
 1

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

CJKV Type Development
Adobe Systems Incorporated

Dirk Meyer

Unihan
Disambiguation
Through Font
Technology

dmeyer
In order to prevent any misunderstandings: Unicode itself is not ambiguous.

The problem exists when it comes to locale-dependent glyph rendering of Unicode CJK characters.

 2

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Overview

• Short history of Unicode ’s CJK portion
• Unihan ambiguity – the result of Han Unification
• Fonts can help to solve the problem
• Implementation: CID-keyed font
• Implementation: OpenType (OTF) font

• Summary

Q&A

“Unihan disambiguation” Through Font Technology

The purpose of this presentation is to show how different font technologies
(CID-keyed Font Technology, OpenType, etc.) can be applied to help
resolving what is commonly called the “Unihan ambiguity problem.”

The process of Han Unification can be considered to be one of the major
“historical” achievements among the efforts to create Unicode. But
developers are facing the problem of how to “disambiguate” the characters of
the Basic Multilingual Plane’s (BMP) Unihan portion in the context of
cross-locale Unicode fonts.

In order to represent the Chinese characters of different Asian locales in a
culturally adequate and typographically correct way with the help of
Unicode, additional glyphs must be available in a font which shall be used
across locale borders. Preliminary research shows that in such a “multi-
locale” or “Pan-CJK” font, roughly 50 percent of the CJK characters need
more than one glyph representation, depending on the typeface.

Different approaches exist to make the additional glyphs available in fonts
and how applications can get access to them. This presentation will provide
implementation examples for achieving it through fonts applying CID-
keyed or the closely related OpenType font technology. It will focus on
explaining and demonstrating how the problematic consequences of Han
Unification can be resolved with the help of fonts.

 3

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

Short history of
Unicode’s CJK
portion

Hanzi (CC) + Kanji (J) +
Hanja (K) = Unihan

In the process of defining Unicode, the Han Unification is probably the
biggest achievement overall. Before the creation of Unicode, several Asian
countries had established encoded or unencoded Han character sets with
partly overlapping contents. In order to make the “unified repertoire of
Han ideographs” a reality, representatives of these countries put a lot of joint
effort into phrasing precise rules about how to treat, in a common code,
those characters that were different, or “nearly different.”

Basically, these rules define which characters from different locales can
– despite their sometimes-subtle differences – be considered identical (and
thus be unified in order to occupy a single code point), and which are too
different to be unified. To make it completely clear: the differences referred
to here are not, for example, those between traditional and simplified
Chinese characters. Han Unification takes place where the same character is
written differently in Japanese or Chinese, because different typographical
or glyph design rules exist in these countries.

Han Unification freed up many otherwise wasted code points and helped to
avoid duplicately-encoded characters. Of course, exceptions exist, but the
procedures made and still make a lot of sense.

 4

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bcUnihan =
Unified Han Ideographs

• Unification result (Unicode v. 2.1):
– 21,204 Han Ideographs

-> 20,902 (Unified Repertoire and Ordering, v. 2.0)
-> 302 (CJK Compatibility block, U+F9xx/U+FAxx)

• Important addition:
– 6,582 Han Ideographs

-> Han Extension A (in BMP)

Based on those Han Unification rules, the process of extending Unified
Repertoire and Ordering (URO) both “horizontally” (to include character
mappings from other or newly established standards [Hong Kong SAR,
Vietnam]) and “vertically” (to include new characters from these standards)
is continuing and will continue for years to come.

For additional information about the Han Unification process,
see: Han Unification History [Appendix E,]
(The Unicode Standard, Version 2.0, pp. E-1f)

For information about Unicode’s CJK source standards, structure and
ordering of Unihan, as well as exceptions for the Han Unification process
(like the “source separation rule”, “non-cognate rule”),
see: CJK Unified Ideographs: U+4E00–U+9FFF [CJK Ideographs Area,]
(The Unicode Standard, Version 2.0, p. 6-104ff)

For explanations about the source properties of each Unihan character,
see: CJK Unified Ideographs [Code Charts, Chapter 7.2]
(The Unicode Standard, Version 2.0, p. 7-3f)

 5

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

Unihan ambiguity
is the result of Han
Unification

Unihan =
? (CC) + ? (J) + ? (K)

Not always fully understood are the consequences rooting in the fact that
Unicode is a “character” standard and thus does not define any character
shapes or “glyphs.” In other words, it does not care about specific
representations of given (“abstract”) characters. Only this precondition
made a process like the one of Han Unification possible in the first place.
However, we now must face the problem of Unihan ambiguity as its direct
outcome: “Welcome to the artificial world of Unihan ideographs.”

