in Unicode 2.0, the Age value is set to "2.0", even though a subset of the
Hangul syllables had been published in earlier versions, at different code points.

Private use characters, noncharacter code points, and surrogate code points also get Age values. The private use characters and
noncharacter code points on the BMP have age=1.1. However, the full architecture for UTF-16 and multiple planes was not fully documented
until Unicode 2.0, so the private use characters and noncharacter code points on supplementary planes, as well as the surrogate code points
in the range D800..DFFF, are given the value age=2.0.

The Age property cannot be derived from the other data files in any single version of the Unicode Character Database. Its derivation is done,
rather, by tools that compare the assigned characters between subsequent versions. The data file DerivedAge.txt provides the definitive listing
of the Age property value for all code points, as of that version of the standard.

The typical use case for the Age property in regular expressions is to search for all characters that were present in a given version. For this
reason, an expression such as "\p{age=V3_0}" is exceptionally defined to match all of the code points assigned in Version 3.0—that is, all the
code points with a value less than or equal to the value 3.0 for the Age property, rather than just the subset of those code points with the value
3.0. This interprets "\p{age=V3_0}" as the set of all characters assigned as of Unicode 3.0, rather than as just the set of characters added to
Unicode 3.0 subsequent to the prior version. For more information, see Unicode Technical Standard #18, "Unicode Regular Expressions"
[UTS18].

6 Test Files

The UCD contains a number of test data files. Those provide data in standard formats which can be used to test implementations of Unicode
algorithms. The test data files distributed with this version of the UCD are listed in Table 22.

Table 22. Unicode Algorithm Test Data Files

File Name Specification Status Unicode Algorithm

BidiTest.txt [UAX9] N Unicode Bidirectional Algorithm

BidiCharacterTest.txt [UAX9] N Unicode Bidirectional Algorithm

NormalizationTest.txt [UAX15] N Unicode Normalization Algorithm

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 36/43

https://www.unicode.org/reports/tr41/tr41-33.html#UTS18
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#UAX15

LineBreakTest.txt [UAX14] N Unicode Line Breaking Algorithm

GraphemeBreakTest.txt [UAX29] N Grapheme Cluster Boundary Determination

WordBreakTest.txt [UAX29] N Word Boundary Determination

SentenceBreakTest.txt [UAX29] N Sentence Boundary Determination

The normative status of these test files reflects their use to determine the correctness of implementations claiming conformance to the
respective algorithms listed in the table. There is no requirement that any particular Unicode implementation also implement the Unicode Line
Breaking Algorithm, for example, but if it implements that algorithm correctly, it should be able to replicate the test case results specified in the
data entries in LineBreakTest.txt.

6.1 NormalizationTest.txt

This file contains data which can be used to test an implementation of the Unicode Normalization Algorithm. (See [UAX15] and [Tests15].)

The data file has a Unicode string in the first field (which may consist of just a single code point). The next four fields then specify the expected
output results of converting that string to Unicode Normalization Forms NFC, NFD, NFKC, and NFKD, respectively. There are many tricky
edge cases included in the input data, to ensure that implementations have correctly implemented some of the more complex subtleties of the
Unicode Normalization Algorithm.

The header section of NormalizationTest.txt provides additional information regarding the normalization invariant relations that any conformant
implementation should be able to replicate.

The Unicode Normalization Algorithm is not tailorable. Conformant implementations should be expected to produce results as specified in
NormalizationTest.txt and should not deviate from those results.

6.2 Segmentation Test Files and Documentation

LineBreakTest.txt, located in the auxiliary directory of the UCD, contains data which can be used to test an implementation of the Unicode Line
Breaking Algorithm. (See [UAX14] and [Tests14].) The header of that file specifies the data format and the use of the test data to specify line
break opportunities. Note that non-ASCII characters are used in this test data as field delimiters.

There is an associated documentation file, LineBreakTest.html, which displays the results of the Line Breaking Algorithm in an interactive chart
form, with a documented listing of the rules.

The Unicode text segmentation test data files are also located in the auxiliary directory of the UCD. (See [Tests29].) They contain data which
can be used to test an implementation of the segmentation algorithms specified in [UAX29]. The headers of those file specify the data format
and the use of the test data to specify text segmentation opportunities. Note that non-ASCII characters are used in this test data as field
delimiters.

