Technical Reports |
Version | 20 |
Editors | Mark Davis, Andy Heninger |
Date | 2020-03-12 |
This Version | http://www.unicode.org/reports/tr18/tr18-20.html |
Previous Version | http://www.unicode.org/reports/tr18/tr18-19.html |
Latest Version | http://www.unicode.org/reports/tr18/ |
Latest Proposed Update | http://www.unicode.org/reports/tr18/proposed.html |
Revision | 20 |
This document describes guidelines for how to adapt regular expression engines to use Unicode.
This is a draft document which may be updated, replaced, or superseded by other documents at any time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable document; it is inappropriate to cite this document as other than a work in progress.
A Unicode Technical Standard (UTS) is an independent specification. Conformance to the Unicode Standard does not imply conformance to any UTS.
Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding this document is found in the References. For the latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For more information about versions of the Unicode Standard, see [Versions].
Regular expressions are a powerful tool for using patterns to search and modify text. They are a key component of many programming languages, databases, and spreadsheets. Starting in 1999, this document has supplied guidelines and conformance levels for supporting Unicode in regular expressions.The following issues are involved in supporting Unicode.
There are three fundamental levels of Unicode support that can be offered by regular expression engines:
In particular:
One of the most important requirements for a regular expression engine is to document clearly what Unicode features are and are not supported. Even if higher-level support is not currently offered, provision should be made for the syntax to be extended in the future to encompass those features.
Note: The Unicode Standard is constantly evolving: new characters will be added in the future. This means that a regular expression that tests for currency symbols, for example, has different results in Unicode 2.0 than in Unicode 2.1, which added the euro sign currency symbol.
At any level, efficiently handling properties or conditions based on a large character set can take a lot of memory. A common mechanism for reducing the memory requirements—while still maintaining performance—is the two-stage table, discussed in Chapter 5 of The Unicode Standard [Unicode]. For example, the Unicode character properties required in RL1.2 Properties can be stored in memory in a two-stage table with only 7 or 8 Kbytes. Accessing those properties only takes a small amount of bit-twiddling and two array accesses.
Note: For ease of reference, the section ordering for this document is intended to be as stable as possible over successive versions. That may lead, in some cases, to the ordering of the sections being less than optimal.
In order to describe regular expression syntax, an extended BNF form is used:
Syntax | Meaning |
---|---|
x y |
the sequence consisting of x then y |
x* |
zero or more occurrences of x |
x? |
zero or one occurrence of x |
x | y |
either x or y |
( x ) |
for grouping |
"XYZ" |
terminal character(s) |
A Character Class represents a set of characters. When a regex implementation follows Section 2.2.1 Character Classes with Strings the set can include sequences of characters as well. The following syntax for Character Classes is used and extended in successive sections.
CHARACTER_CLASS := "[" NEGATION? ITEM (OPERATOR? ITEM)* "]" ITEM := "[" CHARACTER_CLASS "]" := CODE_POINT2 := CODE_POINT2 "-" CODE_POINT2 // range CODE_POINT2 := ESCAPE CODE_POINT := CODE_POINT NEGATION := "^" OPERATOR := "" // union (no separator): A∪B := "||" // union (where desired for clarity): A∪B ESCAPE := "\"
CODE_POINT refers to any Unicode code point from U+0000 to U+10FFFF. Whitespace is allowed between any elements, but to simplify the presentation the many occurrences of sequences of spaces (" "*) are omitted.
Negation affects the entire value in square brackets. That is, [^a…z] = [^[a…z]].
For the purpose of regular expressions, in this document the terms “character” and “code point” are used interchangeably. Similarly, the terms “string” and “sequence of code points” are used interchangeably. Typically the code points of interest will be those representing characters. A Character Class is also referred to as the set of all characters specified by that Character Class.
In addition, for readability the simple parentheses are used where in practice a non-capturing group would be used. That is, (ab|c) is written instead of (?:ab|c).
Code points that are syntax characters or whitespace are typically escaped. For more information see [UAX31]. In examples, the syntax "\s" is sometimes used to indicate whitespace. See also Annex C: Compatibility Properties.
Note: This is only a sample syntax for the purposes of examples in this document. Regular expression syntax varies widely: the issues discussed here would need to be adapted to the syntax of the particular implementation. However, it is important to have a concrete syntax to correctly illustrate the different issues. In general, the syntax here is similar to that of Perl Regular Expressions [Perl].) In some cases, this gives multiple syntactic constructs that provide for the same functionality.
The following table gives examples of Character Classes:
Character Class | Matches |
---|---|
[a-z || A-Z || 0-9] | ASCII alphanumerics |
[a-z A-Z 0-9] | |
[a-zA-Z0-9] | |
[^a-z A-Z 0-9] | anything but ASCII alphanumerics |
[\] \- \ ] | the literal characters ], -, <space> |
Where string offsets are used in examples, they are from zero to n (the length of the string), and indicate positions between characters. Thus in "abcde", the substring from 2 to 4 includes the two characters "cd".
The following additional notation is defined for use here and in other Unicode specifications:
Syntax | Meaning | Note |
---|---|---|
\n+ |
As used within regular expressions, expands to the text matching the nth parenthesized group in the regular expression. (à la Perl) | n is an ASCII digit. Implementations may impose limits on the number of digits. |
$n+ | As used within replacement strings for regular expressions, expands to the text matching the nth parenthesized group in a corresponding regular expression. (à la Perl) | The value of $0 is the entire expression. |
$xyz | As used within regular expressions or replacement strings, expands to an assigned variable value. | The "xyz" is of the form of an identifier. For example, given $greek_lower = [[:greek:]&&[:lowercase:]], the regular expression pattern "ab$greek_lower" is equivalent to "ab[[:greek:]&&[:lowercase:]]". |
Because any character could occur as a literal in a regular expression, when regular expression syntax is embedded within other syntax it can be difficult to determine where the end of the regex expression is. Common practice is to allow the user to choose a delimiter like '/' in /ab(c)*/. The user can then simply choose a delimiter that is not in the particular regular expression.
The following section describes the possible ways that an implementation can claim conformance to this Unicode Technical Standard.
All syntax and API presented in this document is only for the purpose of illustration; there is absolutely no requirement to follow such syntax or API. Regular expression syntax varies widely: the features discussed here would need to be adapted to the syntax of the particular implementation. In general, the syntax in examples is similar to that of Perl Regular Expressions [Perl], but it may not be exactly the same. While the API examples generally follow Java style, it is again only for illustration.
C0. | An implementation claiming conformance to
this specification at any Level shall identify the version of this
specification and the version of the Unicode Standard. |
C1. | An implementation claiming conformance to Level 1 of this specification shall meet the requirements described in the following sections: |
C2. | An implementation claiming conformance to Level 2 of this specification shall satisfy C1, and meet the requirements described in the following sections: |
C3. | An implementation claiming conformance to Level 3 of this specification shall satisfy C1 and C2, and meet the requirements described in the following sections: |
C4C3. | An implementation claiming partial conformance to this specification shall clearly indicate which levels are completely supported (C1-C3C2), plus any additional supported features from higher levels. |
For example, an implementation may claim conformance to Level 1, plus Context Matching, and Incremental Matches. Another implementation may claim conformance to Level 1, except for Subtraction and Intersection.
A regular expression engine may be operating in the context of a larger system. In that case some of the requirements may be met by the overall system. For example, the requirements of Section 2.1 Canonical Equivalents might be best met by making normalization available as a part of the larger system, and requiring users of the system to normalize strings where desired before supplying them to the regular-expression engine. Such usage is conformant, as long as the situation is clearly documented.
A conformance claim may also include capabilities added by an optional add-on, such as an optional library module, as long as this is clearly documented.
For backwards compatibility, some of the functionality may only be available if some special setting is turned on. None of the conformance requirements require the functionality to be available by default.
Regular expression syntax usually allows for an expression to denote a set of single characters, such as [a-z A-Z 0-9]. Because there are a very large number of characters in the Unicode Standard, simple list expressions do not suffice.
The character set used by the regular expression writer may not be Unicode, or may not have the ability to input all Unicode code points from a keyboard.
RL1.1 | Hex Notation |
To meet this requirement, an implementation shall supply a mechanism for specifying any Unicode code point (from U+0000 to U+10FFFF), using the hexadecimal code point representation. |
The syntax must use the code point in its hexadecimal representation. For example, syntax such as \uD834\uDD1E or \xF0\x9D\x84\x9E does not meet this requirement for expressing U+1D11E (𝄞) because "1D11E" does not appear in the syntax. In contrast, syntax such as \U0001D11E, \x{1D11E} or \u{1D11E} does satisfy the requirement for expressing U+1D11E.
A sample notation for listing hex Unicode characters within strings uses "\u" followed by four hex digits or "\u{" followed by any number of hex digits and terminated by "}", with multiple characters indicated by separating the hex digits by spaces. This would provide for the following addition:
<codepoint> := <character> <codepoint> := "\u" HEX_CHAR HEX_CHAR HEX_CHAR HEX_CHAR <codepoint> := "\u{" HEX_CHAR+ "}" <codepoints> := "\u{" HEX_CHAR+ (SEP HEX_CHAR+)* "}" SEP := \s+ U_SHORT_MARK := "u"
The following table gives examples of this hex notation:
Syntax | Matches |
---|---|
[\u{3040}-\u{309F} \u{30FC}] | Hiragana characters, plus prolonged sound sign |
[\u{B2} \u{2082}] | superscript ² and subscript ₂ |
[a \u{10450}] | "a" and U+10450 SHAVIAN LETTER PEEP |
ab\u{63 64} | "abcd" |
More advanced regular expression engines can also offer the ability to use the Unicode character name for readability. See 2.5 Name Properties.
For comparison, the following table shows some additional, current examples of escape syntax for Unicode code points:
Type | Escaped Characters | Escaped String | ||||
---|---|---|---|---|---|---|
Unescaped | 👽 | € | £ | a | <tab> | 👽€£a<tab> |
Code Point† | U+1F47D | U+20AC | U+00A3 | U+0061 | U+0009 | U+1F47D U+20AC U+00A3 U+0061 U+0009 |
CSS† | \1F47D | \20AC | \A3 | \61 | \9 | \1F47D \20AC \A3 \61 \9 |
UTS18, Ruby | \u{1F47D} | \u{20AC} | \u{A3} | \u{61} | \u{9} | \u{1F47D 20AC A3 61 9} |
Perl | \x{1F47D} | \x{20AC} | \x{A3} | \x{61} | \x{9} | \x{1F47D}\x{20AC}\x{A3}\u{61} |
XML/HTML | 👽 | € | £ | a | 	 | 👽€£a	 |
C++/Python/ICU | \U0001F47D | \u20AC | \u00A3 | \u0061 | \u0009 | \U0001F47D\u20AC\u00A3\u0061\u0009 |
Java/JS/ICU* | \uD83D\uDC7D | \u20AC | \u00A3 | \u0061 | \u0009 | \uD83D\uDC7D\u20AC\u00A3\u0061\u0009 |
URL* | %F0%9F%91%BD | %E2%82%AC | %C2%A3 | %61 | %09 | %F0%9F%91%BD%E2%82%AC%C2%A3%61%09 |
XML/HTML* | 👽 | € | £ | a | 	 | 👽€£a	 |
† Following whitespace is consumed.
