
The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20041

The Unicode
Keyboard-Character-Glyph Model

What You Need to Know
about Processing and Rendering

Multilingual Text

25th Internationalization
and Unicode Conference

Washington, DC
March/April 2004

Edwin Hart
The Johns Hopkins University

edwin.hart@jhuapl.edu

©2002, 2004 Edwin F. Hart, All Rights Reserved.
Global Meeting Services, Inc. has permission to reproduce this material
in Proceedings of the 25th Internationalization and Unicode Conference

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20042

2

Characters versus Glyphs

“The Unicode Standard
draws a distinction
between characters
and glyphs.”

The Unicode Standard, Version 4.0, p. 15.

“The Unicode Standard draws a distinction between characters,...,
and glyphs,....”

• What does this mean?
• What are characters?
• What are glyphs?
• How are they related?
• How are they different?
• How are characters converted into glyphs?
• Why is this relevant to rendering multilingual text?

This presentation will answer these questions.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20043

3

Objectives
Identify and Clarify Misunderstanding
Provide Framework on

Characters
Glyphs
Keyboards

for
Implementers
Standards Committees

based on
ISO/IEC Technical Report 15285: 1998,
An Operational Model for Characters and Glyphs
frequently called “The Character-Glyph Model”

The original reason for developing this presentation is that the concepts behind
characters and glyphs were misunderstood not only by implementers, but also by
people on the standards committees. Understanding these concepts is particularly
important for rendering multilingual text for people to read. Most recently, we
added materials on keyboard input. If you are developing multilingual software, you
need to be aware of these concepts. By the conclusion of this session, you should
have a much better understanding of characters, glyphs, keyboard input, and how to
render characters into glyphs.

The information in this presentation is based on an ISO Technical Report, ISO/IEC
TR 15285, An operational model for characters and glyphs.

3

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20044

4

Outline
Background

Misunderstandings
Model for Keyboards, Characters and Glyphs

Differentiate between Characters and Glyphs
Identify the Domains of Use of Characters and Glyphs

Models for Rendering Characters into Glyphs
Data Structures for Fonts and Glyphs
3 Font Models

Summary and Conclusion
Considerations for Implementers

Use Examples from ISO/IEC 10646/Unicode™
and ISO/IEC 10036 Standards

This presentation has four parts:

First, we describe the misunderstandings that motivated development of this session
and provide several examples to help illuminate the concerns.

Second, we describe a model for keyboards, characters and glyphs to differentiate
between them. We also identify where to use characters versus glyphs. We then
show several examples of (1) the glyph-selection process of mapping characters into
glyphs and (2) the keyboard input method process of mapping keyboard scan codes
into characters.

Third, we describe three models for rendering characters into glyphs. We describe
the data structures required for this process and then three font models. We
conclude this section with a comparison of the models and a recommendation of
which ones to use for multilingual text processing.

Fourth, we conclude with a summary and a list of considerations for implementers.

This presentation uses examples from the Unicode implementation of ISO/IEC
10646-1: 2000 and the ISO/IEC 10036 standard.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20045

5

Motivation: Misunderstandings
People equate a character to its shape

People recognize a character by its shape
The information in a character is inseparable from its
shape.

Computers distinguish attributes of a “character”
information content (character)
visual shape (glyph)
mapping characters into glyphs is frequently, but not
always, 1-to-1

Assumption of 1-to-1 mapping between
characters and glyphs leads to
misunderstandings

When you learned your letters you were taught to recognize a letter by its
shape. As far as you were concerned, the letter equated to its shape and
the two were inseparable.

Although this was fine for learning to read, in Information Technology we
distinguish a character’s attributes of information content versus its shape.
We use the term character, to describe the information content attribute, and
the term glyph, to describe the shape attribute. This distinction appears
arbitrary because for most characters coded in Unicode, a one-to-one
relationship exists between a character’s information content and its shape.
Notice that we said “for most characters” because, in multilingual text
processing, the relationship is not always one-to-one. The incorrect
assumption of a one-to-one relationship between the information content and
shape attributes leads to misunderstandings.