There are also associated documentation files, which display the results of the segmentation algorithms in an interactive chart form, with a
documented listing of the rules:

GraphemeBreakTest.html
SentenceBreakTest.html
WordBreakTest.html

Unlike the Unicode Normalization Algorithm, the Unicode Line Breaking Algorithm and the various text segmentation algorithms are tailorable,
and there is every expectation that implementations will tailor these algorithms to produce results as needed. The test data files only test the
default behavior of the algorithms. Testing of tailored implementations will need to modify and/or extend the test cases as appropriate to match
any documented tailoring.

6.3 Bidirectional Test Files

These files contain data which can be used to test an implementation of the Unicode Bidirectional Algorithm. (See [UAX9] and [Tests9].)

The data in BidiTest.txt is intended to exhaustively test all possible combinations of Bidi_Class values for strings of length four or less. To allow
for the resulting very large number of test cases, the data file has a somewhat complicated format which is described in the header.
Fundamentally, for each input string and for each possible input paragraph level, the test data specifies the resulting bidi levels and expected
reordering.

The data in BidiCharacterTest.txt is provided to test various edge cases for the algorithm. It contains an extra field which allows for explicit
control of the overall directional context for each test case.

The Unicode Bidirectional Algorithm is tailorable within certain limits. Conformant implementations with no tailoring are expected to produce
the results as specified in BidiTest.txt and BidiCharacterTest.txt, and should not deviate from those results. Tailored implementations can also
use the data in the test files to test for overall conformance to the algorithm by changing the assignment of properties to characters to reflect
the details of their tailoring.

7 UCD Change History

This section summarizes the recent changes to the UCD—including its documentation files—and is organized by Unicode versions.

References in the change history are often sometimes made to a Public Review Issue (PRI). See
https://www.unicode.org/review/resolved.html for more information about each of those cases.

Unicode 16.0.0

Changes in specific files:

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 37/43

https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX15
https://www.unicode.org/reports/tr41/tr41-33.html#Tests15
https://www.unicode.org/reports/tr41/tr41-33.html#UAX14
https://www.unicode.org/reports/tr41/tr41-33.html#Tests14
https://www.unicode.org/reports/tr41/tr41-33.html#Tests29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX29
https://www.unicode.org/reports/tr41/tr41-33.html#UAX9
https://www.unicode.org/reports/tr41/tr41-33.html#Tests9
https://www.unicode.org/review/resolved.html

Appropriate existing data files were updated to add the NNNN new characters encoded in Unicode 16.0. Major changes that are most likely to
affect implementations are documented in Section M of the Unicode 16.0.0 page. Significant data file updates resulting from encoding the new
characters and from various character property changes are summarized below, in the same grouping manner used in Components of
Unicode 16.0.0.

Note that minor editorial updates and changes to the derived and extracted data files are not documented here. Routine additions of expected
property values for newly encoded characters are likewise not called out explicitly in this summary.

Core Data

Blocks.txt
TBD

CaseFolding.txt
TBD

CJKRadicals.txt
TBD

DerivedCoreProperties.txt
TBD

DerivedNormalizationProps.txt
TBD

LineBreak.txt
TBD

NamesList.txt
Content was updated throughout with new characters, as well as annotations, cross references, subheadings, and new comments.

PropertyAliases.txt
TBD

PropertyValueAliases.txt
The 16.0 value, with the alias V16_0, was added to the catalog property Age.
TBD

PropList.txt
TBD

ScriptExtensions.txt
TBD

Unihan Database (Unihan.zip)

Unihan_DictionaryIndices.txt
TBD

Unihan_DictionaryLikeData.txt
TBD

Unihan_IRGSources.txt
TBD

Unihan_NumericValues.txt
TBD

Unihan_OtherMappings.txt
TBD

Unihan_RadicalStrokecounts.txt
TBD

Unihan_Readings.txt
TBD

Unihan_Variants.txt
TBD

Data for UAX #45

USourceData.txt
TBD

USourceGlyphs.pdf
Glyphs were added for the NN new UTC-Source ideographs introduced in USourceData.txt.

USourceRSChart.pdf
Added new entries for the radical-stroke index.

Extracted Data

No specific items to highlight.

Conformance Test Data

No specific items to highlight.

Auxiliary Data for UAX #14 and UAX #29

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 38/43

https://www.unicode.org/versions/Unicode16.0.0/#Migration
https://www.unicode.org/versions/Unicode16.0.0/#Components
https://www.unicode.org/versions/Unicode16.0.0/#Components

SentenceBreakProperty.txt
TBD

WordBreakProperty.txt
TBD

LineBreakTest.txt
TBD

Documentation for Auxiliary Data

No specific items to highlight.

