[Unicode]  Technical Reports
 

Final Proposed Update for
Unicode Standard Annex #14

Line Breaking Properties

Version 5.0.0 Draft
Authors Asmus Freytag (asmus@unicode.org)
Date 2006-07-18
This Version http://www.unicode.org/reports/tr14/tr14-18.html
Previous Version http://www.unicode.org/reports/tr14/tr14-17.html
Latest Version http://www.unicode.org/reports/tr14/
Revision 18

Summary

This annex presents the specification of line breaking properties for Unicode characters as well as a default algorithm for determining line break opportunities. A model implementation using pair tables is also provided.

Status

This document is a proposed update of a previously approved Unicode Standard Annex. Publication does not imply endorsement by the Unicode Consortium. This is a draft document which may be updated, replaced, or superseded by other documents at any time. This is not a stable document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but is published online as a separate document. The Unicode Standard may require conformance to normative content in a Unicode Standard Annex, if so specified in the Conformance chapter of that version of the Unicode Standard. The version number of a UAX document corresponds to the version of the Unicode Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding this annex is found in Unicode Standard Annex #41, “Common References for Unicode Standard Annexes.”  For the latest version of the Unicode Standard see [Unicode]. See [Reports] for a list of current Unicode Technical Reports. For more information about versions of the Unicode Standard, see [Versions].

Contents


1 Overview and Scope

The text of The Unicode Standard [Unicode] presents a limited description of some of the characters with specific functions in line breaking, but does not give a complete specification of line breaking behavior. This annex provides more detailed information about default line breaking behavior reflecting best practices for the support of multilingual texts.

For most Unicode characters, considerable variation in line breaking behavior can be expected, including variation based on local or stylistic preferences. For that reason, the line breaking properties provided for these characters are informative. Some characters are intended to explicitly influence line breaking. Their line breaking behavior is therefore expected to be identical across all implementations. The Unicode Standard assigns normative line breaking properties to those characters. The Unicode Line Breaking Algorithm is a tailorable set of rules that uses these line breaking properties in context to determine line break opportunities.

This annex opens with formal definitions, a summary of the line breaking task and a brief section on conformance requirements. Four main sections follow:

2 Definitions

All terms not defined here shall be as defined in the Unicode Standard [Unicode5.0]. The notation defined in this annex differs somewhat from the notation defined elsewhere in the Unicode Standard. All other notation used here without an explicit definition shall be as defined elsewhere in the Unicode Standard.

LD1   Line Fitting:  The process of determining how much text will fit on a line of text, given the available space between the margins and the actual display width of the text.

LD2  Line Break:  The position in the text where one line ends and the next one starts.

LD3  Line Break Opportunity:  A place where a line is allowed to end.

LD4  Line Breaking:  The process of selecting one among several line break opportunities such that the resulting line is optimal or ends at a user-requested explicit line break.

LD5  Line Breaking Property: A character property with enumerated values, as listed in Table 1, and separated into normative and informative.

LD6  Line Breaking Class: A class of characters with the same line breaking property value.

The Line Breaking Classes are described in Section 5.1, Description of Line Breaking Properties.

LD7  Mandatory Break: A line must break following a character that has the mandatory break property.

Such a break is also known as a forced break and is indicated in the rules as B !, where B is the character with the mandatory break property.

LD8  Direct Break:  A line break opportunity exists between two adjacent characters of the given line breaking classes.

A direct break is indicated in the rules below as B ÷ A, where B is the character class of the character before and A is the character class of the character after the break. If they are separated by one or more space characters, a break opportunity also exists after the last space. In the pair table, the optional space characters are not shown.

LD9  Indirect Break:  A line break opportunity exists between two characters of the given line breaking classes only if they are separated by one or more spaces.

An indirect break is indicated in the pair table below as B % A, where B is the character class of the character before and A is the character class of the character after the break. Even though space characters are not shown in the pair table, an indirect break can only occur if one or more spaces follow B. In the notation of the rules in Section 6, Line Breaking Algorithm this would be represented as two rules: B × A and B SP+ ÷ A.

LD10  Prohibited Break: No line break opportunity exists between two characters of the given line breaking classes, even if they are separated by one or more space characters.

A direct break is indicated in the pair table below as B ^ A, where B is the character class of the character before and A is the character class of the character after the break and the optional space characters are not shown. In the notation of the rules in Section 6, Line Breaking Algorithm this would be expressed as a rule of the form: B SP* × A.

LD11  Hyphenation: Hyphenation uses language-specific rules to provide additional line break opportunities within a word.

Table 1. Line Breaking Classes (* = non-tailorable)

Class

Descriptive Name

Examples

Characters with this property...

Non-tailorable Line Breaking Classes

BK *

Mandatory Break

NL, PS

cause a line break (after)

CR *

Carriage Return

CR

cause a line break (after), except between CR and LF

LF *

Line Feed

LF

cause a line break (after)

CM *

Attached Characters and Combining Marks

Combining Marks, control codes

prohibit a line break between the character and the preceding character

NL * Next Line NEL cause a line break (after)

SG *

Surrogates

Surrogates

should not occur in well-formed text

WJ * Word Joiner WJ prohibit line breaks before or after

ZW *

Zero Width Space

ZWSP

provide a break opportunity

GL * Non-breaking (“Glue”) NBSP, ZWNBSP, CGJ  prohibit line breaks before or after
SP * Space Space generally provide a line break opportunity after the character, enable indirect breaks

Break Opportunities

B2

Break Opportunity Before and After

EM Dash

provide a line break opportunity before and after the character

BA

Break Opportunity After

Spaces, Hyphens

generally provide a line break opportunity after the character

BB

Break Opportunity Before

Punctuation used in dictionaries

generally provide a line break opportunity before the character

HY

Hyphen

Hyphen-Minus

provide a line break opportunity after the character, except in numeric context

CB Contingent Break Opportunity Inline Objects provide a line break opportunity contingent on additional information

Characters Prohibiting Certain Breaks

CL

Closing Punctuation

“)”, “]”, “}”, etc.

prohibit a line break before

EX

Exclamation/Interrogation

“!”, “?” etc.

prohibit line break before

IN

Inseparable

Leaders

allow only indirect line breaks between pairs

NS

Non Starter

small kana

allow only indirect line break before

OP

Opening Punctuation

“(“, “[“, “{“, etc.

prohibit a line break after

QU

Ambiguous Quotation

Quotation marks

act like they are both opening and closing

Numeric Context

IS

Infix Separator (Numeric)

. ,

prevent breaks after any and before numeric

NU

Numeric

Digits

form numeric expressions for line breaking purposes

PO

Postfix (Numeric)

%, ¢

do not break following a numeric expression

PR

Prefix (Numeric)

$, £, ¥, etc.

do not break in front of a numeric expression

SY

Symbols Allowing Breaks

/

prevent a break before, and allow a break after

Other Characters

AI

Ambiguous (Alphabetic or Ideographic)

Characters with Ambiguous East Asian Width

act like AL when the resolved EAW is N otherwise act as ID

AL

Ordinary Alphabetic and Symbol Characters

Alphabets and regular symbols

are alphabetic characters or symbols that are used with alphabetic characters

H2 Hangul LV Syllable Hangul form Korean syllable blocks
H3 Hangul LVT Syllable Hangul form Korean syllable blocks

ID

Ideographic

Ideographs

break before or after, except in some numeric context

JL Hangul L Jamo Conjoining jamo form Korean syllable blocks
JV Hangul V Jamo Conjoining jamo form Korean syllable blocks
JT Hangul T Jamo Conjoining jamo form Korean syllable blocks

SA

Complex Context (South East Asian)

South East Asian: Thai, Lao, Khmer

provide a line break opportunity contingent on additional, language specific context analysis

XX

Unknown

Unassigned, Private Use

have as yet unknown line breaking behavior or unassigned code positions

 

3 Introduction

Lines are broken as result of one of two conditions. The first condition is the presence of an explicit line breaking character. The second condition results from a formatting algorithm having selected among available line break opportunities; ideally the chosen line break results in the optimal layout of the text.

Different formatting algorithms may use different methods to determine an optimal line break. For example, simple implementations consider a single line at a time, trying to find a locally optimal line break. A basic, yet widely used approach is to allow no compression or expansion of the inter-character and inter-word spaces and consider the longest line that fits. When compression or expansion is allowed, a locally optimal line break seeks to balance the relative merits of the resulting amounts of compression and expansion for different line break candidates.

When expanding or compressing inter-word space according to common typographical practice, only the spaces marked by U+0020 SPACE, U+00A0 NO-BREAK SPACE, and U+3000 IDEOGRAPHIC SPACE are subject to compression, and only spaces marked by U+0020 SPACE, U+00A0 NO-BREAK SPACE, and occasionally spaces marked by U+2009 THIN SPACE are subject to expansion. All other space characters normally have fixed width. When expanding or compressing inter-character space the presence of U+200B ZERO WIDTH SPACE or U+2060 WORD JOINER is always ignored.

Local custom or document style determines whether and to what degree expansion of inter-character space is allowed in justifying a line. In languages, such as German, where inter-character space is commonly used to mark  e m p h a s i s (like this), allowing variable inter-character spacing would have the unintended effect of adding random emphasis, and should therefore be avoided.

In table headings that use Han ideographs, on the other hand, even extreme amounts of inter-character space commonly occur as short texts are spread out across the entire available space to distribute the characters evenly from end to end.

More complex formatting algorithms may take into account the interaction of line breaking decisions for the whole paragraph. The well known text layout system [TEX] implements an example of such a globally optimal strategy that may make complex tradeoffs across an entire paragraph to avoid unnecessary hyphenation and other legal, but inferior breaks. For a description of this strategy, see [Knuth78].

The definition of optimal line breaks is outside the scope of this annex, as are methods for their selection. For the purpose of this annex, what is important is not so much what defines the optimal amount of text on the line, but how to determine all legal line break opportunities. Whether and how any given line break opportunity is actually used is up to the full layout system. Some layout systems will further evaluate the raw line break opportunities returned from the line breaking algorithm and apply additional rules. [TEX] for example, uses line break opportunities based on hyphens only as a last resort.

Finally, most text layout systems will support an emergency mode which handles the case of an unusual line that contains no ordinary line break opportunities. In such line layout emergencies line breaks are placed with no regard to the ordinary line breaking behavior of the characters involved.

3.1 Determining Line Break Opportunities

Three principal styles of context analysis determine line break opportunities.

  1. Western — spaces and hyphens are used to determine breaks
  2. East Asian — lines can break anywhere, unless prohibited
  3. South East Asian — line breaks require morphological analysis

The first, or Western style is commonly used for scripts employing the space character. Hyphenation is often used with space-based line breaking to provide additional line break opportunities—however, it requires knowledge of the language and in addition, it may need user interaction or overrides.

The second style of context analysis is used with East Asian ideographic and syllabic scripts. In these scripts, lines can break anywhere, except before or after certain characters. The precise set of prohibited line breaks may depend on user preference or local custom and is commonly tailorable.

Korean makes use of both styles of line break. When Korean text is justified, the second style is commonly used, even for interspersed Latin letters. But when ragged margins are used, the Western style (relying on spaces) is commonly used instead, even for ideographs.

The third style is used for scripts such as Thai, which do not use spaces, but which restrict word-breaks to syllable boundaries, the determination of which requires knowledge of the language comparable to that required by a hyphenation algorithm. Such an algorithm is beyond the scope of the Unicode Standard.

For multilingual text, the Western and East Asian styles can be unified into a single set of specifications, based on the information in this annex. Unicode characters have explicit line breaking properties assigned to them. These can be utilized with these two styles of context analysis for line break opportunities. Customization for user preferences or document style can then be achieved by tailoring that specification.

In bidirectional text, line breaks takes are determined before applying rule L1 of the Unicode Bidirectional Algorithm [Bidi]. However, line breaking is strictly independent of directional properties of the characters or of any auxiliary information determined by the application of rules of that algorithm.

4 Conformance

There is no single method for determining line breaks; the rules may differ based on user preference and document layout. Therefore the information in this annex, including the specification of the line breaking algorithm, must allow for the necessary flexibility in determining line breaks according to different conventions. However, some characters have been encoded explicitly for their effect on line breaking. Users adding such characters to a text expect that they will have the desired effect. For that reason, these characters have been given non-tailorable line breaking behavior. The conformance requirements are spelled out in the following subsections.

At times, this specification recommends best practice. These recommendations are not normative and conformance with this specification does not depend on their realization. These recommendations contain the expression “This specification recommends ...”, or some similar wording.

4.1 Line Breaking Algorithm

UAX14-C1. In the absence of a permissible higher-level protocol, a process that determines line breaks in Unicode text, and which purports to implement the Unicode line break algorithm, shall do so in accordance with the specifications in this annex.

  • As is the case for all other Unicode algorithms, this specification is a logical description—particular implementations can have more efficient mechanisms as long as they produce the same results. See C18 in Chapter 3, Conformance of [Unicode] and the notes following.

  • The line break algorithm specifies part of the intrinsic semantics of  characters specifically encoded for their line breaking behavior, and is thus required for conformance to the Unicode Standard where text containing such characters is broken into lines.