In other words, characters – represented differently throughout different
Asian locales – have been unified into a single Unicode code point. How is it
possible for a user or an application of a certain locale to get back to the
origin – the correct glyph when using Unicode?

If the target destination for an operating system, an application, or a font is
only one single locale, it is sufficient to use one glyph to represent a Unicode
CJK code point.

Problems occur in a multi-locale context: in order to again get the “original,”
often differing locale-specific glyphs, the Han unification process has to be
reversed. During this reverted process, however, no information is provided
about any glyph differences when a Unicode character is rendered in (or for
the use in) different locales. Any information about them has to be kept at
different locations, for example, in fonts.

 6

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bcConsequences of
Unihan ambiguity

• Which glyph to represent each
Unicode character ?
– Unambiguity on the basis of

Unicode is impossible
– Solutions limited to single locales

• Cross-locale qualities are
difficult to achieve
– Need for virtual Han de-Unification
– Important areas: OS/applications/fonts

Sometimes is does not matter, sometimes it does: the inherent logic of Han
Unification implies that it is impossible to work on the basis of Unicode, and
– at the same time – achieve Unicode CJK output that is equally accepted
throughout all CJK locales.

If there has been a Han Unification to create a common character set
(Unihan), it takes a virtual “de-Unification” whenever unambiguity is
needed. This is true for the visual output of all Han ideographs affected by
Han unification.

No matter what a “Unicode product” claims to be (or is taken for by its
users), anything based on the principle of “one CJK glyph per character
code” can only serve the needs of a single locale. It is limited in its use to a
single locale, because a user cannot rely on complete accuracy or
typographical correctness for all glyphs when it comes to cross-locale usage.

Obviously, localized versions of an operating system, applications or fonts
that are intended to be used in one CJK locale only do not need correct
glyphs for each locale because only the “native” one is of concern. It is,
however, fairly easy to imagine situations in which operating systems or
applications that have “locale bridging” character might benefit from a
mechanism which is able to serve more than one locale.

 7

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Example/Demo

• Unihan ambiguity

Not very many Unicode characters have four different representations: one
for each of the four Asian locales CS, CT, J, and K. The majority have two or
three different ones. The Acrobat PDF file shows examples for several
characters having four variants. These examples illustrate how subtle the
glyph differences across locales can be (areas that show modifications are
indicated by shaded circles).

Note, how – according to the rules of Han Unification – one Unicode code
point (U+) is used to represent four valid glyphs from four locales
(G – T – J – K). “Han de-Unification” is necessary when correct glyphs for
more than one locale are needed, for example, in a font.

[Note: A printout of the sample referred to on this slide will be handed out
prior to the presentation.]

dmeyer
Click on PDF icon to go to examples.

 8

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

Where is Unihan
ambiguity
a problem ?

Fonts as example

Parallel to the growing popularity of Unicode-based operating systems, a
special kind of font product enjoys the increasing sympathy of more and
more users in the “CJK arena”: Unicode fonts. [In the context of this
presentation, the term in used to describe the intention to fully cover at least
Unicode’s CJK character portion.] Such fonts seem to promise unlimited
access to all collected Han ideographs and thus the capability to create texts
in all languages based on these ideographs. Is this really true?

In general, the number of glyphs inside a given font can differ significantly
depending on the target locale(s). Including the Han ideographs, Unicode
provides roughly 40,000 characters, and a huge expansion can be expected
from the advent of Unicode Version 3.0. Fonts that carry such a big
repertoire of characters will create a huge overload in environments where
scripts with alphabetic properties are used exclusively. There, Unicode fonts
are rare, because it seems sufficient if a font carries one alphabet and perhaps
parts of or a complete additional one. This assumption is supported by
another obvious advantage of alphabetic scripts: in many cases, like Roman,
Greek or Cyrillic, these scripts can easily be extended to represent
– sometimes completely – more than one language in one font file.