Emoji Data

No specific items to highlight.

Unicode 15.1.0

Changes in specific files:

Appropriate existing data files were updated to add the 627 new characters encoded in Unicode 15.1. Major changes that are most likely to
affect implementations are documented in Section M of the Unicode 15.1.0 page. Significant data file updates resulting from encoding the new
characters and from various character property changes are summarized below, in the same grouping manner used in Components of
Unicode 15.1.0.

Note that minor editorial updates and changes to the derived and extracted data files are not documented here. Routine additions of expected
property values for newly encoded characters are likewise not called out explicitly in this summary.

Core Data

Blocks.txt
Added CJK Extension I block.

CaseFolding.txt
Added S(imple casefolding) entries for 1FD3, 1FE3, and FB05.

CJKRadicals.txt
Removed entry for 162'.
Added several entries for radical variants using the two apostrophes convention.

DerivedCoreProperties.txt
Added the new derived property Indic_Conjunct_Break (InCB).

DerivedNormalizationProps.txt
Added the new derived property NFKC_Simple_Casefold (NFKC_SCF).

EastAsianWidth.txt
Spaces are now allowed around the semicolon field delimiter in this file, to provide better formatting and for consistency with most
other UCD data files.

LineBreak.txt
New Line_Break classes were added for a significant number of Indic scripts, to match updates to UAX #14 for support of line
breaking at orthographic syllable boundaries.
Spaces are now allowed around the semicolon field delimiter in this file, to provide better formatting and for consistency with most
other UCD data files.

NamesList.txt
Content was updated throughout with new characters, as well as annotations, cross references, subheadings, and new comments.

PropertyAliases.txt
New property aliases were added: IDSU, ID_Compat_Math_Start, ID_Compat_Math_Continue, InCB, and NFKC_SCF.

PropertyValueAliases.txt
The 15.1 value, with the alias V15_1, was added to the catalog property Age.
The CJK_Ext_I value alias was added to the Block property.
Five new Line_Break property value aliases were added: AK, AP, AS, VF, VI.
Aliases were added for the new values for InCB.
The new binary properties have the same default aliases as for other binary properties.

PropList.txt
200C, 200D, 30FB, and FF65 were added to the contributory property Other_ID_Continue, to simplify a derivation for identifier-
related properties.
Values were added for ID_Compat_Math_Start and ID_Compat_Math_Continue.
17D4 and 17D5 were added to Sentence_Terminal.
The additional ideographic description characters were given the expected IDS_Binary_Operator property values, but two new
ideographic description characters got the new IDS_Unary_Operator property value.

ScriptExtensions.txt
Several Vedic marks and North Indic numeric characters were added to large sets shared by a number of Indic scripts.

Unihan Database (Unihan.zip)

Unihan_DictionaryIndices.txt

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 39/43

https://www.unicode.org/versions/components-15.1.0.html
https://www.unicode.org/versions/Unicode15.1.0/#Migration
https://www.unicode.org/versions/components-15.1.0.html
https://www.unicode.org/versions/components-15.1.0.html

Added the provisional kSMSZD2003Index property with approximately 11,000 records.
Added approximately 35,000 records to the provisional kMorohashi property.
Changed approximately 4,000 provisional kMorohashi property values.
Removed the provisional kIRGDaiKanwaZiten property and its records.

Unihan_DictionaryLikeData.txt
Added the provisional kMojiJoho property with approximately 53,000 records.
Added approximately 650 records to the provisional kFourCornerCode property.
Added one record to the provisional kPhonetic property.
Added approximately 60 records to the provisional kStrange property.
Changed seven provisional kStrange property values.

Unihan_IRGSources.txt
Added kIRG_GSource, kRSUnicode, and kTotalStrokes records for the characters in the new CJK Unified Ideographs Extension I
block, which included the new "GIDC23-" prefix.
Added three new records to the kIRG_KPSource property.
Added four new records to the kIRG_TSource property.
Added two new records to the kIRG_USource property.
Added six new records to the kIRG_VSource property.
Changed one kIRG_GSource property value.
Changed four kIRG_KPSource property values.
Changed two kIRG_VSource property values.
Changed approximately 225 kRSUnicode property values.
Changed approximately 275 kTotalStrokes property values.
Removed three records from the kIRG_KPSource property.
Removed one record from the kIRG_USource property.