* Does not satisfy RL1.1
The Unicode Standard treats certain sequences of characters as equivalent, such as the following:
u + grave | U+0075 ( u ) LATIN SMALL LETTER U + U+0300 ( ◌̀ ) COMBINING GRAVE ACCENT |
u_grave | U+00F9 ( ù ) LATIN SMALL LETTER U WITH GRAVE |
Literal text in regular expressions may be normalized (converted to equivalent characters) in transmission, out of the control of the authors of that text. For example, a regular expression may contain a sequence of literal characters 'u' and grave, such as the expression [aeiou◌̀◌́◌̈] (the last three character being U+0300 ( ◌̀ ) COMBINING GRAVE ACCENT, U+0301 ( ◌́ ) COMBINING ACUTE ACCENT, and U+0308 ( ◌̈ ) COMBINING DIAERESIS. In transmission, the two adjacent characters in Row 1 might be changed to the different expression containing just one character in Row 2, thus changing the meaning of the regular expression. Hex notation can be used to avoid this problem. In the above example, the regular expression should be written as [aeiou\u{300 301 308}] for safety.
A regular expression engine may also enforce a single, uniform interpretation of regular expressions by always normalizing input text to Normalization Form NFC before interpreting that text. For more information, see UAX #15, Unicode Normalization Forms [UAX15].
Because Unicode is a large character set that is regularly extended, a regular expression engine needs to provide for the recognition of whole categories of characters as well as simply literal sets of characters and strings; otherwise the listing of characters becomes impractical, out of date, and error-prone. This is done by providing syntax for sets of characters based on the Unicode character properties, and related properties and functions. Examples of such syntax are \p{Script=Greek} and [:Script=Greek:], which both stand for the set of characters that have the Script value of Greek. In addition to the basic syntax, regex engines also need to allow them to be combined with literal sets of characters and strings. An example is [\p{Script=Greek}-\p{General_Category=Letter}], which stands for the set of characters that have the Script value of Greek and that do not have the General_Category value of Letter.
Many character properties are defined in the Unicode Character Database (UCD), which also provides the official data for mapping Unicode characters (and code points) to property values. See Section 2.7, Full Properties; UAX #44, Unicode Character Database [UAX44]; and Chapter 4 in The Unicode Standard [Unicode]. For use in regular expressions, properties can also be considered to be defined by Unicode definitions and algorithms, and by data files and definitions associated with other Unicode Technical Standards, such as UTS #51, Unicode Emoji. For example, this includes the Basic_Emoji definition from UTS #51. The full list of recommended properties is in 2.7 Full Properties. the defined Unicode string functions, such as isNFC() and isLowercase(), which also apply to single code points and may be useful to support in regular expressions.
The values (codomain) of those character properties defined in the Unicode Character Database have the following types: Binary, Enumerated, Numeric, and String. (The UCD Catalog type is the same as Enumerated, while Miscellaneous is generally best treated like String.) Some String properties only ever have values that are single code point strings. Here are some examples.
Property Type | Property | Code Point | Character | Property Value |
---|---|---|---|---|
Binary | White_Space | U+0020 | " " | True |
Enumerated | Script | U+3032 | 〲 | Common |
Code point | Simple_Lowercase_Mapping | U+0041 | A | a \u{61} |
String | Name | U+0020 | " " | SPACE \u{53 50 41 43 45} |
A property value can also have multiple values, representing a set or a list of values. For example, the Script_Extensions property maps from code points to a set of enumerated Script values, such as the following. Those are categorized as Miscellaneous in the UCD.
Property Type | Property | Code Point | Character | Property Value |
---|---|---|---|---|
Set of Enumerated Values | Script_Extensions | U+3032 | 〲 | {Hira, Kana} |
Expressions involving properties with multiple values are most often tested for containment, not equality. An expression like \p{Script_Extensions=Hira} is interpreted as containment: matching each code point cp such that Script_Extensions(cp) ⊇ {Hira}. Thus, \p{Script_Extensions=Hira} will match both U+3032 〲 VERTICAL KANA REPEAT WITH VOICED SOUND MARK (with value {Hira Kana}) and U+3041 ぁ HIRAGANA LETTER SMALL A (with value {Hira}). That also allows the natural replacement of \p{Script=Hira} by \p{Script_Extensions=Hira}: the latter just adds characters that may be either Hira or some other script.
For a more detailed example, see Section 1.2.2 Script and Script Extensions Properties.
In addition to properties of characters, there are also properties of strings (sequences of characters). As with properties of characters, properties of strings can have values that are binary, enumerated, code point, or string — or a set of such values. A property of strings is more general than a property of characters. In other words, any property of characters is also a property of strings; its domain is, however, limited to strings consisting of a single character. Data, definitions, and properties defined by the Unicode Standard and other Unicode Technical Standards, which map from strings to values, can thus be specified in this document as defining regular-expression properties. For example:
Property Type | Property | Code Points | Characters | Property Value |
---|---|---|---|---|
Binary | Basic_Emoji | U+231A WATCH | ⌚️ | True |
U+23F2 U+FE0F | ⏲ | True | ||
U+0041 | A | False | ||
U+0041 U+0042 | AB | False |
Note that such properties can always be “narrowed” to just contain code points. For example, [\p{Basic_Emoji} && \p{any}] is the set of characters in Basic_Emoji.
Note that negations of properties of strings or Character Classes with strings may not be valid in regular expressions. For more information, see Annex D: Resolving Character Classes with Strings and Section 2.2.1 Character Classes with Strings.
The recommended names for UCD properties and property values are in PropertyAliases.txt and PropertyValueAliases.txt. There are both abbreviated names and longer, more descriptive names. It is strongly recommended that both names be recognized, and that loose matching of property names be used, whereby the case distinctions, whitespace, hyphens, and underbar are ignored.
Note: It may be a useful implementation technique to load the Unicode tables that support properties and other features on demand, to avoid unnecessary memory overhead for simple regular expressions that do not use those properties.
Where a regular expression is expressed as much as possible in terms of higher-level semantic constructs such as Letter, it makes it practical to work with the different alphabets and languages in Unicode. The following is an example of a syntax addition that permits properties. Following Perl Syntax, the p is lowercase to indicate a positive match, and uppercase to indicate a negative match.
CHARACTER_CLASS := POSITIVE_SPEC | NEGATIVE_SPEC ITEM := POSITIVE_SPEC | NEGATIVE_SPEC
POSITIVE_SPEC := ("\p{" PROP_SPEC "}") | ("[:" PROP_SPEC ":]")
NEGATIVE_SPEC := ("\P{" PROP_SPEC "}") | ("[:^" PROP_SPEC ":]")
PROP_SPEC := <binary_unicode_property>
PROP_SPEC := <unicode_property> (":" | "=" | "≠" | "!=" ) PROP_VALUE
PROP_SPEC := <script_or_category_property_value> ("|" <script_or_category_property_value>)*
PROP_VALUE := <unicode_property_value> ("|" <unicode_property_value>)*
The following table shows examples of this extended syntax to match properties:
Syntax | Matches |
---|---|
[\p{L} \p{Nd}] | all letters and decimal digits |
[\p{letter} \p{decimal number}] | |
[\p{letter|decimal number}] | |
[\p{L|Nd}] | |
\P{script=greek} | anything that does not have the Greek script |
\P{script:greek} | |
\p{script≠greek} | |
[:^script=greek:] | |
[:^script:greek:] | |
[:script≠greek:] | |
\p{East Asian Width:Narrow} | anything that has the enumerated property value East_Asian_Width = Narrow |
\p{Whitespace} | anything that has binary property value Whitespace = True |
\p{scx=Kana} | The match is to all characters whose Script_Extensions property value includes the specified value(s). So this expression matches U+30FC, which has the Script_Extensions value {Hira, Kana} |
Some properties are binary: they are either true or false for a given code point. In that case, only the property name is required. Others have multiple values, so for uniqueness both the property name and the property value need to be included.
For example, Alphabetic is a binary property, but it is also a value of the enumerated Line_Break property. So \p{Alphabetic} would refer to the binary property, whereas \p{Line Break:Alphabetic} or \p{Line_Break=Alphabetic} would refer to the enumerated Line_Break property.
There are two exceptions to the general rule that expressions involving properties with multiple value should include both the property name and property value. The Script and General_Category properties commonly have their property name omitted. Thus \p{Unassigned} is equivalent to \p{General_Category = Unassigned}, and \p{Greek} is equivalent to \p{Script:Greek}.
RL1.2 | Properties |
To meet this requirement, an
implementation shall provide at least a minimal list of properties,
consisting of the following:
|
|
RL1.2a | Compatibility Properties |
To meet this requirement, an implementation shall provide the properties listed in Annex C: Compatibility Properties, with the property values as listed there. Such an implementation shall document whether it is using the Standard Recommendation or POSIX-compatible properties. |
In order to meet requirements RL1.2 and RL1.2a, the implementation must satisfy the Unicode definition of the properties for the supported version of The Unicode Standard, rather than other possible definitions. However, the names used by the implementation for these properties may differ from the formal Unicode names for the properties. For example, if a regex engine already has a property called "Alphabetic", for backwards compatibility it may need to use a distinct name, such as "Unicode_Alphabetic", for the corresponding property listed in RL1.2.
Implementers may add aliases beyond those recognized in the UCD. For example, in the case of the the Age property an implementation could match the defined aliases "3.0" and "V3_0", but also match "3", "3.0.0", "V3.0", and so on. However, implementers must be aware that such additional aliases may cause problems if they collide with future UCD aliases for different values.
Ignoring an initial "is" in property values is optional. Loose matching rule UAX44-LM3 in [UAX44] specifies that occurrences of an initial prefix of "is" are ignored, so that, for example, "Greek" and "isGreek" are equivalent as property values. Because existing implementations of regular expressions commonly make distinctions based on the presence or absence of "is", this requirement from [UAX44] is dropped.
For more information on properties, see UAX #44, Unicode Character Database [UAX44].
Of the properties in RL1.2, General_Category and Script have enumerated property values with more than two values; the other properties are binary. An implementation that does not support non-binary enumerated properties can essentially "flatten" the enumerated type. Thus, for example, instead of \p{script=latin} the syntax could be \p{script_latin}.
When propertyx is defined to have values that are sets of other values, the notation \p{propertyx=valuey} represents the set of all code points whose property values contain valuey. For example, the Script_Extensions property value for U+30FC ( ー ) is the set {Hiragana, Katakana}. So U+30FC ( ー ) is contained in \p{Script_Extensions=Hiragana}, and is also contained in \p{Script_Extensions=Katakana}.