 9

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bcUnicode CJK
glyph rendering

• Target: single locale
– One glyph per Unicode code point is possible
– Typographical correctness can be maintained

• Target: multiple locales
– Multiple glyphs per Unicode code point have to

be accessible
– Additional features must be implemented

– Variation indicators
– Language tagging

– Font features

As soon as we enter Unicode’s “ideographic world” (U+4E00–U+9FA5),
however, the situation changes, due to the results of Han Unification. First
of all, we can somewhat naturally define two different kinds of Unicode CJK-
fonts, depending on the number of locales they want to serve.

Minimum requirement for a single-locale Unicode CJK-font is, of course,
the complete glyph coverage of its target locale. Users in that locale will only
be satisfied if such a font allows them to have access to their locale-specific
portion of Han ideographs, no matter whether they are called hanzi, kanji,
or hanja. As long as a font contains the typographically correct glyphs, it is
of minor importance, whether it covers the complete CJK Unihan range or
includes only those glyphs actually used in the specific locale: user
acceptance (in a single locale) is very likely.

The other “flavor” of such fonts, a multiple-locale Unicode CJK-font tries
to cross borders and aims at serving more than one of the CJK locales. In this
case, it is forced to “reversely apply” the rules of Han Unification and supply
more than only one glyph whenever different representations of Unicode
characters exist for all the fonts’ destinations. There exist reasons for and
against such fonts. Additional research and design efforts are necessary for
their development.

In any case: no matter, whether a “system font” or an advanced font for
high-end publishing purposes tries to be a “Pan-CJK font”, they all must
implement mechanisms to achieve a virtual “Han de-Unification.”

 10

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Where are the benefits ?

• ‘True’ cross-locale applications …
– Like: Web browsers, document viewers

• And single-locale applications …
– With extended multi-locale functionality

• Will benefit from:
– Reduced footprint (faster to install and configure)
– Resource savings (less files, less fonts)
– Testing savings (faster development/QE work)

Developing a cross-locale font requires a considerable amount of research
and effort. This brings up the question, who or what would benefit from
Unihan disambiguation or correct cross-locale CJK functionality?

There are quite a few areas in which implemented cross-locale capabilities
would serve both developers and users.

Some examples:

– Both Web browsers and document viewers could easily render
incoming multi-lingual data stream correctly with only font installed
and configured instead of three or four.

– From a user’s point of view: text processing, publishing, and layout
software could use a single font (thus a single typeface) in a single
configuration to correctly create documents that are destined for
different locales; no need to change fonts, switch to another localized
version of the same application or even to another localized system.

– From a developer’s point of view: a reduced number of fonts would
considerably reduce development, testing and quality engineering
work for installation, configuration, and application functionality.

 11

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

Font technology
can help solving
the problem

CID, OTF, TT

Font technology currently provides at least three different approaches that
allow for more than one glyph per code point. At the same time, these
technologies make it possible to avoid duplication of characters inside a font
file. Both properties are important to realize an economic, multi-locale
Unicode CJK-font.

A Unicode-based “multi-locale” or “Pan-CJK” font can be created applying
CID-keyed, OpenType (OTF), or TrueType (TT) font technology. This
presentation will focus on examples of CID-keyed and OpenType
technology.

The examples presented here describe the attempt to create a font that
provides the correct glyphs for four Asian locales: Simplified Chinese,
Traditional Chinese, Japanese, and Korean.

 12

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Glyph collection

• Choose default / additional locales
• Three possible relations between

intra-font locales:
– No glyph required
– Same glyph (also: first appearance)
– Different glyph required -> substitution

• Caveat: relations vary from typeface to
typeface, no general mapping possible

The development of the Pan-CJK prototype in both CID-keyed and
OpenType flavors was based on outline data coming from a type foundry in
the People’s Republic of China. Consequently, the glyphs designed
according to the rules of that locale were taken as the default.

A decision about a default locale is important. It sets the default design for all
glyphs and, at the same time, it defines the number of additional glyphs that
have to be designed for the other locales also covered by the font:

– If, at the same code point, no glyph exists in the additional locale no
substitution needs to take place, and the default glyph can be used
instead (to represent the full Unihan character repertoire, for
example). [One could decide to design all glyphs as if they were used
in all locales, even if they do not exist there, but designing non-
existing, “artificial characters” does not seem to make much sense.]