Unihan_NumericValues.txt
Added the provisional kVietnameseNumeric property with 50 records.
Added the provisional kZhuangNumeric property with 13 records.
Added eight new records to the provisional kOtherNumeric property.
Added three new records to the provisional kPrimaryNumeric property.
Changed one provisional kPrimaryNumeric property value.
Removed one record from the provisional kAccountingNumeric property.

Unihan_OtherMappings.txt
Added two new records to the provisional kBigFive property.
Removed the provisional kHKSCS, kKPS0, kKPS1, kKSC0, and kKSC1 properties and their records.

Unihan_RadicalStrokecounts.txt
Removed the provisional kRSKangXi property and its records.

Unihan_Readings.txt
Added the provisional kJapanese property with approximately 52,000 records.
Added the provisional kSMSZD2003Readings property with approximately 8,000 records.
Added approximately 125 new records to the provisional kCantonese property.
Added approximately 350 new records to the provisional kDefinition property.
Added approximately 250 new records to the provisional kXHC1983 property.
Changed approximately 20 provisional kCantonese property values.
Changed approximately 150 provisional kDefinition property values.
Changed approximately 150 provisional kXHC1983 property values.
Removed one record from the provisional kDefinition property.
Removed approximately 200 records from the provisional kXHC1983 property.

Unihan_Variants.txt
Added approximately 15 new records to the provisional kSemanticVariant property.
Added approximately 50 new records to the provisional kSimplifiedVariant property.
Added six new records to the provisional kSpecializedSemanticVariant property.
Changed approximately 125 provisional kSemanticVariant property values.
Changed 11 provisional kSimplifiedVariant property values.
Changed two provisional kSpecializedSemanticVariant property values.
Changed approximately 60 provisional kTraditionalVariant property values.
Removed two records from the provisional kTraditionalVariant property.

Data for UAX #45

USourceData.txt
39 new records were added for new UTC-Source ideographs.
The "ExtI" (Extension I) status value was added.
The single-letter status values "N," "V," "W," and "X" were changed to the more descriptive "FutureWS," "Variant," "Rejected," and
"NoAction" status values.
The status values of various records were updated so that the "UK-2015" and "WS-2017" status values could be removed.
Various records were updated to add or improve their ideographic description sequences.

USourceGlyphs.pdf

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 40/43

Glyphs were added for the 39 new UTC-Source ideographs introduced in USourceData.txt.
USourceRSChart.pdf

Added new entries for the radical-stroke index.

Extracted Data

No specific items to highlight.

Conformance Test Data

No specific items to highlight.

Auxiliary Data for UAX #14 and UAX #29

SentenceBreakProperty.txt
A number of prepended concatenation marks changed from sb=Format to sb=Numeric, for better break boundaries when used with
numbers.

WordBreakProperty.txt
A number of prepended concatenation marks changed from wb=Format to wb=Numeric, for better break boundaries when used
with numbers.

LineBreakTest.txt
The line breaking test cases were extended significantly, to deal with the extensions of the LB algorithm to deal with orthographic
syllable breaks.

Documentation for Auxiliary Data

No specific items to highlight.

Emoji Data

No specific items to highlight.

Unicode 15.0.0

Changes in specific files:

Appropriate existing data files were updated to add the 4489 new characters encoded in Unicode 15.0. Major changes that are most likely to
affect implementations are documented in Section M of the Unicode 15.0.0 page. Significant data file updates resulting from encoding the new
characters and from various character property changes are summarized below, in the same grouping manner used in Components of
Unicode 15.0.0.

Note that minor editorial updates and changes to the derived and extracted data files are not documented here. Routine additions of expected
property values for newly encoded characters are likewise not called out explicitly in this summary.

Core Data

Blocks.txt
Seven new blocks were added, six allocated in the Supplementary Multilingual Plane, and one in the Tertiary Ideographic Plane.
These include two blocks for the newly encoded scripts in Version 15.0—Kawi and Nag Mundari.
The block range for Egyptian Hieroglyph Format Controls was extended to end at 1345F, instead of 1343F.

IndicPositionalCategory.txt
0953 and 0954 were removed from InPC=Top.
Five Kayah Li vowel signs, A926..A92A, were added to InPC=Top.

IndicSyllabicCategory.txt
Clarification was added re 0A71 GURMUKHI ADDAK.
0AFB GUJARATI SIGN SHADDA was changed from InSC=Cantillation_Mark to InSC=Gemination_Mark.
The note regarding the Brahmi Joining Number class was expanded.