The most basic overall character property is the General_Category, which is a basic categorization of Unicode characters into: Letters, Punctuation, Symbols, Marks, Numbers, Separators, and Other. These property values each have a single letter abbreviation, which is the uppercase first character except for separators, which use Z. The official data mapping Unicode characters to the General_Category value is in UnicodeData.txt.
Each of these categories has different subcategories. For example, the subcategories for Letter are uppercase, lowercase, titlecase, modifier, and other (in this case, other includes uncased letters such as Chinese). By convention, the subcategory is abbreviated by the category letter (in uppercase), followed by the first character of the subcategory in lowercase. For example, Lu stands for Uppercase Letter.
Note: Because it is recommended that the property syntax be lenient as to spaces, casing, hyphens and underbars, any of the following should be equivalent: \p{Lu}, \p{lu}, \p{uppercase letter}, \p{Uppercase Letter}, \p{Uppercase_Letter}, and \p{uppercaseletter}
The General_Category property values are listed below. For more information on the meaning of these values, see see UAX #44, Unicode Character Database [UAX44].
|
|
|
Starred entries in the table are not part of the enumeration of General_Category values. They are explained below.
Value | Matches | Equivalent to | Notes |
---|---|---|---|
Any | all code points | [\u{0}-\u{10FFFF}] | In some regular expression languages, \p{Any} may be expressed by a period ("."), but that usage may exclude newline characters. |
Assigned | all assigned characters (for the target version of Unicode) | \P{Cn} | This also includes all private use characters. It is useful for avoiding confusing double negatives. Note that Cn includes noncharacters, so Assigned excludes them. |
ASCII | all ASCII characters | [\u{0}-\u{7F}] |
A regular-expression mechanism may choose to offer the ability to identify characters on the basis of other Unicode properties besides the General Category. In particular, Unicode characters are also divided into scripts as described in UAX #24, Unicode Script Property [UAX24] (for the data file, see Scripts.txt). Using a property such as \p{sc=Greek} allows implementations to test whether letters are Greek or not.
Some characters, such as U+30FC ( ー ) KATAKANA-HIRAGANA PROLONGED SOUND MARK, are regularly used with multiple scripts. For such characters the Script_Extensions property (abbreviated as scx) identifies the set of associated scripts. The following shows some sample characters with their Script and Script_Extensions property values:
Code | Char | Name | sc | scx |
---|---|---|---|---|
U+3042 | あ | HIRAGANA LETTER A | Hira | {Hira} |
U+30FC | ー | KATAKANA-HIRAGANA PROLONGED SOUND MARK | Zyyy = Common | {Hira, Kana} |
U+3099 | ゙ | COMBINING KATAKANA-HIRAGANA VOICED SOUND MARK | Zinh = Inherited | {Hira, Kana} |
U+30FB | ・ | KATAKANA MIDDLE DOT | Zyyy = Common | {Bopo, Hang, Hani, Hira, Kana, Yiii} |
The expression \p{sc=Hira} includes those characters whose Script value is Hira, while the expression \p{scx=Hira} includes all the characters whose Script_Extensions value contains Hira. The following table shows the difference:
Expression | Contents of Set |
---|---|
\p{sc=Hira} | [ぁ-ゖゝ-ゟ𛀁🈀] |
\p{scx=Hira} | [、-〃〆〈-】〓-〟〰-〵〷〼-〿ぁ-ゖ ゙-゠・ー㆐-㆟㇀-㇣㈠-㉃㊀-㊰㋀-㋋㍘-㍰ ㍻-㍿㏠-㏾﹅﹆。-・ー゙゚𛀁🈀] |
The expression \p{scx=Hira} contains not only the characters in \p{script=Hira}, but many other characters such as U+30FC ( ー ), which are either Hiragana or Katakana.
In most cases, script extensions are a superset of the script values (\p{scx=X} ⊇ \p{sc=X}). However, in some cases that is not true. For example, the Script property value for U+30FC ( ー ) is Common, but the Script_Extensions value for U+30FC ( ー ) does not contain the script value Common. In other words, \p{scx=Common} ⊉ \p{sc=Common}.
The usage model for the Script and Script_Extensions properties normally requires that people construct somewhat more complex regular expressions, because a great many characters (Common and Inherited) are shared between scripts. Documentation should point users to the description in [UAX24]. The values for Script_Extensions are likely be extended over time as new information is gathered on the use of characters with different scripts. For more information, see The Script_Extensions Property in UAX #24, Unicode Script Property [UAX24].
As defined in the Unicode Standard, the Age property (in the DerivedAge data file in the UCD) specifies the first version of the standard in which each character was assigned. It does not refer to how long it has been encoded, nor does it indicate the historic status of the character.
In regex expressions, the Age property is used to indicate the characters that were in a particular version of the Unicode Standard. That is, a character has the Age property of that version or less. Thus \p{age=3.0} includes the letter a, which was included in Unicode 1.0. To get characters that are new in a particular version, subtract off the previous version as described in 1.3 Subtraction and Intersection. For example: [\p{age=3.1} -- \p{age=3.0}].
Unicode blocks have an associated enumerated property, the Block property. However, there are some very significant caveats to the use of Unicode blocks for the identification of characters: see Annex A: Character Blocks. If blocks are used, some of the names can collide with Script names, so they should be distinguished, with syntax such as \p{Greek Block} or \p{Block=Greek}.
As discussed earlier, character properties are essential with a large character set. In addition, there needs to be a way to "subtract" characters from what is already in the list. For example, one may want to include all non-ASCII letters without having to list every character in \p{letter} that is not one of those 52.
RL1.3 | Subtraction and Intersection |
To meet this requirement, an implementation shall supply mechanisms for union, intersection and set-difference of sets of characters within regular expression character class expressions. |
The following is an example of a syntax extension to handle set operations:
ITEM := "[" ITEM "]" // for grouping
OPERATOR := "" // no separator = union
:= "||" // union: A∪B
:= "&&" // intersection: A∩B
:= "--" // set difference: A∖B
:= "~~" // symmetric difference: = (A\B)∪(B\A) = (A∪B)\(A∩B)
Implementations may also choose to offer other set operations. The symmetric difference of two sets is also useful. It is defined as being the union minus the intersection. Thus [\p{letter}~~\p{ascii}] is equivalent to [[\p{letter}\p{ascii}]--[\p{letter}&&\p{ascii}]].
There are two ways of adding syntax while maintaining backwards compatibility. One choice is to double the symbols, as in the above notation, which allows the operators to appear adjacent to ranges without ambiguity, such as [\p{letter}--a-z]. Alternatively, an engine can have syntax that requires that both sides of every operator be sets or property expressions: [\p{letter}-[a-z]], which is arguably clearer.
For discussions of support by various engines, see:
Binding or precedence may vary by regular expression engine, so as a user it is safest to always disambiguate using brackets to be sure. In particular, precedence may put all operators on the same level, or may take union as binding more closely. For example, where A..F stand for expressions, not characters:
Expression | Precedence | Interpreted as | Interpreted as |
---|---|---|---|
[AB--CD&&EF] | Union, intersection, and difference bind at the same level | [[[[[AB]--C]D]&&E]F] | clone(A).add(B) .remove(C).add(D) .retain(E).add(F) |
Union binds more closely than difference or intersection | [[[AB]--[CD]]&&[EF]] | clone(A).add(B) .remove(clone(C).add(D)) .retain(clone(E).add(F)) |
Binding at the same level is used in this specification.
The following table shows various examples of set subtraction:
Expression | Matches |
---|---|
[\p{L}--QW] | all letters but Q and W |
[\p{N}--[\p{Nd}--0-9]] | all non-decimal numbers, plus 0-9 |
[\u{0}-\u{7F}--\P{letter}] | all letters in the ASCII range, by subtracting non-letters |
[\p{Greek}--\N{GREEK SMALL LETTER ALPHA}] | Greek letters except alpha |
[\p{Assigned}--\p{Decimal Digit Number}--a-fA-Fa-fA-F] | all assigned characters except for hex digits (using a broad definition) |
The boolean expressions can also involve properties of strings or Character Classes with strings. The only restriction is that the complete boolean expression, once resolved, cannot be a negated set of strings. Thus the following matches all code points that neither have a Script value of Greek nor are in Basic_Emoji:
[^[\p{Script=Greek} -- \p{Basic_Emoji}]]
whereas the following is malformed, and should result in a syntax error:
[^[\p{Basic_Emoji} -- \p{Script=Greek}]]
For more information, see Annex D: Resolving Character Classes with Strings and Section 2.2.1 Character Classes with Strings.
Most regular expression engines allow a test for word boundaries (such as by "\b" in Perl). They generally use a very simple mechanism for determining word boundaries: one example of that would be having word boundaries between any pair of characters where one is a <word_character> and the other is not, or at the start and end of a string. This is not adequate for Unicode regular expressions.
RL1.4 | Simple Word Boundaries |
To meet this requirement, an
implementation shall extend the word boundary mechanism so that:
|
Level 2 provides more general support for word boundaries between arbitrary Unicode characters which may override this behavior.
Most regular expression engines offer caseless matching as the only loose matching. If the engine does offers this, then it needs to account for the large range of cased Unicode characters outside of ASCII.
RL1.5 | Simple Loose Matches |
To meet this requirement, if an
implementation provides for case-insensitive matching, then it
shall provide at least the simple, default Unicode case-insensitive
matching, and specify which properties are closed and which are
not.
To meet this requirement, if an implementation provides for case conversions, then it shall provide at least the simple, default Unicode case folding. |
In addition, because of the vagaries of natural language, there are situations where two different Unicode characters have the same uppercase or lowercase. To meet this requirement, implementations must implement these in accordance with the Unicode Standard. For example, the Greek U+03C3 "σ" small sigma, U+03C2 "ς" small final sigma, and U+03A3 "Σ" capital sigma all match.
Some caseless matches may match one character against two: for example, U+00DF "ß" matches the two characters "SS". And case matching may vary by locale. However, because many implementations are not set up to handle this, at Level 1 only simple case matches are necessary. To correctly implement a caseless match, see Chapter 3, Conformance of [Unicode]. The data file supporting caseless matching is [CaseData].
To meet this requirement, where an implementation also offers case conversions, these must also follow Chapter 3, Conformance of [Unicode]. The relevant data files are [SpecialCasing] and [UData].
Matching case-insensitively is one example of matching under an equivalence relation:
A regular expression R matches under an equivalence relation E whenever for all strings S and T:
If S is equivalent to T under E, then R matches S if and only if R matches T.
In the Unicode Standard, the relevant equivalence relation for case-insensitivity is established according to whether two strings case fold to the same value. The case folding can either be simple (a 1:1 mapping of code points) or full (with some 1:n mappings).
In practice, regex APIs are not set up to match parts of characters. For this reason, full case equivalence is difficult to handle with regular expressions. For more information, see Section 2.1, Canonical Equivalents .