UAX14-C2. The permissible higher-level protocols are described in Section 4.3, Higher-level Protocols.

4.2 Line Breaking Properties

All line breaking classes are normative, but overridable, except for those line breaking classes marked with a * in Table 1, which are not overridable.

4.3 Higher-level Protocols

There are many different ways to break lines of text, and the Unicode Standard does not intend to unnecessarily restrict the ways in which implementations can do this. However, for characters that are encoded solely or primarily for their line breaking behavior, interpretation of these characters must be consistent with their semantics as defined by their normative line breaking behavior. This leads to the following  permissible higher-level protocols:

UAX14-HL1.  Override rule 2 and report a break at the start of text

  • A higher-level protocol may report a break at the start of text (sot). As written, the rule is intended to ensure that the line breaking algorithm always produces lines that have at least one character in them. However, an analysis in terms of text boundaries would more naturally report a boundary at the sot, leaving it to any client to skip past that boundary in breaking lines.

UAX14-HL2.  Tailor any tailorable line break class

  • A higher-level protocol may change the algorithm to produce results as if the membership of any tailorable line break class had been changed.

UAX14-HL3. Override any rule in Section 6.2,Tailorable Line Breaking Rules or add new rules to that section
  • A higher-level protocol my change the algorithm to produce results as if any of the rules in Section 6.2,Tailorable Line Breaking Rules had been deleted, amended, or as if new rules had been added.

Because of the way the specification is set up, HL2 and HL3 have no effect on the results for text containing only characters of the non-tailorable line breaking classes. However, they allow for unrestricted tailoring of the results for texts containing only characters from the tailorable line breaking classes, as well as wide latitude in defining the behavior of mixed texts.

5 Line Breaking Properties

This section provides detailed narrative descriptions of the line breaking behavior of many Unicode characters. In a few instances, the descriptions in this section provide additional detail about handling a given character at the end of a line, which goes beyond the simple determination of line breaks.

This section also summarizes the membership of character classes for each value of the line breaking property. Note that the mnemonic names for the line break classes are intended neither as exhaustive descriptions of their membership nor as indicators of their entire range of behaviors in the line breaking process. Instead their main purpose is to serve as unique, yet broadly mnemonic labels. In other words, as long as their line break behavior is identical, otherwise unrelated characters will be found grouped together in the same line break class.

The classification by property values defined in this section and in the data file is used as input into two algorithms defined in Section 6, Line Breaking Algorithm and Section 7, Pair-Table-based Implementation. These sections describe workable default line breaking methods. Section 8, Customization discusses how the default line breaking behavior can be tailored to the needs of particular languages for particular document styles and user preferences.

Data File

The full classification of all Unicode characters by their line breaking properties, is available in the file LineBreak.txt [Data14] in the Unicode Character Database [UCD]. This is a tab-delimited, two column plain text file, with code position, and line breaking class. A comment at the end of each line indicates the character name. Ideographic, Hangul, Surrogate, and Private Use ranges are collapsed by giving a range in the first column.

Future Updates

As more scripts are added to the Unicode Standard and become more widely implemented and used on computers, more line breaking classes may be added, or the assignment of line breaking class may be changed for some characters. Implementations should not make any assumptions to the contrary. Any future updates will be reflected in the latest version of the data file. (See the Unicode Character Database [UCD] for any specific version of the data file).

5.1 Description of Line Breaking Properties

Line breaking classes are listed alphabetically. Each line breaking class is marked with an annotation in parentheses with the following meanings:

(A) — the class allows a break opportunity after in specified contexts

(XA) — the class prevents a break opportunity after in specified contexts

(B) — the class allows a break opportunity before in specified contexts

(XB) — the class prevents a break opportunity before in specified contexts

(P) — the class allows a break opportunity for a pair of same characters

(XP) — the class prevents a break opportunity for a pair of same characters

NOTE: The use of the letters B and A in these annotations marks the position of the break opportunity relative to the character. It is not to be confused with the use of the same letters in the other parts of this annex, where they indicate position of the characters relative to the break opportunity.

AI — Ambiguous (Alphabetic or Ideograph)

Some characters that ordinarily act like alphabetic or symbol characters (which have the AL line breaking class) are treated like ideographs (line breaking class ID), in certain East Asian legacy contexts. Their line breaking behavior therefore depends on context. In the absence of appropriate context information, they are treated as class AL, but see the note at the end of this description.

As originally defined, the line break class AI contained all characters with East Asian Width property A (ambiguous width), and which would otherwise be AL in this classification. They take the AL line breaking class only when their resolved width is N (narrow) and take the line breaking class ID when their resolved width is W (wide). For more information on East Asian Width, and how to resolve it, see Unicode Standard Annex #11, East Asian Width [EAW].

The original definition included many Latin, Greek and Cyrillic characters.  These characters are now classified by default as AL because use of the AL line breaking class better corresponds to modern practice. Where strict compatibility with older legacy implementations is desired, some of these characters need to be treated as ID in certain contexts. This can be done by always tailoring them to ID or by continuing to classify them as AI and resolving them to ID where required.

As part of the same revision, the set of ambiguous characters has been extended to completely encompass the enclosed alphanumeric characters used for numbering of bullets.

As updated, the AI line breaking class includes all characters with East Asian Width A, and which are outside the range U+0000..U+1FFF, plus the following characters:

24EA CIRCLED DIGIT ZERO
2780..2793 DINGBAT CIRCLED SANS-SERIF DIGIT ONE..DINGBAT NEGATIVE CIRCLED SANS-SERIF NUMBER TEN

The line breaking rules in Section 6, Line Breaking Algorithm and the pair table in Section 7, Pair Table-based Implementation, assume that all ambiguous characters have been resolved appropriately as part of assigning line breaking classes to the input characters.

NOTE: Normally characters with class AI are resolved to either ID or AL. However, the following two characters are used as punctuation marks in Spanish, where they would behave more like a character of class OP. Implementations might therefore wish to tailor these characters to class OP for use in Spanish.

00A1 INVERTED EXCLAMATION MARK
00BF INVERTED QUESTION MARK

AL — Ordinary Alphabetic and Symbol Characters (XP)

Ordinary characters require other characters to provide break opportunities, otherwise no line breaks are allowed between pairs of them. However, this behavior is tailorable. In some Far Eastern documents it may be desirable to allow breaking between pairs of ordinary characters, particularly Latin characters and symbols.

NOTE: Use ZWSP as a manual override to provide break opportunities around alphabetic or symbol characters.

Except as listed explicitly below as part of another line breaking class, and except as assigned class AI or ID based on East Asian Width, this class contains the following characters:

ALPHABETIC — all remaining characters of General Categories Lu, Ll, Lt, Lm, Lo
SYMBOLS — all remaining characters of General Categories Sm, Sk, So
NON-DECIMAL NUMBERS — all remaining characters of General Categories Nl and No
PUNCTUATION — all remaining characters of General Categories Pc, Pd and Po

plus these characters:

0600..0603 ARABIC NUMBER SIGN..ARABIC SIGN SAFHA
06DD ARABIC END OF AYAH
070F SYRIAC ABBREVIATION MARK
2061..2063 FUNCTION APPLICATION..INVISIBLE SEPARATOR

These characters occur in the middle or at the beginning of words or alphanumeric or symbol sequences. However, when alphabetic characters are tailored to allow breaks, these characters should not allow breaks after.

BA — Break Opportunity After (A)

Like the SPACE, the characters in this class provide a break opportunity, but unlike SPACE they do not take part in determining indirect breaks. They can be subdivided into several categories.

Breaking Spaces

Breaking spaces are the following subset of characters with General_Category Zs:

1680 OGHAM SPACE MARK

2000

EN QUAD

2001

EM QUAD

2002

EN SPACE

2003

EM SPACE

2004

THREE-PER-EM SPACE

2005

FOUR-PER-EM SPACE

2006

SIX-PER-EM SPACE

2008

PUNCTUATION SPACE

2009

THIN SPACE

200A

HAIR SPACE

205F MEDIUM MATHEMATICAL SPACE

The preceding list of space characters all have a specific width, but otherwise behave as breaking spaces. In setting a justified line, none of these spaces normally changes in width, except for THIN SPACE when used in mathematical notation. See also the SP property. 

The Ogham space mark is rendered visibly between words but should be elided at the end of a line.

See the ID property for U+3000 IDEOGRAPHIC SPACE. For a list of all space characters in the Unicode Standard, see Section 6.2, General Punctuation in [Unicode5.0].

Tabs

0009

TAB

Except for the effect of the location of the tab stops, the tab character acts similarly to a space for the purpose of line breaking.

Conditional Hyphens

00AD

SOFT HYPHEN (SHY)

SHY marks an optional place where a line break may occur inside a word. It can be used with all scripts. SHY is rendered invisibly and has no width: it merely indicates an optional line break. The rendering of the optional line break depends on the script. For the Latin script, rendering the line break typically means displaying a hyphen at the end of the line, however, some languages require a change in spelling surrounding a line break. For examples, see Section 5.3, Use of Soft Hyphen.

Breaking Hyphens

Breaking hyphens establish explicit break opportunities immediately after each occurrence.

058A

ARMENIAN HYPHEN

2010

HYPHEN

2012 FIGURE DASH
2013 EN DASH

Hyphens are graphic characters with width. Because, unlike spaces, they print, they are included in the measured part of the preceding line, except where the layout style allows hyphens to hang into the margins.

Visible Word Dividers

The following are other forms of visible word dividers that provide break opportunities:

05BE HEBREW PUNCTUATION MAQAF

0F0B

TIBETAN MARK INTERSYLLABIC TSHEG

1361

ETHIOPIC WORDSPACE

17D5

KHMER SIGN BARIYOOSAN

10100 AEGEAN WORD SEPARATOR LINE
10101 AEGEAN WORD SEPARATOR DOT
10102 AEGEAN CHECK MARK
1039F UGARITIC WORD DIVIDER
103D0 OLD PERSIAN WORD DIVIDER
12470 CUNEIFORM PUNCTUATION SIGN OLD ASSYRIAN WORD DIVIDER

The Tibetan tsheg is a visible mark, but it functions effectively like a space to separate words (or other units) in Tibetan. It provides a break opportunity after itself, like space. For additional information, see Section 5.5, Tibetan Line Breaking.

The ethiopic word space is a visible word delimiter and is kept on the previous line. In contrast, U+1360 ETHIOPIC SECTION MARK is typically used in a sequence of several such marks on a separate line, and separated by spaces. As such lines are typically marked with separate hard line breaks (BK), the section mark is treated like an ordinary symbol and given line break class AL.

2027

HYPHENATION POINT

A hyphenation point is a raised dot, which is mainly used in dictionaries and similar works to visibly indicate syllabification of words. Syllable breaks are potential line break opportunities in the middle of words. When an actual line break falls inside a word containing hyphenation point characters, the hyphenation point is rendered as a regular hyphen at the end of the line.

007C

VERTICAL LINE

In some dictionaries, a vertical bar is used instead of a hyphenation point. In this usage, U+0323 COMBINING DOT BELOW is used to mark stressed syllables, so all breaks are marked by the vertical bar. For an actual break opportunity, the vertical bar is rendered as a hyphen.

Word Separators

Historic texts, especially ancient ones, often do not use spaces, even for scripts where modern use of spaces is standard. Special punctuation was used to mark word boundaries in such texts. For modern text processing these should be treated as line break opportunities by default. WJ can be used to override this default, where necessary.

16EB RUNIC SINGLE DOT PUNCTUATION
16EC RUNIC MULTIPLE DOT PUNCTUATION
16ED RUNIC CROSS PUNCTUATION
2056 THREE DOT PUNCTUATION
2058 FOUR DOT PUNCTUATION
2059 FIVE DOT PUNCTUATION
205A TWO DOT PUNCTUATION
205B FOUR DOT MARK
205D TRICOLON
205E VERTICAL FOUR DOTS

Dandas

DEVANAGARI DANDA is similar to a full stop. The danda or historically related symbols are used with several other Indic scripts. Unlike a full stop, the danda is not used in number formatting. DEVANAGARI DOUBLE DANDA marks the end of a verse. It also has analogues in other scripts.

0964 DEVANAGARI DANDA
0965 DEVANAGARI DOUBLE DANDA
0E5A THAI CHARACTER ANGKHANKHU
104A MYANMAR SIGN LITTLE SECTION
104B MYANMAR SIGN SECTION
1735 PHILIPPINE SINGLE PUNCTUATION
1736 PHILIPPINE DOUBLE PUNCTUATION
17D4 KHMER SIGN KHAN
17D5 KHMER SIGN BARIYOOSAN
17D8 KHMER SIGN BEYYAL
17DA KHMER SIGN KOOMUUT
10A56 KHAROSHTHI PUNCTUATION DANDA
10A57 KHAROSHTHI PUNCTUATION DOUBLE DANDA

Tibetan

0F85 TIBETAN MARK PALUTA
0F34 TIBETAN MARK BSDUS RTAGS
0F7F TIBETAN SIGN RNAM BCAD
0FBE TIBETAN KU RU KHA
0FBF TIBETAN KU RU KHA BZHI MIG CAN

For additional information, see Section 5.5, Tibetan Line Breaking.