One can liken this to a similar situation in Physics. For most of the world
we perceive, Newtonian Physics works very well. However, in the late
1800s and early 1900s, Physicists identified situations where Newtonian
Physics was inadequate. It took Einstein to discover Relativity theory that
provided better answers. Returning to the domains of characters and glyphs,
for the most part, a one-to-one is sufficient; however, in a number of
situations, the relationship is more complex and a one-to-one relationship
fails.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20046

6

Implications of 1-to-1 Misunderstanding

To display or print a glyph,
the glyph must be coded as a character.

ISO/IEC 10646 and Unicode
must code any glyphs
that need to be rendered.

Both statements are incorrect!

If you assume the 1-to-1 relationship as a requirement (and many people on
the standards committee made this assumption when developing ISO/IEC
10646), then you obtain two conclusions:

First, if you want to see a particular shaped character, then it must be
coded as a character in a code.

Furthermore, if this is true, then ISO/IEC 10646 and Unicode must code
the shapes than need to be rendered.

Let me assure you that both of these statements are false due to a false
assumption.

The next several slides will illustrate some of the complexity of mapping
characters to glyphs.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20047

7

Example of
1-to-1 Character to Glyph Relationship

Characters

English
(input order, shown left to right)

p e a c e

Glyphs
1-to-1

English
(display order, left to right)

peace

We will now look at three examples that illustrate increasing complexity in
the rendering of characters into glyphs.

The first is a simple example in English. (The figure has characters on the
left and glyphs on the right.) You type “p”, “e”, “a”, “c”, and then “e”
to form the word “peace”. Text is stored in logical or input order. In
this case, you see it in the natural left-to-right order of the English
language. On the right, you see the word “peace” displayed, also in left-
to-right order. Here we have a 1-to-1 mapping from the 5 English
characters into 5 glyphs. This is all very straightforward.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20048

8

Example of 1-to-1 and 1-to-2
Character to Glyph Relationships

Characters

a e o t
ae ea oe

peace
host
haste

Cursive Glyphs
1-to-1, 1-to-2

a e o
ae ea oa

peace
host
haste

Serif Glyphs
1-to-1

a e o t
ae ea oe

peace
host
haste

Let’s continue with a second English example.

The figure has three columns. The first column contains the characters.
The second column show the glyphs in a Serif font (Century Schoolbook).
Like the first example on the previous page, the glyphs in the second
column have a 1-to-1 relationship to the characters in the first column.
Nothing new is in the second column.

However, focus on the third column. Here we have glyphs from a cursive
Script font (Lucida Handwriting). The cursive glyphs are connected in
words to mimic cursive handwriting. Note that in this font, the lengths of
the tails of the “a”, “e”, and “o” glyphs vary depending on whether the
glyph is isolated or at the end of a word versus preceding another letter.
For these letters, we see a 1-to-2 character to glyph mapping. Now
examine the “t” glyph in the words “host” and “haste”. The “t” seems to
have the same length tail regardless of what follows. For the “t”, we see
a 1-to-1 character to glyph mapping. Therefore, selecting the correct glyph
for this cursive font depends on the character itself and sometimes on the
context of the character. Rather than being strictly 1-to-1, sometimes, the
mapping is 1-to-2. Now remember that we are still discussing rendering
English text.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 20049

9

Example of 2-to-1 and 3-to-1
Character to Glyph Relationships

Characters Serif Font Italic Serif Font
f i g u r e figure figure
f l o w e r flower flower
o f f i c e office office
w a f f l e waffle waffle

Let’s continue with a third English example.

Good English typography, especially with serif fonts, makes use of ligatures.
A ligature is a glyph formed by joining one or more other glyphs. In
these examples, we map 2 or 3 characters into a single ligature. The first
column represents the characters. The second column shows the letters in a
roman (or upright) serif font (Times New Roman) and underlines the
ligatures to identify them. The third column uses an italic serif font (again
Times New Roman), where the ligatures seem to be more pronounced than
the roman font. In this example, we see more complexity and we are still
discussing rendering English text. Clearly, rendering even English text may
not be as simple as we might have originally thought. You have just seen
several examples where mapping the characters to glyphs is not as simple as
a 1-to-1 mapping.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200410

10

Example of
1-to-n Character to Glyph Relationships

Characters
(logical / input order)

Arabic salaam (peace)

س ل ا م
(isolated forms,
shown left to right)

Rendering with Glyphs
(display order)

س ل ا م
(isolated forms,
shown right to left)

م ا ل س
(4 glyphs, cursive forms)

م لا س
(2 glyphs, 1 ligature glyph,
cursive forms)

سلام
(display order, cursive forms)

Now, let’s turn to a more complex example. Once again, we have characters in the left
column and glyphs in the right column. On the left are the letters for the Arabic word
“salaam”, which means “peace”. Someone typing it, would type the Arabic letters “seen”,
“lam”, “alef”, and “meem”. (The illustration has spaces between the glyphs so that you
can more easily identify them.) The figure first shows the 4 letters in left-to-right input
order.