LineBreak.txt
The double diacritic marks 1DCD and 1DFC were changed from lb=CM to lb=GL.
2057 QUADRUPLE PRIME was changed from lb=AL to lb=PO.

NamedAliases.txt
One formal name alias of type abbreviation was added for 0019.
Two formal name aliases of type correction were added for 0616 and 1BBD.

NamesList.txt
Content was updated throughout with new characters, as well as annotations, cross references, subheadings, and new comments.

PropertyValueAliases.txt
The 150 value, with the alias V150, was added to the catalog property Age.
Aliases were added for new Script and new Block property values.
Redundant @missing lines were removed for Bidi_Mirroring_Glyph, Equivalent_Unified_Ideograph, NFKC_Casefold, and
Script_Extensions.

PropList.txt
Two Tibetan bindus, 0F82..0F83, were added to Other_Alphabetic.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 41/43

https://www.unicode.org/versions/components-15.0.0.html
https://www.unicode.org/versions/Unicode15.0.0/#Migration
https://www.unicode.org/versions/components-15.0.0.html
https://www.unicode.org/versions/components-15.0.0.html

Several overlooked modifier letters, 10FC, A7F2..A7F4, and AB69, were added to Other_Lowercase, for consistency with other
modifier letters.

StandardizedVariants.txt
94 standardized variation sequences were added for rotational variants of Egyptian hieroglyph signs.
4 standardized variation sequences were added for expanded variants of Egyptian hieroglyph lost signs.

Unihan Database (Unihan.zip)

Unihan_DictionaryIndices.txt
Added a single new kCheungBauerIndex record.
Added the approximately 14,000 records for the kCihaiT property (moved from Unihan_DictionaryLikeData.txt).
Changed two kDaeJaweon property values.
Added approximately 50,000 new records to the kKangXi property that were derived from the kIRG_GSource and kIRGKangXi
properties, changed approximately 250 kKangXi property values, and removed approximately 30 records with meaningless
property values.
Removed approximately 300 records for the kMorohashi property with meaningless property values.

Unihan_DictionaryLikeData.txt
Added the kAlternateTotalStrokes property with approximately 100 records.
Removed the approximately 14,000 records for the kCihaiT property (moved to Unihan_DictionaryIndices.txt).
Changed a very small number of kHKGlyph property values.
Removed approximately 400 records for the kPhonetic property.

Unihan_IRGSources.txt
Added the "GXM-" and "GZA-" prefixes to the kIRG_GSource property, along with new records.
Added the "T12-" prefix to the kIRG_TSource property, along with new records.
Added new records to the kIRG_HSource, kIRG_KSource, and kIRG_USource properties.
Changed a single kIRG_VSource property value as a result of a disunification.
Changed a very small number of kRSUnicode and kTotalStrokes property values.
Moved a single kIRG_UKSource source reference.
Added IRG source data, kRSUnicode, and kTotalStrokes records for a single new character that was appended to the CJK Unified
Ideographs Extension C block.
Added IRG source data, kRSUnicode, and kTotalStrokes records for the characters in the newly encoded CJK Unified Ideographs
Extension H block.

Unihan_RadicalStrokecounts.txt
Changed two kRSKangXi property values.

Unihan_Readings.txt
Changed approximately 150 kCantonese property values, and added approximately 150 new kCantonese records.
Changed approximately 800 kDefinition property values, and added approximately 1500 new kDefinition records.
Changed a single kVietnamese property value, and added a very small number of new kVietnamese records.

Unihan_Variants.txt
Changed a small number of kSemanticVariant property values, and added approximately 100 new kSemanticVariant records.
Changed a very small number of kSimplifiedVariant property values, and added approximately 400 new kSimplifiedVariant records.
Changed a small number of kSpecializedSemanticVariant property values, and added an even smaller number of new
kSpecializedSemanticVariant records.
Removed a very small number of kSpoofingVariant records.
Changed approximately 400 kTraditionalVariant property values, and added a small number of new kTraditionalVariant records.
Added a very small number of new kZVariant records, and removed an even smaller number of kZVariant records.

Data for UAX #45

USourceData.txt
59 new entries were added for new UTC-Source ideographs.
Various entries were updated to reflect their encoding as part of CJK Extension H.
Status field values for various CJK Extensions were all changed from single letter values to four letter values ("A" → "ExtA", etc.),
as documented in UAX #45.