Other Terminating Punctuation

Termination punctuation stays with the line, but otherwise allows a break after it. This is similar to EX, except that the latter may be separated by a space from the preceding word without allowing a break, whereas these marks are used without spaces.

1802 MONGOLIAN COMMA
1803 MONGOLIAN FULL STOP
1804 MONGOLIAN COLON
1805 MONGOLIAN FOUR DOTS
1808 MONGOLIAN MANCHU COMMA
1809 MONGOLIAN MANCHU FULL STOP
1A1E BUGINESE PALLAWA
2CF9 COPTIC OLD NUBIAN FULL STOP
2CFA COPTIC OLD NUBIAN DIRECT QUESTION MARK
2CFB COPTIC OLD NUBIAN INDIRECT QUESTION MARK
2CFC COPTIC OLD NUBIAN VERSE DIVIDER
2CFE COPTIC FULL STOP
2CFF COPTIC MORPHOLOGICAL DIVIDER
10A50 KHAROSHTHI PUNCTUATION DOT
10A51 KHAROSHTHI PUNCTUATION SMALL CIRCLE
10A52 KHAROSHTHI PUNCTUATION CIRCLE
10A53 KHAROSHTHI PUNCTUATION CRESCENT BAR
10A54 KHAROSHTHI PUNCTUATION MANGALAM
10A55 KHAROSHTHI PUNCTUATION LOTUS

BB — Break opportunities before characters (B)

Characters of this line break class move to the next line at a line break and thus provide a line break opportunity before.

Dictionary Use

00B4

ACUTE ACCENT

In some dictionaries, stressed syllables are indicated with a spacing acute accent instead of the hyphenation point. In this case the accent moves to the next line, and the preceding line ends with a hyphen.

02C8

MODIFIER LETTER VERTICAL LINE

02CC

MODIFIER LETTER LOW VERTICAL LINE

These characters are used in dictionaries to indicate stress and secondary stress when IPA is used. Both are prefixes to the stressed syllable in IPA. Breaking before them keeps them with the syllable.

NOTE: It is hard to find actual examples in most dictionaries because the pronunciation fields usually occur right after the headword, and the columns are wide enough to prevent line breaks in most pronunciations.

Tibetan Head Letters

0F01 TIBETAN MARK GTER YIG MGO TRUNCATED A
0F02 TIBETAN MARK GTER YIG MGO -UM RNAM BCAD MA
0F03 TIBETAN MARK GTER YIG MGO -UM GTER TSHEG MA
0F04 TIBETAN MARK INITIAL YIG MGO MDUN MA
0F06 TIBETAN MARK CARET YIG MGO PHUR SHAD MA
0F07 TIBETAN MARK YIG MGO TSHEG SHAD MA
0F09 TIBETAN MARK BSKUR YIG MGO
0F0A TIBETAN MARK BKA- SHOG YIG MGO
0FD0 TIBETAN MARK BSKA- SHOG GI MGO RGYAN
0FD1 TIBETAN MARK MNYAM YIG GI MGO RGYAN

Tibetan head letters allow a break before. For more information, see Section 5.5, Tibetan Line Breaking.

Mongolian

1806

MONGOLIAN TODO SOFT HYPHEN

Despite its name, this Mongolian character is not an invisible control like SOFT HYPHEN, but rather a visible character like a regular hyphen. Unlike the hyphen, MONGOLIAN TODO SOFT HYPHEN stays with the following line.  Whenever optional line breaks are to be marked, SOFT HYPHEN should be used instead.

B2 — Break Opportunity Before and After (B/A/XP)

2014

EM DASH

The EM DASH is used to set off parenthetical text. Normally, it is used without spaces. However, this is language dependent. For example, in Swedish, spaces are used around the EM DASH. Line breaks can occur before and after an EM DASH, but not between a pair of them. Such pairs are sometimes used instead of a single quotation dash. For that reason, the line should not be broken between EM DASHes even though not all fonts use connecting glyphs for the EM DASH.

BK — Mandatory Break (A) — (non-tailorable)

Explicit breaks act independently of the surrounding characters. No characters can be added to the BK class as part of tailoring, but implementations are not required to support the VT character.

000C

FORM FEED (FF)

000B LINE TABULATION (VT)

FORM FEED separates pages. The text on the new page starts at the beginning of the line. No paragraph formatting is applied.

2028

LINE SEPARATOR (LS)

The text after the Line Separator starts at the beginning of the line. No paragraph formatting is applied. This is similar to HTML <BR>

2029

PARAGRAPH SEPARATOR (PS)

The text of the new paragraph starts at the beginning of the line. Paragraph formatting is applied.

New Line Function (NLF)

New line functions are defined in the Unicode Standard as providing additional explicit breaks. They are not individual characters, but are encoded as sequences of the control characters NEL, LF, and CR. If a character sequence for a new line function contains more than one character, it is kept together. What particular sequence(s) form a NLF depends on the implementation and other circumstances as described in Section 5.8, Newline Guidelines of[Unicode5.0]

This specification defines the NLF implicitly. It defines the three character classes CR, LF and NL. Their line break behavior, defined in rule LB5 in Section 6.1, Non-Tailorable Line Breaking Rules, is to break after NL, LF or CR, but not between CR and LF.

CB — Contingent Break Opportunity (B/A)

By default there is a break opportunity both before and after any inline object. Object-specific line breaking behavior is implemented in the associated object itself, and where available can override the default to prevent either or both of the default break opportunities. Using U+FFFC OBJECT REPLACEMENT CHARACTER allows the object anchor to take a character position in the string.

FFFC OBJECT REPLACEMENT CHARACTER

Object specific line break behavior is best implemented by querying the object itself, not by replacing the CB line breaking class by another class.

CL — Closing Punctuation (XB)

The closing character of any set of paired punctuation must be kept with the preceding character, and the same applies to all forms of wide comma and full stop. This line break class contains the following characters plus any characters of General_Category Pe in the Unicode Character Database.

3001..3002

IDEOGRAPHIC COMMA..IDEOGRAPHIC FULL STOP

FE11 PRESENTATION FORM FOR VERTICAL IDEOGRAPHIC COMMA
FE12 PRESENTATION FORM FOR VERTICAL IDEOGRAPHIC FULL STOP

FE50

SMALL COMMA

FE52

SMALL FULL STOP

FF0C

FULLWIDTH COMMA

FF0E

FULLWIDTH FULL STOP

FF61

HALFWIDTH IDEOGRAPHIC FULL STOP

FF64

HALFWIDTH IDEOGRAPHIC COMMA

CM — Attached Characters and Combining Marks (XB)

Combining Characters

Combining character sequences are treated as units for the purpose of line breaking. The line breaking behavior of the sequence is that of the base character.

The preferred base character for showing combining marks in isolation is U+00A0 No-Break SPACE.  If a line break before or after the combining sequence is desired, U+200B ZERO WIDTH SPACE can be used. The use of U+0020 SPACE as a base character is deprecated.

For most purposes, combining characters take on the properties of their base characters, and that is how the CM class is treated in rule LB9 of this specification. As a result, if the sequence <0021, 20E4> is used to represent a triangle enclosing an exclamation point, it is effectively treated as EX, the line break class of the exclamation mark. If U+2061 CAUTION SIGN had been used, which also looks like an exclamation point inside a triangle, it would have the line break class of AL. Only the latter corresponds to the line breaking behavior expected by users for this symbol. To avoid surprising behavior, always use a base character that is a symbol when using enclosing combining marks (General_Category Me).

The CM line break class includes all combining characters with General_Category Mc, Me, and Mn, unless listed explicitly elsewhere. This includes viramas.

Control and Formatting Characters

Most control and formatting characters are ignored in line breaking and do not contribute to the line width. By giving them class CM, the line breaking behavior of the last preceding character that is not of class CM affects the line breaking behavior. 

NOTE: When control codes and format characters are rendered visibly during editing, more graceful layout might be achieved by assigning them the AL or ID class instead. 

The CM line break class includes all characters of General_Category Cc and Cf, unless listed explicitly elsewhere.

CR — Carriage Return (A) — (non-tailorable)

000D

CARRIAGE RETURN (CR)

A CR indicates a mandatory break after, unless followed by a LF. See also the discussion under BK.

NOTE: On some platforms the sequence CR, CR, LF is used to indicate the location of actual line breaks, whereas CR LF is treated like a hard line break. As soon as a user edits the text, the location of all the CR CR LF may change as the new text breaks differently, while the relative position of the CR LF to the surrounding text stays the same. This convention allows an editor to return a buffer and the client is able to tell which text is displayed on which line, by counting CR CR LFs and CR LFs.

EX — Exclamation / Interrogation (XB)

Characters in this line break class behave like closing characters, except in relation to postfix (PO) and non-starter characters (NS). They include:

0021

EXCLAMATION MARK

003F

QUESTION MARK

05C6 HEBREW PUNCTUATION NUN HAFUKHA
060C ARABIC COMMA
061B ARABIC SEMICOLON
061E ARABIC TRIPLE DOT PUNCTUATION MARK
061F ARABIC QUESTION MARK
066A ARABIC PERCENT SIGN
06D4 ARABIC FULL STOP
07F9 NKO EXCLAMATION MARK
0F0D TIBETAN MARK SHAD
0F0E TIBETAN MARK NYIS SHAD
0F0F TIBETAN MARK TSHEG SHAD
0F10 TIBETAN MARK NYIS TSHEG SHAD
0F11 TIBETAN MARK RIN CHEN SPUNGS SHAD
0F14 TIBETAN MARK GTER TSHEG
1944 LIMBU EXCLAMATION MARK
1945 LIMBU QUESTION MARK
2762 HEAVY EXCLAMATION MARK ORNAMENT
2763 HEAVY HEART EXCLAMATION MARK ORNAMENT

FE56..FE57

SMALL QUESTION MARK..SMALL EXCLAMATION MARK

FF01

FULLWIDTH EXCLAMATION MARK

FF1F

FULLWIDTH QUESTION MARK

FE15 PRESENTATION FORM FOR VERTICAL EXCLAMATION MARK
FE16 PRESENTATION FORM FOR VERTICAL QUESTION MARK

GL — Non-breaking (“Glue”) (XB/XA) — (non-tailorable)

Non-breaking characters prohibit breaks on either side, but that prohibition can be overridden by SP or ZW. In particular, when NBSP follows SPACE, there is a break opportunity after the SPACE and NBSP will go as visible space onto the next line. See also WJ. The following lists the characters of line break class GL with additional description.

00A0

NO-BREAK SPACE (NBSP)

202F

NARROW NO-BREAK SPACE (NNBSP)

180E MONGOLIAN VOWEL SEPARATOR (MVS)

NO-BREAK SPACE is the preferred character to use where two words should be visually separated but kept on the same line, as in the case of a title and a name “Dr.<NBSP>Joseph Becker”. When SPACE follows NBSP, there is no break, because there never is a break in front of SPACE.  NARROW NO-BREAK SPACE is used in Mongolian. The mongolian vowel separator acts like a NNBSP in its line breaking behavior. It additionally affects the shaping of certain vowel characters as described in Section 13.2, Mongolian of [Unicode5.0].

034F

COMBINING GRAPHEME JOINER

This character has no visible glyph and its presence indicates that adjoining characters are to be treated as a graphemic unit, therefore preventing line breaks between them.

2007

FIGURE SPACE

This is the preferred space to use in numbers. It has the same width as a digit and keeps the number together for the purpose of line breaking.

2011

NON-BREAKING HYPHEN (NBHY)

This is the preferred character to use where words must be hyphenated but may not be broken at the hyphen.

0F08 TIBETAN MARK SBRUL SHAD

0F0C

TIBETAN MARK DELIMITER TSHEG BSTAR

0F12 TIBETAN MARK RGYA GRAM SHAD

The TSHEG BstAR looks exactly like a Tibetan tsheg, but can be used to prevent a break like no-break space. It inhibits breaking on either side. For more information see Section 5.5, Tibetan Line Breaking.

035C..0362 COMBINING DOUBLE BREVE BELOW..COMBINING DOUBLE RIGHTWARDS ARROW BELOW

These diacritics span two characters, thus no word or line breaks are possible on either side.

Some dictionaries use a character that looks like a vertical series of four dots to indicate places where there is a syllable, but no allowable break. This can be represented by a sequence of U+205E VERTICAL FOUR DOTS followed by U+2060 WORD JOINER.

H2 — Hangul LV Syllable (B/A)

This class includes all characters of Hangul Syllable Type LV.

Together with conjoining jamos, Hangul syllables form Korean Syllable Blocks which are kept together; see [Boundaries]. Korean uses space-based line breaking in many styles of documents. To support these, Hangul syllables and conjoining jamo need to be tailored to use class AL, while the default in this specification is class ID which supports the case of Korean documents not using space-based line breaking.  See Section 8.1, Types of Tailoring. See also JL, JT, JV and H3.

H3 — Hangul LVT Syllable (B/A)

This class includes all characters of Hangul Syllable Type LVT. See also JL, JT, JV and H2.

HY — Hyphen (XA)

002D

HYPHEN-MINUS

Some additional context analysis is required to distinguish usage of this character as a hyphen from the use as minus sign (or indicator of numerical range). If used as hyphen, it acts like hyphen.