Now look at the Glyph column on the right. Unlike English, Arabic letters are written
from right to left. As part of the rendering process, we first order the letters in right-to-
left display order. In addition, the Arabic script uses cursive (or joined) forms of the
letters. Therefore, like the English example of the Script font, we select glyphs so that
they properly connect together. However, each Arabic character can take one of up to 4
shapes depending on the context. The next bullet shows the 4 Arabic glyphs, in display
order, with the proper contextual shape. However, we are not yet finished. Arabic
typography also uses ligatures. Ligatures are single glyphs that represent multiple letters.
In Arabic, the “lam-alef ligature” is mandatory. So we need to replace the “lam” glyph
followed by the “alef” glyph with the “lam-alef ligature glyph”. The next bullet shows 3
glyphs: the “seen, initial form”, the mandatory “lam-alef ligature, final form”, and the
“meem, isolated form” glyphs. The final bullet shows a proper Arabic rendering of
“salaam” without spaces.

These examples illustrate some of the complexity of rendering characters into glyphs.

Kamal Mansour from Agfa Monotype kindly provided this Arabic example.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200411

11

Keyboard Input for Characters
US English keyboard

1-to-1 mapping: 1 key generates 1 character
French Canadian keyboard

adds keys with French accented letters & symbols
1-to-1 mapping: 1 key generates 1 character

Keyboards with “dead keys”
no keys with accented letters
accents are on “dead keys”
to type an accented letter,

type the “dead key” with the accent (a non-spacing key that
does not advance the typing position)
type the letter

2 keystrokes to generate 1 “character”

Because keyboards are based on typewriter technology, we see similar one-to-one
relationships between keystrokes and characters. The input process for languages
that use the Latin script are straightforward. The input process for the US English
keyboard maps keystrokes one-to-one into characters. However, the US English
keyboard has no accented characters. French Canadian keyboards add accented
letters to the keyboard so people can type French words. However, the input
process still maps keystrokes one-to-one into characters, although they are a
different set of characters from the English ones.

An alternative way to enter accented letters is to use keyboards with what are
called “dead keys”. These keyboards have no accented letters. However, they
have the accents or diacritics located on the “dead keys”. The way you enter an
accented letter with one of these keyboards is first to type the “dead key” with the
desired accent. This will display the accent, but not advance the typing or cursor
position. Then you type the letter, which displays the letter at the same typing
position as the accent. So on a French Canadian keyboard, you would use one
keystroke to enter an accented letter, like LATIN SMALL LETTER A WITH GRAVE,
“à”. However, on a keyboard with dead keys, you would first type the grave
accent and then the small letter A to display the accented letter. So, in contrast to
using a French Canadian keyboard, using a keyboard with “dead keys” requires
two keystrokes to form one accented letter.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200412

12

Japanese Keyboard Input

Keyboard
Romaji
(Latin/Roman)

h e i w a
Katakana
ヘ イ ワ
(he i wa)

Intermediate
Display

Hiragana
へ い わ
(he i wa)

Final
Display

Kanji

平和
(heiwa–peace)

Japanese input is more complex. Japanese uses three scripts. Katakana is a
phonetic script used for writing foreign words. Hiragana is another phonetic script
but used for Japanese words. Kanji is the Japanese ideographic script.

The Japanese use an elaborate keyboard input system. Here is how it works. The
user may use either the Japanese Romaji (or Romanji) keyboard with Latin (or
Roman) letters or a Katakana keyboard. As the user types Latin letters or
Katakana characters, the display shows the corresponding Hiragana characters.
When the user hits the space bar, if the Hiragana sound corresponds to a unique
Kanji word, the Kanji ideographs replaces the Hiragana in the display area. If,
however, multiple Kanji ideographs have the same sound, another display windows
shows alternate Kanji ideographs from which the user then selects the desired
Kanji. After selection, the window with the Kanji disappears, and the selected
Kanji ideographs then replace the Hiragana characters.