For case-insensitive matching:
For condition #2, in both property character classes and explicit character classes, closing under simple case-insensitivity means including characters not in the set. For example:
Conformant implementations can choose whether and how to apply condition #2: the only requirement is that they declare what they do. For example, an implementation may:
Most regular expression engines also allow a test for line boundaries: end-of-line or start-of-line. This presumes that lines of text are separated by line (or paragraph) separators.
RL1.6 | Line Boundaries |
To meet this requirement, if an implementation provides for line-boundary testing, it shall recognize not only CRLF, LF, CR, but also NEL (U+0085), PARAGRAPH SEPARATOR (U+2029) and LINE SEPARATOR (U+2028). |
Formfeed (U+000C) also normally indicates an end-of-line. For more information, see Chapter 3 of [Unicode].
These characters should be uniformly handled in determining logical line numbers, start-of-line, end-of-line, and arbitrary-character implementations. Logical line number is useful for compiler error messages and the like. Regular expressions often allow for SOL and EOL patterns, which match certain boundaries. Often there is also a "non-line-separator" arbitrary character pattern that excludes line separator characters.
The behavior of these characters may also differ depending on whether one is in a "multiline" mode or not. For more information, see Anchors and Other "Zero-Width Assertions" in Chapter 3 of [Friedl].
A newline sequence is defined to be any of the following:
\u{A} | \u{B} | \u{C} | \u{D} | \u{85} | \u{2028} | \u{2029} | \u{D A}
It is strongly recommended that there be a regular expression meta-character, such as "\R", for matching all line ending characters and sequences listed above (for example, in #1). This would correspond to something equivalent to the following expression. That expression is slightly complicated by the need to avoid backup.
(?:\u{D A}|(?!\u{D A})[\u{A}-\u{D}\u{85}\u{2028}\u{2029}]
Note: For some implementations, there may be a performance impact in recognizing CRLF as a single entity, such as with an arbitrary pattern character ("."). To account for that, an implementation may also satisfy R1.6 if there is a mechanism available for converting the sequence CRLF to a single line boundary character before regex processing.
For more information on line breaking, see [UAX14].
A fundamental requirement is that Unicode text be interpreted semantically by code point, not code units.
RL1.7 | Supplementary Code Points |
To meet this requirement, an implementation shall handle the full range of Unicode code points, including values from U+FFFF to U+10FFFF. In particular, where UTF-16 is used, a sequence consisting of a leading surrogate followed by a trailing surrogate shall be handled as a single code point in matching. |
UTF-16 uses pairs of 16-bit code units to express code points above FFFF16, while UTF-8 uses from two to four 8-bit code units to represent code points above 7F16. Surrogate pairs (or their equivalents in other encoding forms) are to be handled internally as single code point values. In particular, [\u{0}-\u{10000}] will match all the following sequence of code units:
Code Point | UTF-8 Code Units | UTF-16 Code Units | UTF-32 Code Units |
---|---|---|---|
7F | 7F | 007F | 0000007F |
80 | C2 80 | 0080 | 00000080 |
7FF | DF BF | 07FF | 000007FF |
800 | E0 A0 80 | 0800 | 00000800 |
FFFF | EF BF BF | FFFF | 0000FFFF |
10000 | F0 90 80 80 | D800 DC00 | 00010000 |
For backwards compatibility, some regex engines allow for switches to reset matching to be by code unit instead of code point. Such usage is discouraged. For example, in order to match 👎 it is far better to write \u{1F44E) rather than \uD83D\uDC4E (using UTF-16) or \xF0\x9F\x91\x8E (using UTF-8).
Note: It is permissible, but not required, to match an isolated surrogate code point (such as \u{D800}), which may occur in Unicode 16-bit Strings. See Unicode String in the Unicode [Glossary].
Level 1 support works well in many circumstances. However, it does not handle more complex languages or extensions to the Unicode Standard very well. Particularly important cases are canonical equivalence, word boundaries, extended grapheme cluster boundaries, and loose matches. (For more information about boundary conditions, see UAX #29, Unicode Text Segmentation [UAX29].)
Level 2 support matches much more what user expectations are for sequences of Unicode characters. It is still locale-independent and easily implementable. However, for compatibility with Level 1, it is useful to have some sort of syntax that will turn Level 2 support on and off.
The features comprising Level 2 are not in order of importance. In particular, the most useful and highest priority features in practice are:
The equivalence relation for canonical equivalence is established by whether two strings are identical when normalized to NFD.
For most full-featured regular expression engines, it is quite difficult to match under canonical equivalence, which may involve reordering, splitting, or merging of characters. For example, all of the following sequences are canonically equivalent:
The regular expression pattern /o\u{31B}/ matches the first two characters of A, the first and third characters of B, the first character of C, part of the first character together with the third character of D, and part of the character in E.
In practice, regex APIs are not set up to match parts of characters or handle discontiguous selections. There are many other edge cases: a combining mark may come from some part of the pattern far removed from where the base character was, or may not explicitly be in the pattern at all. It is also unclear what /./ should match and how back references should work.
It is feasible, however, to construct patterns that will match against NFD (or NFKD) text. That can be done by:
One or more Unicode characters may make up what the user thinks of as a character. To avoid ambiguity with the computer use of the term character, this is called a grapheme cluster. For example, "G" + acute-accent is a grapheme cluster: it is thought of as a single character by users, yet is actually represented by two Unicode characters. The Unicode Standard defines extended grapheme clusters that treat certain sequences as units, including Hangul syllables and base characters with combining marks. The precise definition is in UAX #29, Unicode Text Segmentation [UAX29]. These extended grapheme clusters are not the same as tailored grapheme clusters, which are covered in Section 3.2, Tailored Grapheme Clusters. However, the boundary definitions in CLDR are strongly recommended: they are more comprehensive than those defined in [UAX29] and include Indic extended grapheme clusters such as ksha.
RL2.2 | Extended Grapheme Clusters and Character Classes with Strings |
To meet this requirement, an implementation shall provide a mechanism for matching against an arbitrary extended grapheme cluster, a literal clusterCharacter Classes with strings, and extended grapheme cluster boundaries. |
For example, an implementation could interpret \X as matching any extended grapheme cluster, while interpreting "." as matching any single code point. It could interpret \b{g} as a zero-width match against any extended grapheme cluster boundary, and \B{g} as the negation of that.
More generally, it is useful to have zero width boundary detections for each of the different kinds of segment boundaries defined by Unicode ([UAX29] and [UAX14]). For example:
Syntax | Zero-width Match at |
---|---|
\b{g} | a Unicode extended grapheme cluster boundary |
\b{w} | a Unicode word boundary. Note that this is different than \b alone, which corresponds to \w and \W. See Annex C: Compatibility Properties. |
\b{l} | a Unicode line break boundary |
\b{s} | a Unicode sentence boundary |
Thus \X is equivalent to .+?\b{g}; proceed the minimal number of characters (but at least one) to get to the next extended grapheme cluster boundary.
Regular expression engines should also provide some mechanism for easily matching against Character Classes with strings, because they are more likely to match user expectations for many languages. One mechanism for doing that is to have explicit syntax for strings in Character Classes, as in the following addition to the syntax of Section 0.1.1 Character Classes:
ITEM := "\q{" (CODE_POINT (SP CODE_POINT)*)? "}"
SP := \u{20}
The following table shows examples of use of the \q syntax:
Expression | Matches |
---|---|
[a-z\q{x\u{323}}] | The characters a-z, and the string x with an under-dot (used in American Indian languages) |
[a-z\q{aa}] | The characters a-z, and the string aa (treated as a single character in Danish) |
[a-z ñ \q{ch} \q{ll} \q{rr}] | Some lowercase characters in traditional Spanish |
[a-z \q{🧐}\q{🇫🇷}] | Characters a-z and two emoji. Note that this is equivalent to [a-z 🧐\q{🇫🇷}] because the first emoji is a single code point, while the second is two codepoints and thus requires the \q syntax. |
In implementing Character Classes with strings, the expression /[a-m \q{ch} \q{chh} \q{rr} β-ξ]/ should behave as the alternation /(chh | ch | rr | [a-mβ-ξ])/. Note that such an alternation must have the strings ordered as longest-first to work correctly in arbitrary regex engines, because some regex engines try the leftmost matching alternative first. Therefore it does not work to have shorter strings first. The exception is where those shorter strings are not initial substrings of longer strings.
If the implementation supports empty alternations, such as (ab|[ac-m]|), then it can also handle empty strings: [\q{ab}[ac-m]\q{}].
Of course, such alternations can be optimized internally for speed and/or memory, such as (ab|[ac-m]|) → ((ab?)|[c-m]|).
Like properties of strings, negated Character Classes with strings need to be handled specially: see Annex D: Resolving Character Classes with Strings.
Matching a complemented set containing strings like \q{ch} may behave differently in the two different modes: the normal mode where code points are the unit of matching, or the mode where extended grapheme clusters are the unit of matching. That is, the expression [^ a-m \q{ch} \q{rr}] should behave in the following way:
Mode | Behavior | Description |
---|---|---|
normal | (?! ch | rr | [a-m] ) [\u{0}-\u{10FFFF}] |
failing with strings starting with a-m, ch, or rr, and otherwise advancing by one code point |
grapheme cluster | (?! ch | rr | [a-m] ) \X |
failing with strings starting with a-m, ch, or rr, and otherwise advancing by one extended grapheme cluster |
An extended character set containing strings like \q{ch} plus embedded complement operations is interpreted as if the complement were pushed up to the top of the expression, using the following rewrites recursively:
Original | Rewrite |
---|---|
^^x | x |
^x || ^y | ^(x && y) |
^x || y | ^(x -- y) |
x || ^y | ^(y -- x) |
^x && ^y | ^(x || y) |
^x -- y | |
^x && y | y -- x |
^x -- ^y | |
x && ^y | x -- y |
x -- ^y | x && y |
^x ~~ ^y | x ~~ y |
^x ~~ y | ^(x ~~ y) |
x ~~ ^y |
Applying these rewrites results in a simplification of the regex expression. Either the complement operations will be completely eliminated, or a single remaining complement operation will remain at the top level of the expression. Logically, then, the rest of the expression consists of a flat list of characters and/or multi-character strings; matching strings can then can be handled as described above.