NOTE: Some typescript conventions use runs of HYPHEN-MINUS to stand in for longer dashes or horizontal rules. If actual character code conversion is not performed and it is desired to treat them like the characters or layout elements they stand for, line breaking needs to support these runs explicitly.

ID — Ideographic (B/A)

NOTE: The actual set of characters in this class includes characters other than Han ideographs.

Characters with this property do not require other characters to provide break opportunities; lines can ordinarily break before and after and between pairs of ideographic characters. The ID line break class consists of:

2E80..2FFF

CJK, KANGXI RADICALS, DESCRIPTION SYMBOLS

3000

IDEOGRAPHIC SPACE

3040..309F

Hiragana (except small characters)

30A0..30FF

Katakana (except small characters)

3400..4DBF

CJK UNIFIED IDEOGRAPHS EXTENSION A

4E00..9FAF

CJK UNIFIED IDEOGRAPHS

F900..FAFF

CJK COMPATIBILITY IDEOGRAPHS

A000..A48F

YI SYLLABLES

A490..A4CF

YI RADICALS

FE62..FE66

SMALL PLUS SIGN to SMALL EQUALS SIGN

FF10..FF19

WIDE DIGITS

20000..2A6D6 CJK UNIFIED IDEOGRAPHS EXTENSION B
2F800..2FA1D CJK COMPATIBILITY IDEOGRAPHS SUPPLEMENT

plus all of the FULLWIDTH LATIN letters and all of the 3000-33FF blocks not covered elsewhere.

NOTE: Use U+2060 WORD JOINER as a manual override to prevent break opportunities around characters of class ID.

U+3000 IDEOGRAPHIC SPACE may be subject to expansion or compression during line justification.

Korean

Korean is encoded with conjoining jamo, Hangul syllables or both. See also JL, JT, JV, H2 and H3. The following set of compatibility jamo are treated as ID by default.

3130..318F

HANGUL COMPATIBILITY JAMO

IN — Inseparable characters (XP)

Leaders

These characters are intended to be used in consecutive sequence. There is never a line break between two character of this class.

2024 ONE DOT LEADER
2025 TWO DOT LEADER
2026 HORIZONTAL ELLIPSIS
FE19 PRESENTATION FORM FOR VERTICAL HORIZONTAL ELLIPSIS

Horizontal ellipsis can be used as a three-dot leader.

IS — Numeric Separator (Infix) (XB)

Characters that usually occur inside a numerical expression may not be separated from the numeric characters that follow, unless a space character intervenes. For example, there is no break in “100.00” or “10,000”, nor in “12:59”.

002C COMMA
002E FULL STOP
003A COLON
003B SEMICOLON
037E GREEK QUESTION MARK (canonically equivalent to 003B)
0589 ARMENIAN FULL STOP
060D ARABIC DATE SEPARATOR
07F8 NKO COMMA
2044 FRACTION SLASH
FE10 PRESENTATION FORM FOR VERTICAL COMMA
FE13 PRESENTATION FORM FOR VERTICAL COLON
FE14 PRESENTATION FORM FOR VERTICAL SEMICOLON

When not used in a numeric context, infix separators are sentence ending punctuation. Therefore they always prevent breaks before.

JL — Hangul L Jamo (B)

The JL line break class consists of all characters of Hangul Syllable Type L.

Conjoining jamos form Korean Syllable Blocks which are kept together; see [Boundaries]. Korean uses space-based line breaking in many styles of documents. To support these, Hangul syllables and conjoining jamo need to be tailored to use class AL, while the default in this specification is class ID which supports the case of Korean documents not using space-based line breaking.  See Section 8.1, Types of Tailoring. See also JT, JV, H2 and H3.

JT — Hangul T Jamo (A)

The JT line break class consists of all characters of Hangul Syllable Type T. See also JL, JV, H2 and H3.

JV — Hangul V Jamo (XA/XB)

The JV line break class consists of all characters of Hangul Syllable Type V. See also JL, JT, H2 and H3.

LF — Line Feed (A) — (non-tailorable)

000A

LINE FEED (LF)

There is a mandatory break after any LF character, but see the discussion under BK.

NL — Next Line (A) — (non-tailorable) 

0085

NEXT LINE (NEL)

The NL class acts like BK in all respects (there is a mandatory break after any NEL character). It cannot be tailored, but implementations are not required to support the NEL character, see the discussion under BK.

NS — Non-starters (XB)

Non-starter characters cannot start a line, but unlike CL they may allow a break in some context when they follow one or more space characters. Non-starters include:

0E5A..0E5B

THAI CHARACTER ANGKHANKHU..THAI CHARACTER KHOMUT

17D4

KHMER SIGN KHAN

17D6

KHMER SIGN CAMNUC PII KUUH

203C

DOUBLE EXCLAMATION MARK

203D INTERROBANG
2047 DOUBLE QUESTION MARK
2048 QUESTION EXCLAMATION MARK
2049 EXCLAMATION QUESTION MARK

3005

IDEOGRAPHIC ITERATION MARK

301C

WAVE DASH

303C MASU MARK
303B VERTICAL IDEOGRAPHIC ITERATION MARK

309B.. 309E

KATAKANA-HIRAGANA VOICED SOUND MARK..HIRAGANA VOICED ITERATION MARK

30A0 KATAKANA-HIRAGANA DOUBLE HYPHEN

30FB..30FE

KATAKANA MIDDLE DOT..KATAKANA VOICED ITERATION MARK

A015 YI SYLLABLE WU

FE54..FE55

SMALL SEMICOLON..SMALL COLON

FF1A..FF1B

FULLWIDTH COLON.. FULLWIDTH SEMICOLON

FF65

HALFWIDTH KATAKANA MIDDLE DOT

FF70

HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK

FF9E..FF9F HALFWIDTH KATAKANA VOICED SOUND MARK..HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

plus all Hiragana, Katakana, and Halfwidth Katakana “small” characters

NOTE: Optionally, the NS restriction may be relaxed and characters treated like ID, to achieve a more permissive style of line breaking, particular in some East Asian document styles.

NU — Numeric (XP)

These characters behave like ordinary characters in the context of ordinary characters but activate the prefix and postfix behavior of prefix and postfix characters.

Numeric characters consist of DECIMAL DIGITS (All characters of General_Category Nd, except FULL WIDTH) plus these characters:

066B ARABIC DECIMAL SEPARATOR
066C ARABIC THOUSANDS SEPARATOR

Unlike IS, the Arabic numeric punctuation does not occur as sentence terminal punctuation outside numbers.

OP — Opening Punctuation (XA)

The opening character of any set of paired punctuation must be kept with the following character.

The OP line break class consists of all characters of General_Category Ps in the Unicode Character Database.

PO — Postfix (Numeric) (XB)

Characters that usually follow a numerical expression may not be separated from preceding numeric characters or preceding closing characters, even if one or more space characters intervene. For example, there is no break in “(12.00) %”.

Some of these characters, in particular degree sign and percent sign can appear on both sides of a numeric expression, therefore the line break algorithm by default does not break between PO and numbers or letters on either side.

The list of post-fix characters is:

0025

PERCENT SIGN

00A2

CENT SIGN

00B0

DEGREE SIGN

060B

AFGHANI SIGN

20300

PER MILLE SIGN

2031

PER TEN THOUSAND SIGN

2032..2037

PRIME..REVERSED TRIPLE PRIME

20A7

PESETA SIGN

2103

DEGREE CELSIUS

2109

DEGREE FAHRENHEIT

FDFC

RIAL SIGN

FE6A

SMALL PERCENT SIGN

FF05

FULLWIDTH PERCENT SIGN

FFE0

FULLWIDTH CENT SIGN

Alphabetic characters are also widely used as unit designators in a post-fix position. For purposes of line breaking, their classification as alphabetic is sufficient to keep them together with the preceding number.

PR — Prefix (Numeric) (XA)

Characters that usually precede a numerical expression may not be separated from following numeric characters or following opening characters, even if space character intervenes. For example, there is no break in “$ (100.00)”.

Many currency signs can appear on both sides, or even the middle of a numeric expression, therefore the line break algorithm by default does not break between PR and numbers or letters on either side.

The PR line break class consists of all currency symbols (General_Category Sc) except as listed explicitly in PO, as well as the following:

002B

PLUS SIGN

005C

REVERSE SOLIDUS

00B1

PLUS-MINUS

2116

NUMERO SIGN

2212

MINUS SIGN

2213

MINUS-OR-PLUS-SIGN

NOTE: Many currency symbols may be used either as prefix or as postfix, depending on local convention. For details on the conventions used, see [CLDR].

QU — Ambiguous Quotation (XB/XA)

Some paired characters can be either opening or closing depending on usage. The default is to treat them as both opening and closing.

NOTE: If language information is available, it can be used to determine which character is used as opening and which as closing quote. See the information in Section 6.2, General Punctuation in [Unicode5.0].

The QU line break class consists of characters of General_Category Pf or Pi in the Unicode Character Database, as well as:

0022

QUOTATION MARK

0027

APOSTROPHE

275B HEAVY SINGLE TURNED COMMA QUOTATION MARK ORNAMENT
275C HEAVY SINGLE COMMA QUOTATION MARK ORNAMENT
275D HEAVY DOUBLE TURNED COMMA QUOTATION MARK ORNAMENT
275E HEAVY DOUBLE COMMA QUOTATION MARK ORNAMENT

U+23B6 BOTTOM SQUARE BRACKET OVER TOP SQUARE BRACKET is subtly different from the others in this class, in that it is both an opening and a closing punctuation character at the same time. However, its use is limited to certain vertical text modes in terminal emulation. Instead of creating a one of a kind class for this rarely used character, assigning it to the QU class approximates the intended behavior.

SA — Complex-context Dependent Characters (South East Asian) (P)

Runs of these characters require morphological analysis to determine break opportunities. This is similar to, for example, a hyphenation algorithm. For the characters that have this property, no line breaks will be found otherwise, therefore complex context analysis, often involving dictionary lookup of some form, is required to determine non-emergency line breaks.

If such analysis is not available they should be treated as AL.

NOTE: These characters can be mapped into their equivalent line breaking classes as result of dictionary lookup, thus permitting a logical separation of this algorithm from the morphological analysis.

The class LA consists of all characters of General_Category Cf, Lo, Lm, Mn or Mc in the following ranges, except as noted elsewhere:

0E00..0E7F

Thai

0E80..0EFF Lao

1000..109F

Myanmar

1780..17FF

Khmer

1950..197F Tai Le
1980..19DF New Tai Lue

SG — Surrogates (XP) — (non-tailorable)

Line break class SG comprises all code points with General_Category Cs. The line breaking behavior of isolated surrogates is undefined. 

NOTE: The use of this line breaking class is deprecated. It was of limited usefulness for UTF-16 implementations that are not supporting characters beyond the BMP. The correct implementation is to resolve a pair of surrogates into a supplementary character before line breaking. 

SP — Space (A) — (non-tailorable)

The space characters are explicit break opportunities, however spaces at the end of a line are not measured for fit. If there is a sequence of space characters, and breaking after any of the space characters would result in the same visible line: the line breaking position after the last space character in the sequence is the locally most optimal one. In other words, because the last character measured for fit is before the space character, any number of space characters are kept together invisibly on the previous line and the first non-space character starts the next line.

0020 SPACE (SP)

NOTE: By default, SPACE, but none of the other breaking spaces, is used in determining an indirect break. For other breaking space characters see BA.

SY — Symbols Allowing Break After (A)

URLs are now so common in regular plain text that they must be taken into account when assigning general-purpose line breaking properties. The SY line breaking property is intended to provide a break after, but not in front of digits so as to not break “1/2” or “06/07/99”.

002F

SOLIDUS

Slash (solidus) is allowed as an additional, limited break opportunity to improve layout of web addresses. As a side effect, some common abbreviations such as “w/o” or “A/S” which normally would not be broken, acquire a line break opportunity. The recommendation in this case is for the layout system not to utilize a line break opportunity allowed by SY unless the distance between it and the next line break opportunity exceeds an implementation defined minimal distance.

NOTE: Normally, symbols are treated as AL. However, additional symbols can be added to this line breaking class, or classes BA, BB, B2 by tailoring. This can be used to allow additional line breaks, for example after “=”. Mathematics requires additional specifications for line breaking, which are outside the scope of this annex.

WJ — Word joiner (XB/XA) — (non-tailorable)

These characters glue together both left and right neighbor character such that they are kept on the same line.

2060

WORD JOINER (WJ)

FEFF

ZERO WIDTH NO-BREAK SPACE (ZWNBSP)

The word joiner character is the preferred choice for an invisible character to keep other characters together that would otherwise be split across the line at a direct break. The character FEFF has the same effect, but because it is also used in an unrelated way as a byte order mark, the use of the WJ as the preferred interword glue simplifies the handling of FEFF.

By definition WJ and ZWNBSP take precedence over the action of SP, but not ZW.

XX — Unknown (XP)

The XX line break class consists of all characters with General_Category Co and all code points with General_Category Cn.