USourceGlyphs.pdf
Glyphs were added for the 59 new UTC-Source ideographs introduced in USourceData.txt.

USourceRSChart.pdf
Added new entries for the radical-stroke index.

Extracted Data

DerivedBidiClass.txt
Multiple @missing lines were added, to deal with all default value range assignments.
Values explicitly assigned formerly to unassigned code points were removed, because they are now redundant.

DerivedLineBreak.txt
Multiple @missing lines were added, to deal with all default value range assignments.
Values explicitly assigned formerly to unassigned code points were removed, because they are now redundant.

Conformance Test Data

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 42/43

No specific items to highlight.

Auxiliary Data for UAX #14 and UAX #29

SentenceBreakProperty.txt
Several modifier letters (10FC, A7F2..A7F4, and AB69) changed from OLetter to Lower, as a result of their addition to
Other_Lowercase.

Documentation for Auxiliary Data

No specific items to highlight.

Emoji Data

No specific items to highlight.

Acknowledgments

Mark Davis and Ken Whistler are the authors of the initial version and have added to and maintained the text of this annex. Laurențiu Iancu
assisted in the documentation of UCD changes for Versions 6.3.0 through 13.0.0. Ken Lunde and John Jenkins assisted in the documentation
of Unihan changes for Versions 13.0.0 through 15.0.0, and Ken Lunde continued this work for Version 15.1.0. Julie Allen and Asmus Freytag
provided editorial suggestions for improvement of the text. Over the years, many members of the UTC have participated in the review of the
UCD and its documentation.

References

For references for this annex, see Unicode Standard Annex #41, "Common References for Unicode Standard Annexes."

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 33 [KW]

Proposed Update for Unicode 16.0.0.
Added documentation of the new data files, DoNotEmit.txt and Unikemet.txt, in Table 5.
Added clarification regarding the meaning and use of Alphabetic, Diacritic, and Extender properties.
Extended the explanations of Joining_Type to recommend DerivedJoiningType.txt as the definitive source, in Section 4.2.9, Table 9, and
Section 5.4.
Added documentation of new property Modifier_Combining_Mark.
Clarified that the Numeric_Value of a Han character is set based on the first value in the kPrimaryNumeric, kAccountingNumeric, or
kOtherNumeric tag, as those tags may include space-separated lists of values.
Removed an obsolete statement regarding the restriction of spaces around semicolons in Section 4.2.1, Data Fields.
Took note of the minor format change for EastAsianWidth.txt and LineBreak.txt in the 15.1.0 UCD change record.
Updated definition of Indic_Conjunct_Break for correctness.
Added clarification regarding stability issues for aliases in Section 5.8, Property and Property Value Aliases.
Added clarification that regex expressions listed in Table 21, Regular Expressions for Other Property Values, do not cover "NaN" for
Numeric_Value, or special tags used in @missing conventions.

Revision 32 [KW]

Proposed Update for Unicode 15.1.0.
Corrected name of property to Canonical_Combining_Class in Section 5.11.2.
Changed Bidi_Mirroring_Glyph, Bidi_Paired_Bracket, and Equivalent_Unified_Ideograph from type "M" to type "S" (string-valued) in the
Property Table.
Added clarification in Section 4.2.9 that some string-valued properties have <none> as their default value.
In Section 4.2.10 changed the interpretation of <none> as a default value from "the empty string" to "no value is defined".
Added IDS_Unary_Operator to the Property Table.
Added NFKC_Simple_Casefold to the Property Table.
Added ID_Compat_Math_Continue and ID_Compat_Math_Start to the Property Table.
Added Indic_Conjunct_Break to the Property Table.
Added clarification in Section 4.1.4 that file names no longer contain version and draft suffixes during alpha and beta review, and that the
location of draft files under review has been changed.
Updated the outdated kCantonese example in Section 5.7.6 with a corrected kVietnamese example.
Small editorial corrections passim.

Modifications for previous versions are listed in those respective versions.

© 2024 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No liability is
assumed for incidental and consequential damages in connection with or arising out of the use of the information or programs contained or accompanying this technical report. The Unicode
Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

7/18/24, 2:08 PM UAX #44: Unicode Character Database

https://www.unicode.org/reports/tr44/tr44-33.html 43/43

https://www.unicode.org/reports/tr41/tr41-33.html
https://www.unicode.org/copyright.html