A grapheme cluster mode behaves more like users' expectations for character boundaries, and is especially useful for handling canonically equivalent matching. In a grapheme cluster mode, matches are guaranteed to be on extended grapheme cluster boundaries. Each atomic literal of the pattern matches complete extended grapheme clusters, and thus behaves as if followed by \b{g}. Atomic literals include: a dot, a character class (like [a-m]), a sequence of characters (perhaps with some being escaped) that matches as a unit, or syntax that is equivalent to these. Note that in /abc?/, the "abc" is not matching as a unit; the ? modifier is only affecting the last character, and thus the ab and the c are separate atomic literals. To summarize:
Syntax | Behaves Like | Description |
---|---|---|
. | \X | matches a full extended grapheme cluster going forward |
[abc{gh}] | [abc{gh}]\b{g} | matches only if the end point of the match is at a grapheme cluster boundary |
abcd | abcd\b{g} | matches only if the end point of the match is at a grapheme cluster boundary |
Note that subdivisions can modify the behavior in this mode. Normally /(xy)/ is equivalent to /(x)(y)/ in terms of matching (where x and y are arbitrary literal character strings); that is, only the grouping is different. That is not true in grapheme cluster mode, where each atomic literal acts as if it is followed by \b{g}.
For example, /(x\u{308})/ is not the same as /(x)(\u{308})/ in matching. The former behaves like /(x\u{308}\b{g})/ while the latter behaves like /(x\b{g})(\u{308}\b{g})/. The latter will never match in grapheme cluster mode, since it would only match if there were a grapheme cluster boundary after the x and if x is followed by \u{308}, but that can never happen simultaneously.
RL2.3 | Default Word Boundaries |
To meet this requirement, an implementation shall provide a mechanism for matching Unicode default word boundaries. |
The simple Level 1 support using simple <word_character> classes is only a very rough approximation of user word boundaries. A much better method takes into account more context than just a single pair of letters. A general algorithm can take care of character and word boundaries for most of the world's languages. For more information, see UAX #29, Unicode Text Segmentation [UAX29].
Note: Word boundaries and "soft" line-break boundaries (where one could break in line wrapping) are not generally the same; line breaking has a much more complex set of requirements to meet the typographic requirements of different languages. See UAX #14, Line Breaking Properties [UAX14] for more information. However, soft line breaks are not generally relevant to general regular expression engines.
A fine-grained approach to languages such as Chinese or Thai—languages that do not use spaces—requires information that is beyond the bounds of what a Level 2 algorithm can provide.
RL2.4 | Default Case Conversion |
To meet this requirement, if an implementation provides for case conversions, then it shall provide at least the full, default Unicode case folding. |
Previous versions of RL2.4 included full default Unicode case-insensitive matching. For most full-featured regular expression engines, it is quite difficult to match under code point equivalences that are not 1:1. For more discussion of this, see 1.5 Simple Loose Matches and 2.1 Canonical Equivalents. Thus that part of RL2.4 has been retracted.
Instead, it is recommended that implementations provide for full, default Unicode case conversion, allowing users to provide both patterns and target text that has been fully case folded. That allows for matches such as between U+00DF "ß" and the two characters "SS". Some implementations may choose to have a mixed solution, where they do full case matching on literals such as "Strauß", but simple case folding on character classes such as [ß].
To correctly implement case conversions, see [Case]. For ease of implementation, a complete case folding file is supplied at [CaseData]. Full case mappings use the data files [SpecialCasing] and [UData].
RL2.5 | Name Properties |
To meet this requirement, an implementation shall support individually named characters. |
When using names in regular expressions, the data is supplied in both the Name (na) and Name_Alias properties in the UCD, as described in UAX #44, Unicode Character Database [UAX44], or computed as in the case of CJK Ideographs or Hangul Syllables. Name matching rules follow Matching Rules from [UAX44#UAX44-LM2].
The following provides examples of usage:
Syntax | Set | Note |
---|---|---|
\p{name=ZERO WIDTH NO-BREAK SPACE} | [\u{FEFF}] | using the Name property |
\p{name=zerowidthno breakspace} | [\u{FEFF}] | using the Name property, and Matching Rules [UAX44] |
\p{name=BYTE ORDER MARK} | [\u{FEFF}] | using the Name_Alias property |
\p{name=BOM} | [\u{FEFF}] | using the Name_Alias property (a second value) |
\p{name=HANGUL SYLLABLE GAG} | [\u{AC01}] | with a computed name |
\p{name=BEL} | [\u{7}] | the control character |
\p{name=BELL} | [\u{1F514} | the graphic symbol 🔔 |
Certain code points are not assigned names or name aliases in the standard. With the exception of "reserved", these should be given names based on Code Point Label Tags table in [UAX44], as shown in the following examples:
Syntax | Set | Note |
---|---|---|
\p{name=private-use-E000} | [\u{E000}] | |
\p{name=surrogate-D800} | [\u{D800}] | would only apply to isolated surrogate code points |
\p{name=noncharacter-FDD0} | [\u{FDD0}] | |
\p{name=control-0007} | [\u{7}] |
Characters with the <reserved> tag in the Code Point Label Tags table of [UAX44] are excluded: the syntax \p{reserved-058F} would mean that the code point U+058F is unassigned. While this code point was unassigned in Unicode 6.0, it is assigned in Unicode 6.1 and thus no longer "reserved".
Implementers may add aliases beyond those recognized in the UCD. They must be aware that such additional aliases may cause problems if they collide with future character names or aliases. For example, implementations that used the name "BELL" for U+0007 broke when the new character U+1F514 ( 🔔 ) BELL was introduced.
Previous versions of this specification recommended supporting ISO control names from the Unicode 1.0 name field. These names are now covered by the name aliases (see NameAliases.txt).In four cases, the name field included both the ISO control name as well as an abbreviation in parentheses.
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+000D CARRIAGE RETURN (CR)
U+0085 NEXT LINE (NEL)These abbreviations were intended as alternate aliases, not as part of the name, but the documentation did not make this sufficiently clear. As a result, some implementations supported the entire field as a name. Those implementations might benefit from continuing to support them for compatibility. Beyond that, their use is not recommended.
The \p{name=...} syntax can be used meaningfully with wildcards (see Section 2.6 Wildcards in Property Values). For example, in Unicode 6.1, \p{name=/ALIEN/} would include a set of two characters:
The namespace for the \p{name=...} syntax is the namespace for character names plus name aliases.
The following provides syntax for specifying a code point by supplying the precise name. This syntax specifies a single code point, which can thus be used in wherever \u{...} can be used.
<codepoint> := "\N{" <character_name> "}"
The \N syntax is related to the syntax \p{name=...}, but there are three important distinctions:
The namespace for the \N{name=...} syntax is the namespace for character names plus name aliases. Name matching rules follow Matching Rules from [UAX44#UAX44-LM2].
As with other property values, names should use a loose match, disregarding case, spaces and hyphen (the underbar character "_" cannot occur in Unicode character names). An implementation may also choose to allow namespaces, where some prefix like "LATIN LETTER" is set globally and used if there is no match otherwise.
There are, however, three instances that require special-casing with loose matching, where an extra test shall be made for the presence or absence of a hyphen.
The following table gives examples of the \N syntax:
Expression | Equivalent to |
---|---|
\N{WHITE SMILING FACE} | \u{263A} |
\N{whitesmilingface} | |
\N{GREEK SMALL LETTER ALPHA} | \u{3B1} |
\N{FORM FEED} | \u{C} |
\N{SHAVIAN LETTER PEEP} | \u{10450} |
[\N{GREEK SMALL LETTER ALPHA}-\N{GREEK SMALL LETTER BETA}] | [\u{3B1}-\u{3B2}] |
RL2.6 | Wildcards in Property Values |
To meet this requirement, an implementation shall support wildcards in Unicode property values. |
Instead of a single property value, this feature allows the use of a regular expression to pick out a set of characters based on whether the property values match the regular expression. The regular expression must support at least wildcards; other regular expressions features are recommended but optional.
PROP_VALUE := <value> | "/" <regex expression> "/" | "@" <unicode_property> "@"
Note: Where regular expressions are used in matching, the case, spaces, hyphen, and underbar are significant; it is presumed that users will make use of regular-expression features to ignore these if desired.
The @…@ syntax is used to compare property values, and is primarily intended for string properties. It allows for expressions such as [:^toNFKC_Casefold=@toNFKC@:], which expresses the set of all and only those code points CP such that toNFKC_Casefold(CP) = toNFKC(CP). The value identity can be used in this context. For example, \p{toLowercase≠@identity@} expresses the set of all characters that are changed by the toLowercase mapping.
The following table shows examples of the use of wildcards:
Expression | Matched Set |
---|---|
Characters whose NFD form contains a "b" (U+0062) in the value: | |
\p{toNfd=/b/} | U+0062 ( b ) LATIN SMALL LETTER B U+1E03 ( ḃ ) LATIN SMALL LETTER B WITH DOT ABOVE U+1E05 ( ḅ ) LATIN SMALL LETTER B WITH DOT BELOW U+1E07 ( ḇ ) LATIN SMALL LETTER B WITH LINE BELOW |
Characters with names containing "SMILING FACE" or "GRINNING FACE": | |
\p{name=/(SMILING|GRINNING) FACE/} | U+263A ( ☺️ ) WHITE SMILING FACE U+263B ( ☻ ) BLACK SMILING FACE U+1F601 ( 😁 ) GRINNING FACE WITH SMILING EYES U+1F603 ( 😃 ) SMILING FACE WITH OPEN MOUTH U+1F604 ( 😄 ) SMILING FACE WITH OPEN MOUTH AND SMILING EYES U+1F605 ( 😅 ) SMILING FACE WITH OPEN MOUTH AND COLD SWEAT U+1F606 ( 😆 ) SMILING FACE WITH OPEN MOUTH AND TIGHTLY-CLOSED EYES U+1F607 ( 😇 ) SMILING FACE WITH HALO U+1F608 ( 😈 ) SMILING FACE WITH HORNS U+1F60A ( 😊 ) SMILING FACE WITH SMILING EYES U+1F60D ( 😍 ) SMILING FACE WITH HEART-SHAPED EYES U+1F60E ( 😎 ) SMILING FACE WITH SUNGLASSES U+1F642 ( 🙂 ) SLIGHTLY SMILING FACE U+1F929 ( 🤩 ) GRINNING FACE WITH STAR EYES U+1F92A ( 🤪 ) GRINNING FACE WITH ONE LARGE AND ONE SMALL EYE U+1F92D ( 🤭 ) SMILING FACE WITH SMILING EYES AND HAND COVERING MOUTH U+1F970 ( 🥰 ) SMILING FACE WITH SMILING EYES AND THREE HEARTS |
Characters with names starting with "LATIN LETTER" and ending with "P": | |
\p{name=/^LATIN LETTER.*P$/} | U+01AA ( ƪ ) LATIN LETTER REVERSED ESH LOOP U+0294 ( ʔ ) LATIN LETTER GLOTTAL STOP U+0296 ( ʖ ) LATIN LETTER INVERTED GLOTTAL STOP U+1D18 ( ᴘ ) LATIN LETTER SMALL CAPITAL P |
Characters with names containing "VARIATION" or "VARIANT": | |
\p{name=/VARIA(TION|NT)/} | U+180B ( ) MONGOLIAN FREE VARIATION SELECTOR ONE … U+180D ( ) MONGOLIAN FREE VARIATION SELECTOR THREE U+299C ( ⦜ ) RIGHT ANGLE VARIANT WITH SQUARE U+303E ( 〾 ) IDEOGRAPHIC VARIATION INDICATOR U+FE00 ( ) VARIATION SELECTOR-1 … U+FE0F ( ) VARIATION SELECTOR-16 U+121AE ( 𒆮 ) CUNEIFORM SIGN KU4 VARIANT FORM U+12425 ( 𒐥 ) CUNEIFORM NUMERIC SIGN THREE SHAR2 VARIANT FORM U+1242F ( 𒐯 ) CUNEIFORM NUMERIC SIGN THREE SHARU VARIANT FORM U+12437 ( 𒐷 ) CUNEIFORM NUMERIC SIGN THREE BURU VARIANT FORM U+1243A ( 𒐺 ) CUNEIFORM NUMERIC SIGN THREE VARIANT FORM ESH16 … U+12449 ( 𒑉 ) CUNEIFORM NUMERIC SIGN NINE VARIANT FORM ILIMMU A U+12453 ( 𒑓 ) CUNEIFORM NUMERIC SIGN FOUR BAN2 VARIANT FORM U+12455 ( 𒑕 ) CUNEIFORM NUMERIC SIGN FIVE BAN2 VARIANT FORM U+1245D ( 𒑝 ) CUNEIFORM NUMERIC SIGN ONE THIRD VARIANT FORM A U+1245E ( 𒑞 ) CUNEIFORM NUMERIC SIGN TWO THIRDS VARIANT FORM A U+E0100 ( ) VARIATION SELECTOR-17 … U+E01EF ( ) VARIATION SELECTOR-256 |
Characters in the Letterlike symbol block with different toLowercase values: | |
\p{Block=Letterlike Symbols} -\p{toLowercase=@cp@} [\p{toLowercase≠@cp@} & \p{Block=Letterlike Symbols} |
U+2126 ( Ω ) OHM SIGN U+212A ( K ) KELVIN SIGN U+212B ( Å ) ANGSTROM SIGN U+2132 ( Ⅎ ) TURNED CAPITAL F |
The lists in the examples above were extracted on the basis of Unicode 5.0; different Unicode versions may produce different results.