Unassigned code positions, private use characters and characters for which reliable line breaking information is not available are assigned this default line breaking property. The default behavior for this class is identical to class AL. Users can manually insert ZWSP or word joiner around characters of class XX to allow or prevent breaks as needed. 

In addition, implementations can override or tailor this default behavior, for example by assigning characters the property ID or another class. Doing so may give better default behavior for their users. There are other possible means of determining the desired behavior of private use characters. For example one implementation might treat any private use character in ideographic context as ID, while another implementation might support a method for assigning specific properties to specific definitions of private use characters. The details of such use of private use characters are outside the scope of this standard.

For supplementary characters, a useful default is to treat characters in the range 0x10000 to 0x1FFFD as AL and characters in the range 0x20000 to 0x2FFFD, and 0x30000 to 0x3FFFD as ID, until the implementation can be revised to take into account the actual line breaking properties for these characters.

For more information on handling default property values for unassigned characters, see the discussion on default property values in Section 5.3, Unknown and Missing Characters of [Unicode5.0].

The line breaking rules in Section 6, Line Breaking Algorithm and the pair table in Section 7, Pair Table-based Implementation, assume that all unknown characters have been assigned one of the other line breaking classes, such as AL, as part of assigning line breaking classes to the input characters.

ZW — Zero Width Space (A) — (non-tailorable)

200B

ZERO WIDTH SPACE (ZWSP)

This character is used to enable additional (invisible) break opportunities wherever SPACE cannot be used. As its name implies, it normally has no width. However, its presence between two characters does not prevent increased letter spacing in justification.

5.2 Dictionary Usage

Dictionaries follow specific conventions that guide their use of special characters to indicate features of the terms they list. Marks used for some of these conventions may occur near line break opportunities and therefore interact with line breaking; for example, in one dictionary a natural hyphen in a word becomes a tilde dash when the word is split.

Examples of conventions used in several dictionaries are briefly described in this subsection. Where possible, the default line breaking properties for characters commonly used in dictionaries have been assigned to accommodate these and similar conventions. However, implementing the full conventions in dictionaries requires special support.

Looking up the noun “syllable” in eight dictionaries yields eight different conventions:

Dictionary of the English Language, Samuel Johnson, 1843 SY´LLABLE where ´ is an oversized U+02B9 and follows the vowel of the main syllable (not the syllable itself).

Oxford English Dictionary (1st Edition) si·lă'bl where · is a slightly raised middle dot indicating the vowel of the stressed syllable (similar to Johnson’s acute). The letter ă is U+0103. The ' is an apostrophe.

Oxford English Dictionary (2nd Edition) has gone to IPA 'sIləb(ə)l where ' is U+02C8, I is U+026A, ə is U+0259 (both times). The ' comes before the stressed syllable. The () indicate the schwa may be omitted.

Chambers English Dictionary (7th Edition) sil´ə-bl where the stressed syllable is followed by ´ U+02B9, ə is U+0259, and - is a hyphen. When splitting a word like abate´- ment the stress mark ´ goes after stressed syllable followed by the hyphen. No special convention is used, when splitting at hyphen.

BBC English Dictionary sIləbl where I is <U+026A, U+0332>, ə is U+0259. The vowel of the stressed syllable is underlined.

Collins Cobuild English Language Dictionary sIləbə°l where I is <U+026A, U+0332> and has the same meaning as in the BBC English dictionary. The ə is U+0259 (both times). The ° is a U+2070 and indicates the schwa may be omitted.

Readers Digest Great Illustrated Dictionary. syl·la·ble (sílləb'l) The spelling of the word has hyphenation points (· is a U+2027) followed by phonetic spelling. The vowel of the stressed syllable is given an accent, rather than being followed by an accent. The ' is an apostrophe.

Webster’s 3rd New International Dictionary. syl·la·ble /'siləbəl/ The spelling of the word has hyphenation points (· is a U+2027) and is followed by phonetic spelling. The stressed syllable is preceded by ' U+02C8. The ə's are schwas as usual. Webster splits words at the end of a line with a normal hyphen. A U+2E17 DOUBLE OBLIQUE HYPHEN indicates that a hyphenated word is split at the hyphen.

5.3 Use of Soft Hyphen

Unlike U+2010 HYPHEN, which always has a visible rendition, the character U+00AD SOFT HYPHEN (SHY) is an invisible format character that merely indicates a preferred intra-word line-break position. If the line is broken at that point, then whatever mechanism is appropriate for intra-word line-breaks should be invoked, just as if the line break had been triggered by another mechanism, such as a dictionary lookup. Depending on the language and the word, that may produce different visible results, such as:

Here are a few examples of spelling changes:

Each example shows the line break as “ / ” and any inserted hyphens. There are many other cases. The inserted hyphen glyph can take a wide variety of shapes, as appropriate for the situation. Examples include shapes like U+2010 HYPHEN, U+058A ARMENIAN HYPHEN, or U+180A MONGOLIAN NIRUGU, or U+1806 MONGOLIAN TODO SOFT HYPHEN.

When a SHY is used to represent a possible hyphenation location, the spelling is that of the word without hyphenation: “tug<SHY>gummi”. It is up to the line breaking implementation to make any necessary spelling changes when such a possible hyphenation is actually used.

Sometimes it is desirable to encode text that includes line breaking decisions and will not be further broken into lines. If such text includes hyphenations, the spelling must reflect the changes due to hyphenation: “tugg<U+2010>/ gummi”, including the appropriate character for any inserted hyphen. For a list of dash-like character in Unicode see Section 6.2, General Punctuation in [Unicode5.0].

Hyphenation, and therefore the SHY, can be used with the Arabic script. If the rendering system breaks at that point, the display—including shaping—should be what is appropriate for the given language. For example, sometimes a hyphen-like mark is placed on the end of the line. This mark looks like a kashida, but is not connected to the letter preceding it, looking as if the mark is placed and the line divided after the contextual shapes for the line have been determined. For more information on shaping see [Bidi] and Section 8.2, Arabic of [Unicode5.0].

There are three types of hyphens: explicit hyphens, conditional hyphens, and dictionary-inserted hyphens resulting from a hyphenation process. There is no character code for the third kind of hyphen; therefore if a distinction is desired, the fact that a hyphen is dictionary-inserted must be represented out of band, or by using another control code instead of SHY.

The action of a hyphenation algorithm is equivalent to the insertion of a SHY. However, when a word contains an explicit SHY it is customarily treated as overriding the action of the hyphenator for that word.

5.4 Use of Double Hyphen

In some fonts, noticeably Fraktur fonts, it is customary to use a double-stroke form of the hyphen, usually oblique. Such use is merely a font-based glyph variation and does not affect line breaking in any way. In texts using such a font, automatic hyphenation or SHY would also result in the display of a double-stroke, oblique hyphen.

In some dictionaries, such as Webster's 3rd New International Dictionary, double-stroke, oblique hyphens are used to indicate a hyphen at the end of the line that should be retained when the term shown is not line wrapped. It is not necessary to store a special character in the data, merely to substitute the glyph of any ordinary hyphen that ends up at the end of a line. In such convention, automatic hyphenation or SHY would result in the display of an ordinary hyphen without further substitution.

Certain linguistic notations make use of a double-stroke, oblique hyphen to indicate specific features. The U+2E17 DOUBLE OBLIQUE HYPHEN character used in this case is not a hyphen and does not represent a line break opportunity. Automatic hyphenation or SHY would result in the display of an ordinary hyphen.

5.5 Tibetan Line Breaking

The Tibetan script uses spaces sparingly, relying instead on the tsheg. There is no punctuation equivalent to a period in Tibetan; Tibetan shad characters indicate the end of a “phrase” not a sentence. “Phrases” are often metrical, that is, written after every N syllables, and a new sentence can often start within the middle of a phrase. Sentence boundaries need to be determined grammatically rather than by punctuation.

Traditionally there is nothing akin to a paragraph in Tibetan text. It is typical to have many pages of text without a paragraph break, that is, without an explicit line break. The closest thing to a paragraph in Tibetan is a new section or topic starting with U+0F12 or U+0F08. However, these occur in-line: one section ends and a new one starts on the same line and the new section is marked only by the presence of one of these characters.

Some modern books, newspapers, and magazines format text more like English with a break before each section or topic—and (often) the title of the section on a separate line. Where this is done, authors insert an explicit line break. Western punctuation (full stop, question mark, exclamation mark, comma, colon, semi colon, quotes) is starting to appear in Tibetan documents, particularly those published in India, Bhutan and Nepal. Because there are no formal rules for their use in Tibetan they get treated generically by default. In Tibetan documents published in China, CJK bracket and punctuation characters occur frequently; these should be treated as in Chinese written horizontally.

NOTE: The detailed rules for formatting Tibetan texts are complex, and the original assignment of line break classes was found to be wholly insufficient for the purpose. In Unicode 4.1.0 the assignment of line break classes for Tibetan was revised significantly in an attempt to better model Tibetan line breaking behavior. No new rules or line break classes were added.

The set of line break classes for Tibetan should provide a good starting point, even though there is limited practical experience in their implementation. As more experience is gained, some modifications, possibly including new rules or additional line break classes, can be expected.

It is the stated intention of the Unicode Consortium to review these assignments in a future version and to furnish a more detailed and complete description of Tibetan line breaking and line formatting behavior.

6 Line Breaking Algorithm

Unicode Standard Annex #29, Text Boundaries”, [Boundaries], describes a particular method for boundary detection. It is based on a set of hierarchical rules and character classifications. That method is well suited for implementation of some of the advanced heuristics for line breaking.

A slightly simplified implementation of such an algorithm can be devised that uses a two dimensional table to resolve break opportunities between pairs or characters. It is described in Section 7, Pair Table-based Implementation.

The line breaking algorithm presented in this section can be expressed in a series of rules which take line breaking classes defined in Section 5.2, Description of Line Breaking Properties as input. The title of each rule contains a mnemonic summary of the main effect of the rule. The formal statement of each line breaking rules consists either of a remap rule, or of one or more regular expressions containing one or more line breaking classes and one of three special symbols indicating the type of line break opportunity:

! Mandatory break at the indicated position

× No break allowed at the indicated position

÷ Break allowed at the indicated position

The rules are applied in order. That is, there is an implicit “otherwise” at the front of each rule following the first. It is possible to construct alternate sets of such rules that are fully equivalent. To be equivalent an alternate set of rules must have the same effect.

The distinction between a direct and an indirect break as defined in Section 2, Definitions is handled in rule LB18 which explicitly considers the effect of SP. Because rules are applied in order, allowing breaks following SP in rule LB18 implies that any prohibited break in rules LB19LB30 is equivalent to an indirect break.

The examples for each rule use representative characters, where ‘H’ stands for an ideographs, ‘h’ for small kana, ‘9’ for digits. Except where a rule contains no expressions, the italicized text of the rule is intended merely as a handy summary.

The algorithm consists of a part for which tailoring is prohibited and a freely tailorable part.

6.1 Non-tailorable Line Breaking Rules

The rules in this subsection and the membership in the classes BK, CM, CR, GL, LF, NL, WJ, and  ZW  are not tailorable; see Section 4, Conformance.

Resolve line breaking classes:

LB 1  Assign a line breaking class to each code point of the input. Resolve AI, CB, SA, SG, and XX into other line breaking classes depending on criteria outside the scope of this algorithm.

In the absence of such criteria, it is recommended that classes AI, SA, SG, and XX are resolved to AL, except that characters of class SA that have General_Category Mn or Mc are resolved to CM (see SA). Unresolved class CB is handled in rule LB20.

Start and end of text:

There are two special logical positions sot, which occurs before the first character in the text, and eot, which occurs after the last character in the text. Thus an empty string would consist of sot followed immediately by eot. With these two definitions, the line break rules for start and end of text can be specified as follows:

LB 2  Never break at the start of text.

sot ×

LB 3  Always break at the end of text.

! eot

These two rules are designed to deal with degenerate cases, so that there is at least one character on each line, and at least one line break for the whole text. Emergency line breaking behavior usually also allows line breaks anywhere on the line if a legal line break cannot be found. This has the effect of preventing text from running into the margins.

Mandatory breaks:

A hard line break can consist of BK or a New Line Function (NLF) as described in Section 5.8, Newline Guidelines of [Unicode5.0]. These three rules are designed to handle the line ending and line separating characters as described there.

LB 4  Always break after hard line breaks (but never between CR and LF).

BK !

LB 5  Treat CR followed by LF, as well as CR, LF and NL as hard line breaks.

CR × LF

CR !

LF !

NL !

LB 6  Do not break before hard line breaks.

× ( BK | CR | LF | NL )

 

Explicit breaks and non-breaks:

LB 7  Do not break before spaces or zero-width space.

× SP

× ZW

LB 8  Break after zero-width space.

ZW ÷

Combining marks:

See also Section 8.3, Legacy Support for Space Character as Base for Combining Marks.

LB 9  Do not break a combining character sequence; treat it as if it has the LB class of the base character in all of the following rules.

Treat X CM* as if it were X.

where X is any line break class except SP, BK, CR, LF, NL or ZW.

At any possible break opportunity between CM and a following character, CM behaves as if it had the type of its base character. Note that despite the summary title of this rule it is not limited to standard combining character sequences. For the purposes of line breaking, sequences containing most of the control codes or layout control characters are treated like combining sequences.