– If the same glyph is required for an additional locale, again no
substitution has to take place, one glyph can be used for two or more
locales. Such a mechanism can also be applied in cases where a glyph
is exclusively used outside the default locale: then it is designed in its
“native” style, but serves as the default glyph.

– If the additional locale requires a different glyph, then another
code-to-glyph mapping has to be activated or a glyph substitution
mechanism has to be invoked.

 13

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Example/Demo

• Row structure of a
Pan-CJK glyph collection

The example shows in which way the glyphs necessary for the support of
multiple locales are collected and ordered. The G-locale is taken as the
default, all glyphs are designed according to the rules of G. If a different
glyph for the same code point has to be available for another supported
locale, it has been added right after the default glyph.

This structure does not yet show, however, where the glyphs are actually
used. Certain glyphs may not be required in the default locale at all, others
will be re-used for additional locales.

The typographic style (the typeface) that is used for the design of the font
plays an important role when it comes to deciding how many glyphs have to
be available to cover the locales. Common styles for Chinese ideographs are
Hei, Song, Fangsong, or Kai, for example. Depending on the style and its
specific rules of how glyphs are composed, one or more parts of a character,
combinations of strokes, or the connections between strokes, can be different
among typefaces. In addition, different typeface-specific rules may exist in
the target locales. These two levels of possible variations have significant
influence on the internal structure of Pan-CJK character collections.

In other words, even if, according to Song-style design rules, a glyph is
different in the Japanese and the Korean locale, the same glyph may be
identical in both locales when designed for a Hei-style font. Accordingly,
new differences may appear in a Fangsong-style font between locale-specific
glyphs that were identical in a Kai-style font.

[Note: A printout of the sample referred to on this slide will be handed out
prior to the presentation.]

dmeyer
Click on PDF icon to go to examples.

 14

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Technical differences

• TrueType fonts
– Multiple character code-to-glyph mappings
– Internal ‘cmap’ tables
– Multiple font instances

• CID-keyed fonts
– Multiple character code-to-glyph mappings
– External CMap files
– Multiple font instances

• OpenType fonts
– Glyph substitution mechanism
– GSUB feature
– Single font instance

The TrueType font specifications include the option to provide multiple
character to glyph mappings in a font.

For purposes as described here, a TT font file would contain the set of CJK
glyphs intended to serve some or all locales without glyph duplication and
more than one ‘cmap’ table inside the file. These ‘cmap’ tables establish a link
between the character encoding and the glyphs contained inside the font. It
is important to mention that glyphs can be referenced by different ‘cmap’
tables. Depending on the number of tables, a TT font file can offer different
font names to the ‘outside world’: operating system and applications. Thus,
it is a potential candidate to create a valid Pan-CJK font file in that it offers
multiple “virtual” fonts, which when combined provide multi-locale
functionality.

The two font formats CID-keyed and OpenType use a format different
from TT to describe the glyph outlines in the font file.

Besides that, CID-keyed font technology offers a functionality similar to TT
by using different external CMap files to access the glyphs in a second
CIDFont file.

OpenType fonts may contain outline descriptions in both TrueType and
Type-1 format. In addition to that, they provide new glyph substitution
(GSUB) and glyph positioning (GPOS) mechanisms. Glyph substitution can
effectively be used to achieve Pan-CJK functionality.

 15

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

Implementation:
CID-keyed font

CIDFont +
(one or more) CMaps

CID-keyed font technology was especially designed to handle large numbers
of glyphs in a single font file. This technology is currently gaining more and
more market share in Asia, because it perfectly fits the needs of users there.
However, nothing prevents this technology from being used for larger
Latin-based character collections, too.

The technology is based on the interaction of two different file types:

– A CIDFont file contains only the outline descriptions of the glyphs,
which are numbered in sequence according to their CID (character
identifier) value starting from 0;

– A CMap file (not to be mixed up with the ‘cmap’ tables mentioned
before) is a small entity separate from the CIDFont file. It maps
character codes to glyphs inside the CIDFont file.

The combination of a CIDFont file and a CMap file creates a specific font
instance, in which the glyphs inside the font file are mapped to whatever
encoding is specified inside the CMap file.

Thus, it only takes a different CMap file to “repurpose” or “re-encode” the
contents of the CIDFont file.