The following table some additional samples, illustrating various sets. A click on the link will use the online Unicode utilities on the Unicode website to show the contents of the sets. Note that these online utilities curently use single-letter operations.
Expression | Description |
---|---|
[[:name=/CJK/:]-[:ideographic:]] | The set of all characters with names that contain CJK that are not Ideographic |
[:name=/\bDOT$/:] | The set of all characters with names that end with the word DOT |
[:block=/(?i)arab/:] | The set of all characters in blocks that contain the sequence of letters "arab" (case-insensitive) |
[:toNFKC=/\./:] | the set of all characters with toNFKC values that contain a literal period |
RL2.7 | Full Properties |
To meet this requirement, an implementation shall support all of the properties listed below that are in the supported version of the Unicode Standard (or Unicode Technical Standard, respectively), with values that match the Unicode definitions for that version. |
To meet requirement RL2.7, the implementation must satisfy the Unicode definition of the properties for the supported version of Unicode (or Unicode Technical Standard, respectively), rather than other possible definitions. However, the names used by the implementation for these properties may differ from the formal Unicode names for the properties. For example, if a regex engine already has a property called "Alphabetic", for backwards compatibility it may need to use a distinct name, such as "Unicode_Alphabetic", for the corresponding property listed in RL1.2.
The list excludes provisional, contributory, obsolete, and deprecated properties. It also excludes specific properties: Unicode_1_Name, Unicode_Radical_Stroke, and the Unihan properties. The properties shown in the table with a gray background are covered by RL1.2 Properties. For more information on properties, see UAX #44, Unicode Character Database [UAX44]. Properties marked with * are properties of strings, not just single code points.
The properties that are not in the UCD provide property metadata in their data file headers that can be used to support property syntax. That information is used to match and validate properties and property values for syntax such as \p{pname=pvalue}, so that they can be used in the same way as UCD properties. These include the Identifier_Status and Identifier_Type, and the Emoji sequence properties.
The Name and Name_Alias properties are used in \p{name=…} and \N{…}. The data in NamedSequences.txt is also used in \N{…}. For more information see Section 2.5, Name Properties . The Script and Script_Extensions properties are used in \p{scx=…}. For more information, see Section 1.2.2, Script_Property.
To test whether a string is in a normalization format such as NFC requires special code. However, there are "quick-check" properties that can detect whether characters are allowed in a normalization format at all. Those can be used for cases like the following, which removes characters that cannot occur in NFC: [\p{Alphabetic}--\p{NFC_Quick_Check=No}]
The Emoji properties can be used to precisely parse text for valid emoji of different kinds, while the Equivalent_Unified_Ideograph can be used to find radicals for unified ideographs (or vice versa): \p{Equivalent_Unified_Ideograph=⼚} matches [⼚⺁厂].
See also 2.5 Name Properties and 2.6 Wildcards in Property Values.
Implementations may also add other regular expression properties based on Unicode data that are not listed above. Some possible candidates include the following. These are optional, and are not required by any conformance clauses in this document, nor is the example syntax required.
Source | Example | Description |
---|---|---|
[UTS46] | [\p{UTS46_Status=deviation} &&\p{IDNA2008_Status=Valid} |
Characters valid under both UTS46 and IDNA2008 |
[UTS35] | \p{Exemplar_Main=fil} | The main exemplar characters for Filipino, ie, [a-nñ \q{ng} o-z] |
[UTS10] | \p{Collation_Primary_en=η} | Characters that sort as 'η' on a primary level in Greek according to CLDR, ie, [η 𝞰 𝛈 𝜂 𝜼 𝝶 Η 𝜢 𝚮 𝛨 𝝜 𝞖 ἠ Ἠ ἤ Ἤ ᾔ ᾜ ἢ Ἢ ᾒ ᾚ ἦ Ἦ ᾖ ᾞ ᾐ ᾘ ἡ Ἡ ἥ Ἥ ᾕ ᾝ ἣ Ἣ ᾓ ᾛ ἧ Ἧ ᾗ ᾟ ᾑ ᾙ ή ή Ή Ή ῄ ὴ Ὴ ῂ ῆ ῇ ῃ ῌ] |
Named Sequences.txt |
\p{Named_Sequence=TAMIL CONSONANT K} |
The matching named sequence, ie, \u{0B95 0BCD} These should match any name according to the Name property, NamedAliases.txt, and NamedSequences.txt, so that \p{Named_Sequence=X} is a drop-ins for \p{Name=X}. |
Standardized Variants.txt |
\p{Standardized_Variant} | The set of all standardized variant sequences. |
UCD | \p{Indic_Positional_Category} | See UCD description |
UCD | \p{Indic_Syllabic_Category} | See UCD description |
The following table gives examples of such properties in use:
String properties | Description |
---|---|
[:toNFC=Å:] | The set of all strings X such that toNFC(X) = "a" |
[:toNFD=A\u{300}:] | The set of all strings X such that toNFD(X) = "A\u{300}" |
[:toNFKC=A:] | The set of all strings X such that toNFKC(X) = "A" |
[:toNFKD=A\u{300}:] | The set of all strings X such that toNFKD(X) = "A\u{300}" |
[:toLowercase=a:] | The set of all strings X such that toLowercase(X) = "a" |
[:toUppercase=A:] | The set of all strings X such that toUppercase(X) = "A" |
[:toTitlecase=A:] | The set of all strings X such that toTitlecase(X) = "A" |
[:toCaseFold=a:] | The set of all strings X such that toCasefold(X) = "A" |
[:Exemplar=ja:] or [:Exemplar_Punctuation=ja:] | Exemplar characters and strings from CLDR (for Japanese) The string value must be a valid Unicode language ID. |
[:Named_Sequence=KHMER CONSONANT SIGN COENG KA:] | The sequence named KHMER CONSONANT SIGN COENG KA in NamedSequences.txt. (To be most useful, this should match any name according to the Name property, NamedAliases.txt, and NamedSequences.txt, so that [:Named_Sequence=X:] is a drop-in for [:Name=X:].) |
Binary properties | Description |
---|---|
[:isNFC:] | The set of all characters X such that toNFC(X) = X |
[:isNFD:] | The set of all characters X such that toNFD(X) = X |
[:isNFKC:] | The set of all characters X such that toNFKC(X) = X |
[:isNFKD:] | The set of all characters X such that toNFKD(X) = X |
[:isLowercase:] | The set of all characters X such that toLowercase(X) = X |
[:isUppercase:] | The set of all characters X such that toUppercase(X) = X |
[:isTitlecase:] | The set of all characters X such that toTitlecase(X) = X |
[:isCaseFolded:] | The set of all characters X such that toCasefold(X) = X |
[:isCased:] | The set of all cased characters. |
This section has been retracted. It last appeared in version 19.
All of the above deals with a default specification for a regular expression. However, a regular expression engine also may want to support tailored specifications, typically tailored for a particular language or locale. This may be important when the regular expression engine is being used by end-users instead of programmers, such as in a word-processor allowing some level of regular expressions in searching.
For example, the order of Unicode characters may differ substantially from the order expected by users of a particular language. The regular expression engine has to decide, for example, whether the list [a-ä] means:
If both tailored and default regular expressions are supported, then a number of different mechanism are affected. There are two main alternatives for control of tailored support:
For example, fine-grained support could use some syntax such as the following to indicate tailoring to a locale within a certain range:
\T{<locale_id>}..\E
Locale (or language) IDs should use the syntax from locale identifier definition in [UTS35], Section 3. Identifiers . Note that the locale id of "root" or "und" indicates the root locale, such as in the CLDR root collation.
There must be some sort of syntax that will allow Level 3 support to be turned on and off, for two reasons. Level 3 support may be considerably slower than Level 2, and most regular expressions may require Level 1 or Level 2 matches to work properly. The syntax should also specify the particular locale or other tailoring customization that the pattern was designed for, because tailored regular expression patterns are usually quite specific to the locale, and will generally not work across different locales.
Sections 3.6 and following describe some additional capabilities of regular expression engines that are very useful in a Unicode environment, especially in dealing with the complexities of the large number of writing systems and languages expressible in Unicode.
The Unicode character properties for punctuation may vary from language to language or from country to country. In most cases, the effects of such changes will be apparent in other operations, such as a determination of word breaks. But there are other circumstances where the effects should be apparent in the general APIs, such as when testing whether a curly quotation mark is opening or closing punctuation.
RL3.1 | Tailored Punctuation |
To meet this requirement, an implementation shall allow for punctuation properties to be tailored according to locale, using the locale identifier definition in [UTS35], Section 3. Identifiers. |
As just described, there must be the capability of turning this support on or off.