LB 10  Treat any remaining combining mark as AL.

Treat any remaining CM as it if were AL.

This catches the case where a CM is the first character on the line, or follows SP, BK, CR, LF, NL or ZW.

Word Joiner:

LB 11  Do not break before or after WORD JOINER and related characters.

× WJ

WJ ×

Non-breaking characters:

LB 12  Do not break before or after NBSP and related characters.

[^SP] × GL

GL ×

Unlike the case for WJ, inserting a SP overrides the non-breaking nature of a GL. The expression[^SP] designates any line break class other than SP. The symbol ^ is used, instead of !, in order to avoid confusion with the use of ! to indicate an explicit break.

6.2 Tailorable Line Breaking Rules

The following rules, and classes referenced in them can be tailored by a conformant implementations, see Section 4, Conformance.

Opening and closing:

These have special behavior with respect to spaces, and therefore come before rule 19.

LB 13  Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces.

× CL

× EX

× IS

× SY

LB 14  Do not break after ‘[’, even after spaces.

OP SP* ×

LB 15  Do not break within ‘”[’, even with intervening spaces.

QU SP* × OP

LB 16  Do not break within ‘]h’, even with intervening spaces.

CL SP* × NS

LB 17  Do not break within ‘——’, even with intervening spaces.

B2 SP* × B2

Spaces:

LB 18  Break after spaces.

SP ÷

Special case rules:

LB 19  Do not break before or after  quotation marks, such as ‘ ” ’.

× QU

QU ×

LB 20  Break before and after unresolved CB.

÷ CB

CB ÷

Conditional breaks should be resolved external to the line breaking rules. However, the default action is to treat unresolved CB as breaking before and after.

LB 21  Do not break before hyphen-minus, other hyphens, fixed-width spaces, small kana and other non-starters, or after acute accents.

× BA

× HY

× NS

BB ×

LB 22  Do not break between two ellipses, or between letters or numbers and ellipsis.

AL × IN

ID × IN

IN × IN

NU × IN

Examples: ‘9...’, ‘a...’, ‘H...’

Numbers:

Do not break alphanumerics.

LB 23  Do not break within ‘a9’, ‘3a’, or ‘H%’.

ID × PO

AL × NU

NU × AL

LB 24  Do not break between prefix and letters or ideographs.

PR × ID

PR × AL

PO × AL

In general, lines should not be broken inside numbers of the form described by the following regular expression:

 ( PR | PO ) ? ( OP | HY ) ? NU (NU | SY | IS) * CL ?  ( PR | PO ) ?

Examples:  $(12.35)    2,1234    (12)¢    12.54¢

The default line breaking algorithm approximates this with the following rule.  Note that some cases are already handled above, like ‘9,’, ‘[9’. For a tailoring that supports the regular expression directly, see Section 8.2, Examples of Customization.

LB 25  Do not break between the following pairs of classes relevant to numbers:

CL × PO

CL × PR

NU × PO

NU × PR

PO × OP

PO × NU

PR × OP

PR × NU

HY × NU

IS × NU

NU × NU

SY × NU

Example pairs: ‘$9’, ‘$[’, ‘$-’, ‘-9’, ‘/9’, ‘99’, ‘,9’, ‘9%’ ‘]%’

Korean syllable blocks

Conjoining jamo, Hangul syllables or combinations of both form Korean Syllable Blocks. Such blocks are effectively treated as if they were Hangul syllables; no breaks can occur in the middle of a syllable block. See the Unicode Standard Annex #29: Text Boundaries [Boundaries] for more information on Korean Syllable Blocks.

LB 26 Do not break a Korean syllable.

JL × (JL | JV | H2 | H3)

(JV | H2) × (JV | JT)

(JT | H3) × JT

The effective line breaking class for the syllable block matches the line breaking class for Hangul syllables, which is ID by default. This is achieved by the following rule:

LB 27 Treat a Korean Syllable Block the same as ID.

(JL | JV | JT | H2 | H3) × IN

(JL | JV | JT | H2 | H3) × PO

PR × (JL | JV | JT | H2 | H3)

When Korean uses SPACE for line breaking, these classes, as well as characters of class ID, are often tailored to AL; see Section 8, Tailoring.

Finally, join alphabetic letters into words and break everything else.

LB 28  Do not break between alphabetics (“at”).

AL × AL

LB 29  Do not break between numeric punctuation and alphabetics (“e.g.”).

IS × AL

LB 30 Do not break between letters, numbers or ordinary symbols and opening or closing punctuation.

(AL | NU) × OP

CL × (AL | NU)

The purpose of this rule is to prevent breaks in common cases where a part of a word appears between delimiters, for example in “person(s)”.

LB 31  Break everywhere else.

ALL ÷

÷ ALL

7 Pair Table-based Implementation

A two-dimensional table can be used to resolve break opportunities between pairs of characters. The rows of the table are labeled by the possible values of the line breaking property of the leading character in the pair. The columns are labeled by the line breaking class for the following character of the pair. Each intersection is labeled with the resulting line break opportunity.

The Japanese standard JIS X 4051-1995 [JIS] provides an example of such a table-based definition. However, it uses line breaking classes whose membership is not solely determined by the line breaking property (as in this annex), but in some cases by heuristic analysis or markup of the text.

The implementation provided here directly uses the line breaking classes defined above. 

7.1 Minimal Table

If two rows of the table have identical values and the corresponding columns also have identical values, then the two line breaking classes can be coalesced. For example, the JIS standard uses 20 classes of which only 14 appear to be unique. Any minimal table representation is unique, except for trivial reordering of rows and columns.

7.2 Extended Context

Most of the rules in Section 6, Line Breaking Algorithm involve only pairs of characters, or they apply to a single line break class preceded or followed by any character. These rules can be represented directly in a pair table. However, rules LB14LB17 require extended context to handle spaces.

By broadening the definition of pair from B A, where B is the line breaking class before a break, and A the one after, to B SP* A, where SP* is an optional run of space characters, the same table can be used to distinguish between cases where SP can or cannot provide a line break opportunity (that is, direct and indirect breaks). Rules equivalent to the ones given in Section 6, Line Breaking Algorithm can be formulated without explicit use of SP by using % to express indirect breaks instead. These rules can then be simplified to involve only pairs of classes, that is, only constructions of the form:

B ÷ A

B % A

B × A

where either A or B may be empty. These simplified rules can be automatically translated into a pair table, as in Table 2 below. Line breaking analysis then proceeds by pair table lookup as explained below.  (For readability in table layout, the symbol ^ is used in the table instead of × and _ is used instead of ÷.)

Rule LB9 requires extended context for handling combining marks. This extended context must also be built into the code that interprets the pair table.  For convenience in detecting the condition where A = CM, the symbols # and @ are used in the pair table, instead of % and ^, respectively. See Section 7.5, Combining Marks.

7.3 Example Pair Table

Table 2 implements the line breaking behavior described in this Annex, with the limitation that only context of the form B  SP*  A is considered. BK, CR, LF, NL and SP classes are handled explicitly in the outer loop as given in the code sample below. Pair context of the form B CM* can be handled by handling the special entries @ and # in the driving loop, as explained in Section 7.5, Combining Marks. Conjoining jamos are considered separately in Section 7.6, Conjoining Jamos. In Table 2 the rows are labeled with the B class and the columns are labeled with the A class.

Table 2. Example Pair Table

  OP CL QU GL NS EX SY IS PR PO NU AL ID IN HY BA BB B2 ZW CM WJ H2 H3 JL JV JT
OP ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ @ ^ ^ ^ ^ ^ ^
CL _ ^ % % ^ ^ ^ ^ % % % % _ _ % % _ _ ^ # ^ _ _ _ _ _
QU ^ ^ % % % ^ ^ ^ % % % % % % % % % % ^ # ^ % % % % %
GL % ^ % % % ^ ^ ^ % % % % % % % % % % ^ # ^ % % % % %
NS _ ^ % % % ^ ^ ^ _ _ _ _ _ _ % % _ _ ^ # ^ _ _ _ _ _
EX _ ^ % % % ^ ^ ^ _ _ _ _ _ _ % % _ _ ^ # ^ _ _ _ _ _
SY _ ^ % % % ^ ^ ^ _ _ % _ _ _ % % _ _ ^ # ^ _ _ _ _ _
IS _ ^ % % % ^ ^ ^ _ _ % % _ _ % % _ _ ^ # ^ _ _ _ _ _
PR % ^ % % % ^ ^ ^ _ _ % % % _ % % _ _ ^ # ^ % % % % %
PO % ^ % % % ^ ^ ^ _ _ % % _ _ % % _ _ ^ # ^ _ _ _ _ _
NU % ^ % % % ^ ^ ^ % % % % _ % % % _ _ ^ # ^ _ _ _ _ _
AL % ^ % % % ^ ^ ^ _ _ % % _ % % % _ _ ^ # ^ _ _ _ _ _
ID _ ^ % % % ^ ^ ^ _ % _ _ _ % % % _ _ ^ # ^ _ _ _ _ _
IN _ ^ % % % ^ ^ ^ _ _ _ _ _ % % % _ _ ^ # ^ _ _ _ _ _
HY _ ^ % % % ^ ^ ^ _ _ % _ _ _ % % _ _ ^ # ^ _ _ _ _ _
BA _ ^ % % % ^ ^ ^ _ _ _ _ _ _ % % _ _ ^ # ^ _ _ _ _ _
BB % ^ % % % ^ ^ ^ % % % % % % % % % % ^ # ^ % % % % %
B2 _ ^ % % % ^ ^ ^ _ _ _ _ _ _ % % _ ^ ^ # ^ _ _ _ _ _
ZW _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ^ _ _ _ _ _ _ _
CM _ ^ % % % ^ ^ ^ _ _ % % _ % % % _ _ ^ # ^ _ _ _ _ _
WJ % ^ % % % ^ ^ ^ % % % % % % % % % % ^ # ^ % % % % %
H2 _ ^ % % % ^ ^ ^ _ % _ _ _ % % % _ _ ^ # ^ _ _ _ % %
H3 _ ^ % % % ^ ^ ^ _ % _ _ _ % % % _ _ ^ # ^ _ _ _ _ %
JL _ ^ % % % ^ ^ ^ _ % _ _ _ % % % _ _ ^ # ^ % % % % _
JV _ ^ % % % ^ ^ ^ _ % _ _ _ % % % _ _ ^ # ^ _ _ _ % %
JT _ ^ % % % ^ ^ ^ _ % _ _ _ % % % _ _ ^ # ^ _ _ _ _ %

Resolved outside the pair table:  AI, BK, CB, CRLF, NL, SA, SG, SP, and  XX

Table 2 uses the following notation:

^ denotes a prohibited break: B ^ A is equivalent to B SP* × A; in other words, never break before A and after B, even if one or more spaces intervene.

% denotes an indirect break opportunity. B % A is equivalent to B × A and  B SP+ ÷ A; in other words, do not break before A, unless one or more spaces follow B.

@ denotes a prohibited break for combining marks: B @ A is equivalent to B SP* × A, where A is of class CM. For more details see >Section 7.5, Combining Marks.

# denotes an indirect break opportunity for combining marks following a space. B # A is equivalent to (B × A and  B SP+ ÷  A) where A is of cla5ss CM.

_ denotes a direct break opportunity (equivalent to ÷ as defined above).

Hovering over the cells in a browser with tool-tips enabled reveals the rule number that determines the breaking status for the pair in question. When a pair must be tested with and without intervening spaces, multiple rules are given. Hovering over a line breaking class name gives a representative member of the class and additional information. Clicking on any line break class name anywhere in the document jumps to the definition.

7.4 Sample Code

The following two sections provide sample code [Code14] that demonstrates how the pair table is used. For a complete implementation of the line breaking algorithm, if statements to handle the line breaking classes CR, LF, and NL need to be added. They have been omitted here for brevity, but see Section 7.7, Explicit Breaks.

The sample code assumes that the line breaking classes AI, CB, SG, and XX have been resolved according to rule LB1 as part of initializing the pcls array. The code further assumes that the complex line break analysis for characters with line break class SA is handled in function findComplexBreak, for which the following placeholder is given:

    // placeholder function for complex break analysis
    // cls - resolved line break class, may differ from pcls[0]
    // pcls - pointer to array of line breaking classes (input)
    // pbrk - pointer to array of line breaking opportunities (output)
    // cch - remaining length of input 
    int 
   findComplexBreak(enum break_class cls, enum break_class *pcls, 
                             enum break_action *pbrk, int cch)
    {
            if (!cch)
                return 0;
            for (int ich = 1; ich < cch; ich++) {
    
                // .. do complex break analysis here
                // and report any break opportunities in pbrk ..
               
                pbrk[ich-1] = PROHIBITED_BRK; // by default, no break
               
                if (pcls[ich] != SA)
                    break;
            }
            return ich;
    }

The entries in the example pair table correspond to the following enumeration. For diagnostic purposes, the sample code returns these value to indicate not only the location but also the type of rule that triggered a given break opportunity.

    enum break_action {
           DIRECT_BRK = 0,             // _ in table
           INDIRECT_BRK,               // % in table
           COMBINING_INDIRECT_BRK,     // # in table
           COMBINING_PROHIBITED_BRK,   // @ in table
           PROHIBITED_BRK,             // ^ in table
           EXPLICTI_BRK };             // ! in rules    

Because the contexts involved in indirect breaks of the form B SP* A are of indefinite length, they need to be handled explicitly in the driver code. The sample implementation of a findLineBrk function below remembers the line break class for the last characters seen, but skips any occurrence of SP without resetting this value. Once character A is encountered, a simple lookback is used to see if it is preceded by a SP. This lookback is only necessary if B % A.