 16

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

CID implementation

• Locales covered: G – T – J – K
• 31,907 glyphs total

– 20,902 default glyphs (here: G)
– 11,005 glyphs to cover additional locales

• Caveat 1
– Implementation results are typeface-specific

• Caveat 2
– No useful statistical data can be derived

In our study, the Pan-CJK font is based on a Song design. 11,005 glyphs had
to be added to the 20,902 glyphs representing the Unicode Unihan
character portion in order to achieve typographical correctness and
acceptable cross-locale results.

The locales covered by the fonts’ glyph repertoire are that of Simplified and
Traditional Chinese, Japanese, and Korean.

Again, it has to be kept in mind that the total number of 33,907 glyphs
contained in this example represents an approach for a Song-style typeface.
The glyph count will differ for other typefaces used to design Chinese
ideographs.

Also, the number of 11,005 glyphs does not at all imply that this is the
number of glyph differences between the default and the other locales.
Sometimes a glyph is used in all locales, sometimes in only one. In the same
way, an identical form may be used in locale A and C, while for locale B a
special form exists, or no form at all.

And again, all this differs from design to design, and no especially useful
statistical data can be derived from these differences.

 17

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Example/Demo

• CID-keyed font
structure

This example shows how the internal font structure places the default glyphs
first and adds additional locale-specific glyphs where necessary. This internal
glyph ordering structure is common for both CID-keyed and OpenType
font technologies.

In the case of the CID implementation example, all glyphs of the Pan-CJK
font are contained in the CIDFont file and numbered in sequence from
1[one] through 33907 (CID 0[zero] remains reserved as the “undefined”
glyph, which is used whenever no glyph is available for a certain code point).

The specific examples show characters which have up to four different glyph
representations, one for each of the font’s target locales.

[Note: A printout of the sample referred to on this slide will be handed out
prior to the presentation.]

dmeyer
Click on PDF icon to go to examples.

 18

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Example/Demo

• Implementation example:
CID-keyed fonts plus
locale-specific CMap files

In CID-keyed font technology, CIDFont files form valid font instances only
in combination with external CMap files. On a hard disk attached to a
printer supporting Postscript (Version 2015 and higher), for example, the
CIDFont file ‘STSongCJK-Light’ and the CMap file ‘koKR-UCS2-H’ create
the font instance ‘STSongCJK-Light--koKR-UCS2-H’. Based on a UCS2
encoding, this instance provides the Unihan glyphs according to Song
typeface design-rules as they are written in the Korean locale for horizontal
writing direction.

In order to build the complete multi-locale CID solution four different
CMap files were created to use and re-use the character repertoire in the
CIDFont file for four different locales :

– ‘zhCN-UCS2-H’ (Simplified Chinese);

– ‘zhTW-UCS2-H’ (Traditional Chinese);

– ‘jaJP-UCS2-H’ (Japanese); and

– ‘koKR-UCS2-H’ (Korean).

[The names of the CMap files indicate language and country code,
encoding, writing direction.]

[Note: A printout of the sample referred to on this slide will be handed out
prior to the presentation.]

dmeyer
Click on PDF icon to go to examples.

 19

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

Implementation:
OpenType (OTF) font

OTF file + GSUB
(glyph substitution)

A new development in the area of font technology is the OpenType font
format. At a first glance, OpenType fonts do not offer the degree of
openness or user-influence as fonts based on CID-keyed technology.

Big advantages of these Unicode-encoded fonts, however, are their cross-
platform properties, a reduced file size (based on the Compact Font Format
included in the font as the ‘CFF ’ table), and their advanced typographic
features. These features allow for a huge variety of font-based modifications
during the process of document creation. In the future, they will be
supported by sophisticated publishing and layout applications.

 20

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

OTF implementation

• OTF fonts contains
– CID font in Compact Format (‘CFF ’) or TT font
– Unicode-based ‘cmap’ font table
– GPOS and GSUB mechanism

• GSUB -> virtual glyph collections
– Default (Simplified Chinese, zhcn)
– Traditional Chinese (zhtw)
– Japanese (jajp)
– Korean (kokr)

• OTF specification -> http://www.microsoft.com/typography/tt/tt.htm

In order to create an Pan-CJK Unicode font based on OTF technology, the
task of addressing different glyphs per Unicode code point must be solved
using the “glyph substitution” or “GSUB” mechanism OTF provides. This
mechanism allows for defining “features” which – when invoked – use it to
replace one or more glyphs by others.