RL3.2 | Tailored Grapheme Clusters |
To meet this requirement, an implementation shall provide for collation grapheme clusters matches based on a locale's collation order. |
Tailored grapheme clusters may be somewhat different than the extended grapheme clusters discussed in Level 2. They are coordinated with the collation ordering for a given language in the following way. A collation ordering determines a collation grapheme cluster, which is a sequence of characters that is treated as a unit by the ordering. For example, ch is a collation grapheme cluster for a traditional Spanish ordering.
The tailored grapheme clusters for a particular locale are the collation grapheme clusters for the collation ordering for that locale. The determination of tailored grapheme clusters requires the regular expression engine to either draw upon the platform's collation data, or incorporate its own tailored data for each supported locale.
For example, an implementation could interpret \u{es-u-co-trad} as matching a collation grapheme cluster for a traditional Spanish ordering, or use a switch to change the meaning of \X during some span of the regular expression.
See Section 9.9, Handling Collation Graphemes in UTS #10, Unicode Collation Algorithm [UTS10] for the definition of collation grapheme clusters, and Annex B: Sample Collation Grapheme Cluster Code for sample code.
RL3.3 | Tailored Word Boundaries |
To meet this requirement, an implementation shall allow for the ability to have word boundaries to be tailored according to locale. |
For example, an implementation could interpret \b{x:…} as matching the word break positions according to the locale information in CLDR [UTS35] (which are tailorings of word break positions in [UAX29]). Thus it could interpret expressions as show here:
Expression | Matches |
---|---|
\b{w:und} | a root word break |
\b{w} | |
\b{w:ja} | a Japanese word break |
\b{l:ja} | a Japanese line break |
Alternatively, it could use a switch to change the meaning of \b and \B during some span of the regular expression.
Semantic analysis may be required for correct word boundary detection in languages that do not require spaces, such as Thai. This can require fairly sophisticated support if Level 3 word boundary detection is required, and usually requires drawing on platform OS services.
RL3.4 | Tailored Loose Matches (Retracted) |
Previous versions of RL3.4 described loose matches based on collation order. However, for most full-featured regular expression engines, it is quite difficult to match under code point equivalences that are not 1:1. For more discussion of this, see 1.5 Simple Loose Matches and 2.1 Canonical Equivalents. Thus RL3.4 has been retracted.
RL3.5 | Tailored Ranges (Retracted) |
Previous versions of RL3.5 described ranges based on collation order. However, tailored ranges can be quite difficult to implement properly, and can have very unexpected results in practice. For example, languages may also vary whether they consider lowercase below uppercase or the reverse. This can have some surprising results: [a-Z] may not match anything if Z < a in that locale. Thus RL3.5 has been retracted.
RL3.6 | Context Matching |
To meet this requirement, an implementation shall provide for a restrictive match against input text, allowing for context before and after the match. |
For parallel, filtered transformations, such as those involved in script transliteration, it is important to restrict the matching of a regular expression to a substring of a given string, and yet allow for context before and after the affected area. Here is a sample API that implements such functionality, where m is an extension of a Regex Matcher.
if (m.matches(text, contextStart, targetStart, targetLimit, contextLimit)) { int end = p.getMatchEnd(); }
The range of characters between contextStart and targetStart define a precontext; the characters between targetStart and targetLimit define a target, and the offsets between targetLimit and contextLimit define a postcontext. Thus contextStart ≤ targetStart ≤ targetLimit ≤ contextLimit. The meaning of this function is that:
Examples are shown in the following table. In these examples, the text in the pre- and postcontext is italicized and the target is underlined. In the output column, the text shown with a gray background is the matched portion. The pattern syntax "(←x)" means a backwards match for x (without moving the cursor) This would be (?<=x) in Perl. The pattern "(→x)" means a forwards match for x (without moving the cursor). This would be (?=x) in Perl.
Pattern | Input | Output | Comment |
---|---|---|---|
/(←a) (bc)* (→d)/ | 1abcbcd2 | 1abcbcd2 | matching with context |
/(←a) (bc)* (→bcd)/ | 1abcbcd2 | 1abcbcd2 | stops early, because otherwise 'd' would not match |
/(bc)*d/ | 1abcbcd2 | no match | 'd' cannot be matched in the target, only in the postcontext |
/(←a) (bc)* (→d)/ | 1abcbcd2 | no match | 'a' cannot be matched, because it is before the precontext (which is zero-length, in this case) |
While it would be possible to simulate this API call with other regular expression calls, it would require subdividing the string and making multiple regular expression engine calls, significantly affecting performance.
There should also be pattern syntax for matches (like ^ and $) for the contextStart and contextLimit positions.
Internally, this can be implemented by modifying the regular expression engine so that all matches are limited to characters between contextStart and contextLimit, and so that all matches that are not zero-width look-arounds are limited to the characters between targetStart and targetLimit.
RL3.7 | Incremental Matches |
To meet this requirement, an implementation shall provide for incremental matching. |
For buffered matching, one needs to be able to return whether there is a partial match; that is, whether there would be a match if additional characters were added after the targetLimit. This can be done with a separate method having an enumerated return value: match, no_match, or partial_match.
if (m.incrementalmatches(text, cs, ts, tl, cl) == Matcher.MATCH) { ... }
Thus performing an incremental match of /bcbce(→d)/ against "1abcbcd2" would return a partial_match because the addition of an e to the end of the target would allow it to match. Note that /(bc)*(→d)/ would also return a partial match, because if bc were added at the end of the target, it would match.
The following table shows the same patterns as shown above in Section 3.6, Context Matching, but with the results for when an incremental match method is called:
Pattern | Input | Output | Comment |
---|---|---|---|
/(←a) (bc)* (→d)/ | 1abcbcd2 | partial match | 'bc' could be inserted |
/(←a) (bc)* (→bcd)/ | 1abcbcd2 | partial match | 'bc' could be inserted |
/(bc)*d/ | 1abcbcd2 | partial match | 'd' could be inserted |
/(←a) (bc)* (→d)/ | 1abcbcd2 | no match | as with the matches function; the backwards search for 'a' fails |
The typical usage of incremental matching is to make a series of incremental match calls, marching through a buffer with each successful match. At the end, if there is a partial match, one loads another buffer (or waits for other input). When the process terminates (no more buffers or input are available), then a regular match call is made.
Internally, incremental matching can be implemented in the regular expression engine by detecting whether the matching process ever fails when the current position is at or after targetLimit, and setting a flag if so. If the overall match fails, and this flag is set, then the return value is set to partial_match. Otherwise, either match or no_match is returned, as appropriate.
The return value partial_match indicates that there was a partial match: if further characters were added there could be a match to the resulting string. It may be useful to divide this return value into two, instead:
Previous versions described a technique to reduce memory consumption by sharing the underlying implementation data structures for character classes. That technique has been retracted because it assumed a very specific implementation environment and did not specify any Unicode related pattern or matching features.
RL3.9 | Possible Match Sets |
To meet this requirement, an implementation shall provide for the generation of possible match sets from any regular expression pattern. |
There are a number of circumstances where additional functions on regular expression patterns can be useful for performance or analysis of those patterns. These are functions that return information about the sets of characters that a regular expression can match.
When applying a list of regular expressions (with replacements) against a given piece of text, one can do that either serially or in parallel. With a serial application, each regular expression is applied the text, repeatedly from start to end. With parallel application, each position in the text is checked against the entire list, with the first match winning. After the replacement, the next position in the text is checked, and so on.
For such a parallel process to be efficient, one needs to be able to winnow out the regular expressions that simply could not match text starting with a given code point. For that, it is very useful to have a function on a regular expression pattern that returns a set of all the code points that the pattern would partially or fully match.
myFirstMatchingSet = pattern.getFirstMatchSet(Regex.POSSIBLE_FIRST_CODEPOINT);
For example, the pattern /[[\u{0}-\u{FF}] && [:Latin:]] * [0-9]/ would return the set {0..9, A..Z, a..z}. Logically, this is the set of all code points that would be at least partial matches (if considered in isolation).
Note: An additional useful function would be one that returned the set of all code points that could be matched at any point. Thus a code point outside of this set cannot be in any part of a matching range.
The second useful case is the set of all code points that could be matched in any particular group, that is, that could be set in the standard $0, $1, $2, ... variables.
myAllMatchingSet = pattern.getAllMatchSet(Regex.POSSIBLE_IN$0);
Internally, this can be implemented by analysing the regular expression (or parts of it) recursively to determine which characters match. For example, the first match set of an alternation (a | b) is the union of the first match sets of the terms a and b.
The set that is returned is only guaranteed to include all possible first characters; if an expression gets too complicated it could be a proper superset of all the possible characters.
RL3.10 | Folded Matching |
Previous versions of RL3.10 described tailored folding. However, for most full-featured regular expression engines, it is quite difficult to match under folding equivalences that are not 1:1. For more discussion of this, see 1.5 Simple Loose Matches and 2.1 Canonical Equivalents. Thus RL3.10 has been retracted.
RL3.11 | Submatchers |
To meet this requirement, an implementation shall provide for general registration of matching functions for providing matching for general linguistic features. |
There are over 70 properties in the Unicode character database, yet there are many other sequences of characters that users may want to match, many of them specific to given languages. For example, characters that are used as vowels may vary by language. This goes beyond single-character properties, because certain sequences of characters may need to be matched; such sequences may not be easy themselves to express using regular expressions. Extending the regular expression syntax to provide for registration of arbitrary properties of characters allows these requirements to be handled.
The following provides an example of this. The actual function is just for illustration.
class MultipleMatcher implements RegExSubmatcher { // from RegExFolder, must be overridden in subclasses /** * Returns -1 if there is no match; otherwise returns the endpoint; * an offset indicating how far the match got. * The endpoint is always between targetStart and targetLimit, inclusive. * Note that there may be zero-width matches. */ int match(String text, int contextStart, int targetStart, int targetLimit, int contextLimit) { // code for matching numbers according to numeric value. } // from RegExFolder, may be overridden for efficiency /** * The parameter is a number. The match will match any numeric value that is a multiple. * Example: for "2.3", it will match "0002.3000", "4.6", "11.5", and any non-Western * script variants, like Indic numbers. */ RegExSubmatcher clone(String parameter, Locale locale) {...} } ... RegExSubmatcher.registerMatcher("multiple", new MultipleMatcher()); ... p = Pattern.compile("xxx\M{multiple=2.3}xxx");
In this example, the match function can be written to parse numbers according to the conventions of different locales, based on OS functions available for such parsing. If there are mechanisms for setting a locale for a portion of a regular expression, then that locale would be used; otherwise the default locale would be used.
Note: It might be advantageous to make the Submatcher API identical to the Matcher API; that is, only have one base class "Matcher", and have user extensions derive from the base class. The base class itself can allow for nested matchers.
The Block property from the Unicode Character Database can be a useful property for quickly describing a set of Unicode characters. It assigns a name to segments of the Unicode codepoint space; for example, [\u{370}-\u{3FF}] is the Greek block.
However, block names need to be used with discretion; they are very easy to misuse because they only supply a very coarse view of the Unicode character allocation. For example:
The following table illustrates the mismatch between writing systems and blocks. These are only examples; this table is not a complete analysis. It also does not include common punctuation used with all of these writing systems.