    // handle spaces separately, all others by table
    // pcls - pointer to array of line breaking classes (input)
    // pbrk - pointer to array of line break opportunities (output)
    // cch - number of elements in the arrays (“count of characters”) (input)
    // ich - current index into the arrays (variable) (returned value)
    // cls - current resolved line break class for 'before' character (variable)

    int 
    findLineBrk(enum break_class *pcls, enum break_action *pbrk, int cch)
    {
        if (!cch) 
            return 0;
    
        enum break_class cls = pcls[0];   // class of 'before' character
      
        // loop over all pairs in the string up to a hard break
        for (int ich = 1; (ich < cch) &amp;&amp; (cls != BK); ich++) {
    
            // handle explicit breaks here (see Section 7.7)
            // handle spaces explicitly
            if (pcls[ich] == SP) {
                pbrk[ich-1] = PROHIBITED_BRK;   // apply rule LB7: × SP
                continue;                       // do not update cls
            }
    
            // handle complex scripts in a separate function
            if (pcls[ich] == SA) {
                ich += findComplexBreak(cls, &pcls[ich-1], &pbrk[ich-1], 
                           cch - (ich-1));
                if (ich < cch)
                    cls = pcls[ich];
                continue;
            }
        
            // lookup pair table information in brkPairs[before, after];
            enum break_action brk = brkPairs[cls][pcls[ich]];
    
            pbrk[ich-1] = brk;                     // save break action in output array
    
            if (brk == INDIRECT_BRK) {             // resolve indirect break
                if (pcls[ich - 1] == SP)           // if context is A SP * B
                    pbrk[ich-1] = INDIRECT_BRK;    //       break opportunity
                else                               // else
                    pbrk[ich-1] = PROHIBITED_BRK;  //       no break opportunity
            } 
            
            // handle breaks involving a combining mark (see Section 7.5)

            // save cls of 'before' character (unless bypassed by 'continue')
            cls = pcls[ich];                                
        }
        // always break at the end
        pbrk[ich-1] = EXPLICIT_BRK;
    
        return ich;
    }

The function returns all the break opportunities in the array pointed to by pbrk, using the values in the table. On return pbrk[ich] is the type of break after the character at index ich.

A common optimization in implementation is to determine only the nearest line break opportunity prior to the position of the first character that would cause the line to become overfull. Such an optimization requires backwards traversal of the string instead of forwards as shown in the sample code.

7.5 Combining Marks

The implementation of combining marks in the pair table presents an additional complication because rule LB9 defines a context X CM* that is of arbitrary length. There are some similarities to the way contexts of the form B SP* A that are involved in indirect breaks are evaluated. However, contexts of the form SP CM* or CM* SP also need to be handled, while rule LB10 requires some CM* to be treated like AL.

Implementing LB10. This rule can be reflected directly in the example pair table in Table 2 by assigning the same values in the row marked CM as in the row marked AL. Incidentally, this is equivalent to rewriting the rules LB11LB31 by duplicating any expression that contains an AL on its left hand side with another expression that contains a CM. For example, in LB22

AL × IN

would become

AL × IN

CM × IN.

Rewriting these rules as indicated here (and then deleting LB10) is fully equivalent to the original rules because rule LB9 already accounts for all CMs that are not supposed to be treated like AL. For complete prescription see Example 9 in Section 8.2, Examples of Customization.

Implementing LB9. Rule LB9 is implemented in the example pair table in Table 2 by assigning a special # entry in the column marked CM for all rows referring to a line break class that allows a direct or indirect break after itself. (Note that the intersection between the row for class ZW and the column for class CM must be assigned “_” because of rule LB8.) The # corresponds to a break_action value of COMBINING_INDIRECT_BREAK, which triggers the following code in the sample implementation:

    else if (brk == COMBINING_INDIRECT_BRK) {    // resolve combining mark break
        pbrk[ich-1] = PROHIBITED_BRK;             // do not break before CM
        if (pcls[ich-1] == SP){
            #ifndef LEGACY_CM                    // new: space is not a base
                pbrk[ich-1] = COMBINING_INDIRECT_BRK;    // apply rule SP ÷ 
            #else                                 
                pbrk[ich-1] = PROHIBITED_BRK;      // legacy: keep SP CM together
                if (ich > 1)
                    pbrk[ich-2] = ((pcls[ich - 2] == SP) ? 
                                                  INDIRECT_BRK : DIRECT_BRK);
            #endif
        } else                                   // apply rule LB9: X CM * -> X
            continue;                            // do not update cls
    }

When handling a COMBINING_INDIRECT_BREAK, the last remembered line break class in variable cls is not updated, except for those cases covered by rule LB10. A tailoring of rule LB9 that keeps the last SPACE character preceding a combining mark, if any, and therefore breaks before that SPACE character can easily be implemented as shown in the sample code. (See Section 8.3, Legacy Support for Space Character as Base for Combining Marks).

Any rows in Table 2 for line break classes that prohibit breaks after must be handled explicitly. In the example pair table, these are assigned a special entry “@” which corresponds to a special break action of COMBINING_PROHIBITED_BREAK that triggers the following code:

    else if (brk == COMBINING_PROHIBITED_BRK) { // this is the case OP SP* CM
        pbrk[ich-1] = COMBINING_PROHIBITED_BRK;  // no break allowed
        if (pcls[ich-1] != SP)
            continue;                          // apply rule LB9: X CM* -> X
    } 

The only line break class that unconditionally prevents breaks across a following SP is OP. The preceding code fragment ensures that OP CM is handled according to rule LB9 and OP SP CM is handled as OP SP AL according to rule LB10.

7.6 Conjoining Jamos

For Korean Syllable Blocks, the information in rule LB26 is represented by a simple pair table shown in Table 3.

Table 3. Korean Syllable Block Pair Table

  H2 H3 JL JV JT
H2 _ _ _ % %
H3 _ _ _ _ %
JL % % % % _
JV _ _ _ % %
JT _ _ _ _ %

When constructing a pair table such as Table 2, this pair table for Korean syllable blocks in Table 3 is merged with the main pair table for all other line break classes by adding the cells from Table 3 beyond the lower right corner of the main pair table. Next, according to rule LB27, any empty cells in the new rows are filled with the same values as the existing row for class ID, and any empty cells for the new columns are filled with the same values as the existing column for class ID. The resulting merged table is shown in Table 2.

7.7 Explicit Breaks

Handling explicit breaks is straightforward in the driver code, although it does clutter up the loop condition and body of the loop a bit. For completeness, the following sample shows how to change the loop condition and add if statements to the loop that handle BK, NL, CR, and LF. Because NL and BK behave identically by default, this code can be simplified in implementations where the character classification is changed so that BK will always be substituted for NL when assigning line break class. Because this optimization does not change the result, it is not considered a tailoring and does not affect conformance.

    // handle case where input starts with an LF
    if (cls == LF)
         cls = BK;

    // treat NL like BK
    if (cls == NL)
         cls = BK;

    // loop over all pairs in the string up to a hard break or CRLF pair
    for (int ich = 1; (ich < cch) && (cls != BK) && (cls != CR || pcls[ich] == LF); ich++) {
    
        // handle BK, NL and LF explicitly
        if (pcls[ich] == BK ||pcls[ich] == NL ||  pcls[ich] == LF) {
            pbrk[ich-1] = PROHIBITED_BRK;
            cls = BK;
            continue;
        }
    
        // handle CR explicitly
        if(pcls[ich] == CR)
        {
            pbrk[ich-1] = PROHIBITED_BRK;
            cls = CR;
            continue;
        }
            
        // handle spaces explicitly...
            

8 Customization

A real world line breaking algorithm must be tailorable to some degree to meet user or document requirements.

In Korean, for example, two distinct line breaking modes occur, which can be summarized as breaking after each character, or breaking after spaces (as in Latin text). The former tends to occur when text is set justified, the latter, when ragged margins are used. In that case, even ideographs are only broken at space characters. In Japanese for example, tighter and looser specifications of prohibited line breaks may be used.

Specialized text or specialized text constructs may need specific line breaking behavior that differs from the default line breaking rules given in this annex. This may require additional tailorings beyond those considered in this section. For example, the rules given here are insufficient for mathematical equations, whether inline or in display format. Likewise, text which commonly contains lengthy URLs might benefit from special tailoring that suppresses SY × NU from rule LB25 within the scope of a URL to allow breaks after a “/” separated segment in the URL regardless of whether the next segment starts with a digit or not.

The remainder of this section gives an overview of common types of tailorings and examples of how to customize the pair table implementation of the line breaking algorithm for these tailorings.

8.1 Types of Tailoring

There are three principal ways of tailoring the sample pair-table implementation of the line breaking algorithm:

  1. Changing the line breaking class assignment for some characters is useful in cases where the line breaking properties of one class of characters are occasionally lumped together with the properties of another class to achieve a less restrictive line breaking behavior. 
  2. Changing the table value assigned to a pair of character classes is particularly useful if the behavior can be expressed by a change at a limited number of pair intersections. This form of customization is equivalent to permanently overriding some of the rules inSection 6, Line Breaking Algorithm.
  3. Changing the interpretation of the line breaking actions is a dynamic equivalent of the preceding: instead of changing the values for the pair intersection directly in the table, they are labeled with special values that cause different actions for different customizations. This is most suitable when customizations need to be enabled at run time.

Beyond these three straightforward customization steps, it is always possible to augment the algorithm itself, for example by providing specialized rules to recognize and break common constructs, such as URLs, numeric expressions, and so on. Such open ended customizations place no limits on possible changes, other than the requirement that characters with normative line breaking properties be correctly implemented.

Reference [Cedar97] reports on a real world implementation of a pair table-based implementation of a line breaking algorithm substantially similar to the one presented here, and including the types of customizations presented in this section. That implementation was able to simultaneously meet the requirements of customers in many European and East Asian countries with a single implementation of the algorithm.

8.2 Examples of Customization

Example 1. The exact method of resolving the line break class for characters with class SA is not specified in the default algorithm. One method of implementing line breaks for complex scripts is to invoke context-based classification for all runs of characters with class SA. For example a dictionary-based algorithm could return different classes for Thai letters depending on their context: letters at the start of Thai words would become BB and other Thai letters would become AL. Alternatively, for text consisting of or predominantly containing characters with line breaking class SA, it may be useful instead defer the determination of line breaks to a different algorithm entirely. Section 7.4, Sample Code sketches such approach in which the interface to the dictionary-based algorithm directly reports break opportunities.

Example 2. To implement terminal style line breaks, it would be necessary to allow breaks inside a run of spaces. This requires a change in the way the driver loop handles spaces and therefore cannot be simply done by customizing the pair-table. However, the additional task of line wrapping runs of spaces could also be performed after the fact at the layout system level while leaving unchanged the actual line breaking algorithm.

Example 3.  Depending on the nature of the document, Korean uses either implicit breaking around characters (type 2 as defined above in Section 3, Introduction) or uses spaces (type 1). Space-based layout is common in magazines and other informal documents with ragged margins, while books, with both margins justified, use the other type, as it affords more line break opportunities and therefore leads to better justification. Reference [Suign98] shows how the necessary customizations can be elegantly handled by selectively altering the interpretation of the pair entries. Only the intersections of ID/ID, AL/ID and ID/AL are affected. For alphabetic style line breaking, breaks for these four cases require space; for ideographic style line breaking, these four cases do not require spaces. Therefore, one defines a pseudo-action, which is then resolved into either direct or indirect break action based on user selection of the preferred behavior for a given text.

Example 4.  Sometimes in a Far Eastern context it is necessary to allow alphabetic characters and digit strings to break anywhere. According to reference [Suign98] this can again be done in the same way as Korean. In this case the intersections of NU/NU, NU/AL, AL/AL, and AL/NU are affected.

Example 5.  Some users prefer to relax the requirement that Kana syllables to be kept together, for example, the syllable kyu, spelled with the two kanas KI and “small yu” would no longer be kept together as if KI and yu were atomic. This customization can be handled via the first method by changing the classification of the Kana small characters from NS to ID as needed.

Example 6. Some implementations may wish to tailor the line breaking algorithm to resolve grapheme clusters according to Unicode Standard Annex #29, “Text Boundaries” [Boundaries] as a first stage. Generally, the line break algorithm does not create line break opportunities within default grapheme clusters, therefore such a tailoring would be expected to produce results that for most practical cases are close to what are defined by the default algorithm. However, if such a tailoring is chosen, characters that are members of line break class CM but not part of the definition of default grapheme clusters must still be handled by rules LB9 and LB10, or by some additional tailoring.