While the glyphs within the font file are stored in much the same way as in a
CID-keyed font (in fact, an OpenType font is a CID-keyed font in
compacted form with added features and a Unicode-based ‘cmap’ table),
every information about locale-specific glyph addressing can be found
within the very same file.

For each locale in addition to the default, specific features are created that
invoke the OTF-specific GSUB mechanism. The feature ‘jajp’[the name
represents a combination of language and country code], for example,
invokes the substitution of all default “non-Japanese” CJK glyphs with
glyphs that are considered to be culturally adequate and typographically
correct for Japanese writing.

The same happens when selecting the features ‘zhtw’ or ‘kokr.’ Invoking the
‘zhcn’-feature prompts switching back to the default glyphs: no substitution
is taking place in this case.

 21

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Demo

• Implementation example:
locale-specific GSUB tables
in an OpenType font

This example shows the different glyph substitutions that are taking place
when locale-specific features in the OpenType font are invoked.

Where necessary, ‘zhtw’ substitutes the default glyphs with those different in
the Traditional Chinese locale. The same is done by the features ‘jajp’ and
‘kokr’ for the Japanese and the Korean locale.

In this implementation, ‘zhcn’ is an “empty feature” that simply disables the
others, thus effectively switching back to the font’s default locale, Simplified
Chinese.

Other approaches or features to implement cross-locale functionality are
possible. For example, the single feature ‘locl’ can provide locale-specific
glyph subsets that are invoked through different default “system languages”
or user-influenced (through spell-checking, hyphenation) “application
languages”. The underlying glyph substitution mechanism, however, will
not change.

The current OTF specification can be found at:
http://www.microsoft.com/typography/tt/tt.htm

[Note: A printout of the sample referred to on this slide will be handed out
prior to the presentation.]

dmeyer
Click on PDF icon to go to examples.

 22

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

15th International Unicode Conference San Jose, CA, August/September 1999

bc

Summary

• Han Unification inside Unicode
created the Han Ambiguity problem

• In a multi-locale context a virtual
Han ‘de-Unification’ is necessary

• Different kinds of font technology
can support the disambiguation

• Benefits for users & developers make
the implementation of locale-specific
features feasible and worthwhile

In order to make all things presented here work in real-world situations,
mechanisms like the ones described must be available and supported by
applications. The first condition has already been met through advances in
font technology. Hopefully, future applications will support fonts with
cross-locale functionality for a long time to come.

When it comes to handling of CJK scripts in general, the approaches
described here might prove to be especially satisfying: gradually, it becomes
easier to handle the characters of different CJK locales according to locale-
specific design rules and requirements. This is the level of functionality a lot
of people have desired for a long time.

 23

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

San Jose, CA, August/September 199915th International Unicode Conference

bc

Q & A

Dirk Meyer

dmeyer@adobe.com

Adobe Systems Inc.
CJKV Type Development

345 Park Avenue, M/S W8
San Jose, CA 95125, USA

 24

Unicode Disambiguation Through Font Technology (Dirk Meyer)

15th International Unicode Conference San Jose, CA, August/September 1999

bc

	Unihan Disambiguation
	Overview
	Unicode's CJK portion
	Unihan definition
	"Ambiguity as the result of Han Unification
	Consequences of ambiguity
	Example: Unihan ambiguity
	Table: Unihan ambiguity

	Ambiguity is a problem for fonts
	Unicode CJK glyph rendering
	Benefits of multi-locale properties
	Solutions through font technology
	Collecting glyphs
	Example: Font row structure
	Table: Font row structure

	Font differences
	CID implementation
	Example: CID font structure
	Table: CID font structure

	Example: CIDFont + CMaps
	Table: CIDFont + CMaps

	OTF implementation
	Example: OTF GSUB tables
	Table: OTF GSUB implementation

	Summary

	back3: 5 pages. Back to main text? Click here !
	back4: 8 pages. Back to main text? Click here !
	back5: 6 pages. Back to main text? Click here !
	back1: 1 page. Back to main text? Click here !
	back2: 1 page. Back to main text? Click here !