Writing System | Associated Blocks |
---|---|
Latin | Basic Latin, Latin-1 Supplement, Latin Extended-A, Latin Extended-B, Latin Extended-C, Latin Extended-D, Latin Extended-E, Latin Extended Additional, Combining Diacritical Marks |
Greek | Greek, Greek Extended, Combining Diacritical Marks |
Arabic | Arabic, Arabic Supplement, Arabic Extended-A, Arabic Presentation Forms-A, Arabic Presentation Forms-B |
Korean | Hangul Jamo, Hangul Jamo Extended-A, Hangul Jamo Extended-B, Hangul Compatibility Jamo, Hangul Syllables, CJK Unified Ideographs, CJK Unified Ideographs Extension A, CJK Compatibility Ideographs, CJK Compatibility Forms, Enclosed CJK Letters and Months, Small Form Variants |
Yi | Yi Syllables, Yi Radicals |
Chinese | CJK Unified Ideographs, CJK Unified Ideographs Extension A, CJK Unified Ideographs Extension B, CJK Unified Ideographs Extension C, CJK Unified Ideographs Extension D, CJK Unified Ideographs Extension E, CJK Compatibility Ideographs, CJK Compatibility Ideographs Supplement, CJK Compatibility Forms, Kangxi Radicals, CJK Radicals Supplement, Enclosed CJK Letters and Months, Small Form Variants, Bopomofo, Bopomofo Extended, ... |
For the above reasons, Script values are generally preferred to Block values. Even there, they should be used in accordance with the guidelines in UAX #24, Unicode Script Property [UAX24].
This annex was retracted with Level 3.
The following provides sample code for doing Level 3 collation grapheme cluster detection. This code is meant to be illustrative, and has not been optimized. Although written in Java, it could be easily expressed in any programming language that allows access to the Unicode Collation Algorithm mappings.
/** * Return the end of a collation grapheme cluster. * @param s the source string * @param start the position in the string to search * forward from * @param collator the collator used to produce collation elements. * This can either be a custom-built one, or produced from * the factory method Collator.getInstance(someLocale). * @return the end position of the collation grapheme cluster */ static int getLocaleCharacterEnd(String s, int start, RuleBasedCollator collator) { int lastPosition = start; CollationElementIterator it = collator.getCollationElementIterator( s.substring(start, s.length())); it.next(); // discard first collation element int primary; // accumulate characters until we get to a non-zero primary do { lastPosition = it.getOffset(); int ce = it.next(); if (ce == CollationElementIterator.NULLORDER) break; primary = CollationElementIterator.primaryOrder(ce); } while (primary == 0); return lastPosition; }
The following table shows recommended assignments for compatibility property names, for use in Regular Expressions. The standard recommendation is shown in the column labeled "Standard"; applications should use this definition wherever possible. If populated with a different value, the column labeled "POSIX Compatible" shows modifications to the standard recommendation required to meet the formal requirements of [POSIX], and also to maintain (as much as possible) compatibility with the POSIX usage in practice. That modification involves some compromises, because POSIX does not have as fine-grained a set of character properties as in the Unicode Standard, and also has some additional constraints. So, for example, POSIX does not allow more than 20 characters to be categorized as digits, whereas there are many more than 20 digit characters in Unicode.
Property | Standard | POSIX Compatible | Comments |
---|---|---|---|
alpha | \p{Alphabetic} | Alphabetic includes more than gc = Letter. Note that combining marks (Me, Mn, Mc) are required for words of many languages. While they could be applied to non-alphabetics, their principal use is on alphabetics. See DerivedCoreProperties for Alphabetic. See also DerivedGeneralCategory. Alphabetic should not be used as an approximation for word boundaries: see word below. | |
lower | \p{Lowercase} | Lowercase includes more than gc = Lowercase_Letter (Ll). See DerivedCoreProperties. | |
upper | \p{Uppercase} | Uppercase includes more than gc = Uppercase_Letter (Lu). | |
punct | \p{gc=Punctuation} | \p{gc=Punctuation} \p{gc=Symbol} -- \p{alpha} |
POSIX adds symbols. Not recommended generally, due to the confusion of having punct include non-punctuation marks. |
digit (\d) | \p{gc=Decimal_Number} | [0..9] | Non-decimal numbers (like Roman numerals) are normally excluded. In U4.0+, the recommended column is the same as gc = Decimal_Number (Nd). See DerivedNumericType. |
xdigit |
\p{gc=Decimal_Number} \p{Hex_Digit} |
[0-9 A-F a-f] | Hex_Digit contains 0-9 A-F, fullwidth and halfwidth, upper and lowercase. |
alnum | \p{alpha} \p{digit} |
Simple combination of other properties | |
space (\s) | \p{Whitespace} | See PropList for the definition of Whitespace. | |
blank | \p{gc=Space_Separator} \N{CHARACTER TABULATION} |
"horizontal" whitespace: space separators plus U+0009
tab. Engines implementing older versions of the Unicode
Standard may need to use the longer formulation: \p{Whitespace} -- [\N{LF} \N{VT} \N{FF} \N{CR} \N{NEL} \p{gc=Line_Separator} \p{gc=Paragraph_Separator}] |
|
cntrl | \p{gc=Control} | The characters in \p{gc=Format} share some, but not all aspects of control characters. Many format characters are required in the representation of plain text. | |
graph | [^ \p{space} \p{gc=Control} \p{gc=Surrogate} \p{gc=Unassigned}] |
Warning: the set shown here is defined by excluding space, controls, and so on with ^. | |
\p{graph} \p{blank} -- \p{cntrl} |
Includes graph and space-like characters. | ||
word (\w) | \p{alpha} \p{gc=Mark} \p{digit} \p{gc=Connector_Punctuation} \p{Join_Control} |
n/a | This is only an approximation to Word Boundaries (see b below). The Connector Punctuation is added in for programming language identifiers, thus adding "_" and similar characters. |
\X | Extended Grapheme Clusters | n/a | See [UAX29]. Other functions are used for programming language identifier boundaries. |
\b | Default Word Boundaries | n/a | If there is a requirement that \b align with \w, then it would use the approximation above instead. See [UAX29]. Note that different functions are used for programming language identifier boundaries. See also [UAX31]. |
Matching the negation of set of strings is problematic, and needs to be disallowed in regex expressions [see why-ban-the-use-of-these-properties-within-character-classes]. However, the negation of a Character Class with strings or of a property of strings is allowed internal to a boolean expression as long as the fully resolved version of that expression is not a negation Character Class with strings.
For example, suppose that C is a Character Class without strings or property of characters, and S is a Character Class with strings or property of strings.
A narrowed set of single characters can always be represented by intersecting with the set of single characters, such as [\p{Basic_Emoji}-\p{any}].
The following describes how a boolean expression can be resolved to a Character Class with characters, a Character Class with strings, or a negated Character Class with strings.
When incrementally parsing and building a resolved boolean expression, the process can be analyzed in terms of a series of core operations. In parsing Character Classes, the intermediate objects are logically enhanced sets of strings, such as A and B. The enhancement is the addition of a boolean to indicate whether the set is negated or not. The operations here are expressed as operations on A and B, where Ap is the flag: true for the normal case, and false if negative, and As is the normal set of strings. The operations on the strings in the set depend on the two flags Ap and Bp.
Handle each operation as follows:
Operation | Ap | Bp | Action | Comments |
---|---|---|---|---|
[^A] | — | n/a | Ap = !Ap | |
\p{...} | — | n/a | As = R Ap = true |
R = set from resolved expression |
\P{...} | — | n/a | As = R Ap = false |
|
A || B | T | T | As = As ∪ Bs | Standard operation, both being positive sets. |
F | F | As = As ∩ Bs | ||
T | F | As = Bs ∖ As |
||
Ap = false | ||||
F | T | As = As ∖ Bs | ||
A && B | T | T | As = As ∩ Bs | Standard operation, both being positive sets. |
F | F | As = As ∪ Bs | ||
T | F | As = As ∖ Bs | ||
F | T | As = Bs ∖ As Ap = true |
||
A -- B | T | T | As = As ∖ Bs | Standard operation, both being positive sets. |
F | F | As = Bs ∖ As Ap = true |
||
T | F | As = As ∩ Bs | ||
F | T | As = As ∪ Bs |
Where the result of recursively resolving the expression is an enhanced set A, and Ap == false, the expression is invalid.
As usual, this is a logical expression of the process; implementations can optimize as long as they get the same results.
Properties of Strings are properties that can apply to, or match, sequences of two or more characters (in addition to single characters). This is in contrast to the more common case of properties of characters, which are functions of individual code points only. Those properties marked with an asterisk in the Full Properties table are properties of strings. See, for example, Basic_Emoji.
The preferred notation for properties of strings is \p{Property_Name}, the same as for the traditional properties of characters. For regular expressions, properties of strings may appear both within and outside of character class expressions.
As described in Annex E, some character class expressions are invalid when they contain properties of strings. Detection of such invalid expressions should be happen early, when the regular expression is first compiled or processed.
Implementations that are constrained in that they do not support strings in character classes should use \m{Property_Name} as an alternate notation for properties of strings appearing outside of character class expressions. \m should also accept ordinary properties of characters; it can be limited in where it may appear, not in what properties it allows.
Implementations with full support for \p and properties of strings in character class expressions may also optionally support the \m syntax.
Implementations that initially adopt \m only for properties of strings, then later add support for strings in character classes, should also add support for \p as alternate syntax for properties of strings.
Mark Davis created the initial version of this annex and maintains the text, with significant contributions from Andy Heninger.
Thanks to Julie Allen, Mathias Bynens,Tom Christiansen, David Corbett, Michael D’Errico, Asmus Freytag, Jeffrey Friedl, Norbert Lindenberg, Peter Linsley, Alan Liu, Kent Karlsson, Jarkko Hietaniemi, Michael Saboff, Gurusamy Sarathy, Markus Scherer, Xueming Shen, Henry Spencer, Kento Tamura, Philippe Verdy, Tom Watson, Ken Whistler, Karl Williamson, and Richard Wordingham for their feedback on the document.
The following summarizes modifications from the previous revision of this document.
Revision 20
Summary:
Broadened the scope of properties for regex to allow for properties of strings as well as properties of characters. In doing so, cleaned up the discussion of Character Classes with strings. Added a new annex to clarify exactly when negations of properties of strings and/or Character Classes with strings would invalidate a regular expression.
Updated the full property list to include newer UCD properties plus Emoji properties and UTS #39 properties, and dded a data file with property metadata for supporting non-UCD properties. Removed some sections that are no longer useful, and added a number of clarifications.
Modifications for previous versions are listed in those respective versions.
Copyright © 2020 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in connection with or arising out of the use of the information or programs contained or accompanying this technical report. The Unicode Terms of Use apply.
Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.