Example 7. Regular expression-based line breaking engines might get better results using a tailoring that directly implements the following regular expression for numeric expressions

PR | PO ) ? ( OP | HY ) ? NU (NU | SY | IS) * CL ?  ( PR | PO ) ?

This is equivalent to replacing the rule LB25 by the following tailored rule:

Regex-Number: Do not break numbers

(PR | PO) × ( OP | HY )? NU

( OP | HY ) × NU

NU × (NU | SY | IS)

NU (NU | SY | IS)* × (NU | SY | IS | CL)

NU (NU | SY | IS)* CL? × (PO | PR)

This customized rule uses extended contexts that cannot be represented in a pair table.

When the tailored rule is used, LB13 must also be tailored as follows

[^NU] × CL

× EX

[^NU] × IS

[^NU] × SY

otherwise single digits may be handled by rule LB13 before being handled in the regular expression. In these tailored rules [^NU] designates any line break class other than NU. The symbol ^ is used, instead of !, in order to avoid confusion with the use of ! to indicate an explicit break.

Example 8. For some implementations it may be difficult to implement LB9 due to the added complexity of its indefinite length context. Because combining marks are most commonly applied to characters of class AL, rule LB10 by itself generally produces acceptable results for such implementations, but such an approximation is not a conformant tailoring.

9 Implementation Notes

This section provides additional notes on implementation issues.

9.1 Combining Marks in Regular Expression-based Implementations

For implementations that use regular expressions it is not possible to directly express rules LB9 and LB10. However, it is possible to make these rules unnecessary by rewriting all the rules from LB11 on down so that the overall result of the algorithm is unchanged. This restatement of the rules is therefore not a tailoring, but rather an equivalent statement of the algorithm that can be directly expressed as regular expressions.

In order to replace rule LB9, terms of the form

B # A

B SP* # A

B #

B SP* #

  are replaced by terms of the form

B CM* # A

B CM* SP* # A

B CM* #

B CM* SP* #

where B  and A are any line break class or set of alternate line break classes, such as (X |Y) and where # is any of the three operators !, ÷, or ×.

Note that because sot, BK, CR, LF, NL, and ZW are all handled by rules above LB9, these classes cannot occur in position B in any rule that is rewritten as shown here.

Replace LB10, by the following rule

×  CM

and for each rule containing AL on its left side, add a rule that is identical except for the replacement of AL by CM, but taking care of correctly handling sets of alternate line break classes. For example, for rule

(AL | NU) × OP

add another rule

CM × OP.

These prescription for rewriting the rules are in principle valid even where the rules have been tailored as permitted in Section 4, Conformance. However, for extended context rules such as in Example 7, additional considerations apply. These are described in Section 6.2, Replacing Ignore Rules of Unicode Standard Annex #29, Text Boundaries [Boundaries].

9.2 Legacy Support for Space Character as Base for Combining Marks

As stated in [Unicode5.0], Section 7.9, Combining Marks, combining characters are shown in isolation by applying them to U+00A0 NO-BREAK SPACE (NBSP). In earlier versions, this recommendation included the use of U+0020 SPACE. This use of SPACE for this purpose is now deprecated because it has been found to lead to many complications in text processing. When using either NBSP or SPACE as the base character, the visual appearance is the same, but the line breaking behavior is different. Under the current rules, SP CM* will allow a break between SP and CM*, which could result in a new line starting with a combining mark. Previously, whenever the base character was SP, the sequences CM* or SP CM* were defined to act like an indivisible cluster allowing breaks on either side like ID.

Where backwards compatibility with documents created under the prior practice is desired, the following tailoring should be applied to those CM characters that have a General_Category value of Combining_Mark (M):

Legacy-CM: In all of the rules following rule LB8, if a space is the base character for a combining mark, the space is changed to type ID. In other words, break before SP  in the same cases as one would break before an ID.

Treat SP CM* as if it were ID.

While this tailoring changes the location of the line break opportunities in the string, it should ordinarily not affect the display of the text. That is because spaces at the end of the line are normally invisible and the recommended display for isolated combining marks is the same as if they were applied to a preceding SPACE or NBSP.

 

References

For references for this annex, see Unicode Standard Annex #41, “Common References for Unicode Standard Annexes.”

Acknowledgments

Asmus Freytag is the author of the initial version and has added to and maintained the text of this annex.

The initial assignments of properties are based on input by Michel Suignard. Mark Davis provided algorithmic verification and formulation of the rules, and detailed suggestions on the algorithm and text. Ken Whistler, Rick McGowan and other members of the editorial committee provided valuable feedback. Tim Partridge enlarged the information on dictionary usage. Sun Gi Hong reviewed the information on Korean and provided copious printed samples. Eric Muller reanalyzed the behavior of the soft hyphen and collected the samples. Christopher Fynn provided the background information on Tibetan line break. Andrew West, Kamal Mansour, Andrew Glass, Daniel Yacob, and Peter Kirk suggested improvements for Mongolian, Arabic, Kharoshthi, Ethiopic, and Hebrew punctuation characters respectively. Kent Karlsson reviewed the line break properties for consistency. Andy Heninger reviewed the rules and provided input on regular expression-based implementations. Many others provided additional review of the rules and property assignments.

Modifications

Rule Numbering across Versions

The following table documents changes in the numbering of line breaking rules. A duplicate number indicates that a rule was subsequently split. (In each version, the rules are applied in their numerical order, not in the order they appear in this table.) Versions prior to 3.0.1 are not documented here.

5.0.0     4.1.0 4.0.1    4.0.0    3.2.0    3.1.0    3.0.1   
LB1 1 1 1 1 1 1
LB2 2a 2a 2a 2a 2a 2a
LB3 2b 2b 2b 2b 2b 3b
LB4 3a 3a 3a 3a 3a 3a
LB5 3b 3b 3b 3a 3a 3a
LB6 3c 3c 3c 3b 3b 3b
LB7 4 4 4 4 4 4
LB8 5 5 5 5 5 5
  deprecated   7a 7a 7 7 7
LB9 7b 7b 7b 6 6 6
LB10 7c 7c 7c      
LB11 11b 11b 11b 13 13 13
LB12 13 11b 11b 13 13 13
LB13 8 8 8 8 8 8
LB14 9 9 9 9 9 9
LB15 10 10 10 10 10 10
LB16 11 11 11 11 11 11
LB17 11a 11a 11a 11a 11a  
LB18 12 12 12 12 12 12
LB19 14 14 14 14 14 14
LB20 14a 14a 14a      
LB21 15 15 15 15 15 15
LB22 16 16 16 16 16 16
LB23 17 17 17 17 17 17
LB24 18 18 18 18 18 18
LB25 18 18 18 18 18 18
  removed 18b 18b 15b 15b 15b
LB26 18b 6 6 6 6 6
LB27 18c 6 6 6 6 6
LB28 19 19 19 19 19 19
LB29 19b 19b        
LB30            
LB31 20 20 20 20 20 20

 

Change History

For details of the change history, see the online copy of this annex at http://www.unicode.org/reports/tr14/.

The following documents the changes introduced by each revision.

Revision 18:

  • Changed 000B from CMto BK, changed 035C from CM to GL.
  • Changed 17D9 from NS to AL. 203D, 2047..2049 from AL to NS.
  • Corrected listing of NS property to match the data file to remove 17D8 and 17DA.
  • The data file has been corrected to match the listing of the BA property to include 1735 and 1736, also changed 05BE and 103D0 from AL to BA.
  • Changed the brackets 23B4.23B6 to AL.
  • Updated the SA property to make it more generic, includes changing many characters from CM to SA.
  • Reflected new characters
  • Made several text changes for clarifications, including reworded the intro to Section 6.
  • Added Section 9.
  • Restated the conformance clauses and reorganized the algorithm into a tailorable and a non-tailorable part; this affects text in Sections 4, 5, and 6.
  • Removed redundant term PR x HY  from rule 18 and rule into new LB24 and LB26 to provide better granularity for tailoring,
  • Moved rule 11b and 13 above rule 8 (new LB13), restating rule 13 (new LB12) to preserve its effect in the new location.
  • Added new rule LB30 to handle words like “person(s)”.
  • Renumbered the rules.

Revision 17:

  • Significantly revised the line break classes for Tibetan, as well as Mongolian and Arabic Punctuation.
  • Added section 5.5 on Tibetan and section 7.7 on handling explicit breaks.
  • Added line break class assignments for Unicode 4.1 characters.
  • Significantly revised the line break class assignments for danda characters and made it consistent across scripts.
  • LB6: Replaced by new rules 18b and 18c, using new classes JL, JV, JT, H2, and H3.
  • LB7a: Deprecated rule 7a because SPACE as base character for standalone combining marks is deprecated.
  • LB7b: Revised 7b and section 7.5 as well as Table 2 to match the deprecation of rule 7a.
  • LB7b: Clarified that this rule does not apply to SP.
  • LB11a: Added a missing SP * to make the formula match the rule.
  • LB18b: Removed the existing rule 18b because it was redundant.
  • Corrected an erratum on revision 14 by splitting GL from WJ in rule 11b and moving to a new rule 13.
  • Updated the pair table and sample code to match the changes in the rules.
  • Updated the regular expression for numbers.
  • Added several notes on implementation techniques.
  • Moved all suggested tailorings from the rules section to the examples in section 8.2.
Revision 16 being a proposed update, only changes between revisions 17 and 15 are noted here.

Revision 15:

  • LB19b: Added new rule 19b.
  • Changed line breaking class: combining double diacritics from CM to GL, 037A and 2126 to match their canonical equivalents, 2140 corrected to AL, Arabic numerical separators from AL to NU, many alphabetic characters that are EAW=Ambiguous from AI to AL to better reflect current practice, remaining circled numbers and letters from AL to AI for consistency.
  • Added a note on the behavior of U+200B and U+3000 when lines are justified.
  • Reconciled the data file and description of line breaking classes in section 5. 
  • Reconciled the rules and pair table implementation of the algorithm.
  • Updated the text of the conformance statement in section 4.
  • Added section 5.4 on use of double hyphen.
  • Updated styles and table formatting.
  • Minor edits throughout.

Revision 14:

  • Added new line breaking classes NL and WJ to better support NEL and Word Joiner. 
  • Deprecated the use of class SG.
  • Several changes to the rules. Moved rule 15b to 18b, added 14b, moved 13 to 11b. Split rule 6 in to 6a and 7b and split rule 3a into 3a and 3b. Restated rule 7a and added rule 7c.
  • Updated the pair table and sample code, adding a special token '#' to account for breaks before SP followed by CM.
  • Clarified the behavior of SHY and MONGOLIAN TODO SOFT HYPHEN, as well as WJ and ZWNBSP.
  • Added a new subsection 5.3 on SOFT HYPHEN and a new subsection 7.6 on conjoining jamos.
  • Added to the discussion on how to treat combining marks.
  • Clarified the conformance requirements in Section 4
  • Added a definition of line breaking class as synonym for the unwieldy line breaking property value.
  • Expanded the introduction in Section 3.
  • Moved subsections on customization into a new Section 8 and expanded the text.
  • Many edits throughout the text to update it for Unicode 4.0.0.
Revision 11 being a proposed update, only changes between revisions 12 and 14 are noted here.

Revision 12:

  • Change header for publication of Unicode. Fixed a few additional typos. 
  • Updated for publication of Unicode, Version 3.2
  • Added WORD JOINER to GL and noted that it now is the preferred character instead of FEFF
  • Added LB class assignments for the new Unicode 3.2 characters to the data file. Only characters whose LB class differs from those of characters with related General_Category are noted explicitly in this text.
Revision 11, being a proposed update, only changes between revisions 10 and 12 are noted here.]

Revision 10:

  • Changed header for publication of Unicode 3.1. Fixed a few additional typos.

Revision 9: 

  • Fixed several typos, reformatted and sorted some lists by code points
  • Reconciled the data file and the description for BB (00B4), XX (PUA), AI (2015,25C8,PUA), ID (FE6B), BA (00B4)
  • Restored PUA to XX.
  • LB7: Restored the rule, and fixed the note so it matches the rule and Section 7.7 of [Unicode4.0].
  • LB11a: added a rule to reconcile the rules against pair-table entry B2 ^ B2
  • LB19: added an entry to reconcile the rules against pair-table entry PR % ID
  • Reworked Section 7.5
  • Removed two unused definitions (overfull and underfull)

Revision 8: 

  • New status section, changed format of references. Fixed several typos.
  • Added headers to Table 1
  • Added a note on use of B and A
  • Added mention of PUA to AI and removed mention of PUA from XX because the data file assigns AI to them.
  • Clarified the membership and implication of class CM and ID.
  • Updated class ID by the new ranges for 3.1.
  • LB6: Clarified the description of LB6 to clarify how it affects conjoining Jamo.
  • LB7: Fixed the note so it matches the rule.
  • LB17: Fixed the regular expression for numbers in the explanation for this rule.
  • Reworded Sections 7.6 and 7.7 to clarify the customization process.

Revision 7: 

  • Fixed several typos.
  • New header.

Revision 6: 

  • Rewrite and reorganization of the text as part of the publication of the Unicode Standard, Version 3.0.

No change history is available for earlier revisions.