For example, to enter the Kanji for the Japanese word for “peace”, the user either
types “h e i w a” on a Romaji keyboard or “ヘ イ ワ” on a Katakana keyboard.
The display will show the corresponding Hiragana characters, “へ い わ”. When
the user hits the space bar, the Kanji characters, “平和”, replace the Hiragana
characters because only one pair of Kanji characters corresponds to the sound.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200413

13

Model for Characters and Glyphs

Background

Model for Keyboards,Characters
and Glyphs
Models for Rendering Characters into
Glyphs

Summary and Conclusion

Having described the misunderstandings about characters and glyphs, and given
examples to illustrate some of the complexity of the rendering process and the
keyboard input process, let’s continue by looking at a model for describing
keyboards, characters and glyphs.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200414

14

Operations
between

Domains

Character
Recognition

Mouse
Selection

Layout

Glyph
Selection

and
Substitution

Keyboard, Character & Glyph Domains

Operations
between

Domains

Character
Selection

Glyphs

Appearance
Processing

Format
Display

Print

Characters

Content
Processing

Search
Sort/Order

Spell Checking
Grammar
Checking

Keys

Keyboard
Processing

This figure shows three distinct domains, one for keys on keyboards on the left,
one for characters in the middle, and another for glyphs on the right. It also uses
arrows to show operations for going from one domain to the other. Note that the
character domain provides the common mechanism for taking the keys on the
keyboard and displaying the resulting glyphs.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200415

15

Operations
between

Domains

Character
Recognition

Mouse Selection

Layout

Glyph Selection
and Substitution

Character & Glyph Domains

Glyphs
Appearance
Processing
Operations:

Format
Display

Print

Characters
Content

Processing
Operations:

Data Entry
Search

Sort/Order
Spell Checking

Grammar
Checking

Let’s first focus on the character and the glyph domains. This figure shows two
separate domains, one for characters on the left and another for glyphs on the
right. It also show operations for going from one domain to the other.

The character domain on the left concerns itself with processing the information
content of text. In this domain, we see operations such as ordering and searching
text, and checking the spelling and grammar. On the other hand, the glyph domain
on the right concerns itself with processes related to the appearance of the text. In
this domain, we see operations to format the text, and to display and print it.

In the middle, we see the operations of glyph selection and substitution to transform
characters into glyphs for presentation, and the layout operation to decide, for
example, where to split the text at the end of a line. We also see operations from
the glyph domain into characters. Character-recognition processes transform glyphs
into characters. Mouse selection identifies the character under the mouse cursor.

Notice that the two domains complement each other and the types of processes in
one domain are distinct from those in the other domain.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200416

16

Composition, Layout, and Presentation

Appearance-
based
Processing

Content-based
Processing

Both

Sorting,
Searching,

Spell-
checking

Data
Entry

Character
Information

(code positions)

Composition
&

Layout

Displaying
&

Printing

Presentation
Information

(glyph identifiers)

Let’s examine another model for the composition, layout, and presentation functions
that you will find in a wordprocessor. This model, in some ways, is an overlay
of the domains of previous figure. However, it is interesting because of an area of
processing that is in both the character and the glyph domains.

First, lets examine the “Content-base Processing” area of the character domain.
Here, we see processes concerned with the information content. The data entry
process converts keystrokes into character codes. The character codes are, in turn,
input to other information processes like sorting, searching, and spell checking and
grammar checking. The character information is also the input to the composition
and layout process that produces glyph identifiers as presentation information.
Finally, the “Appearance-based Processing” area of the glyph domain takes the
glyph identifiers and displays or prints them.

What is interesting is the area labeled “Both” because processes here must be
aware of both domains. The composition and layout process uses glyph metrics to
know the next position on the line (to know when it reaches the end of a line) and
how far down to position the start of the next line from the previous line of text.
However, a hyphenation or line-splitting subprocess uses the information domain to
know where the word and syllable boundaries are.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200417

17

Character/Graphic Character
Coded Character Set Standards

Elements
set of characters (repertoire)
value (code position (short identifier))
identifier (character name)
representative shape (graphical symbol/glyph image)

Example Character
(ISO/IEC 10646-1: 2000 / Unicode™ V4.0)

0041 LATIN CAPITAL LETTER A “A”
ISO/IEC Coded Character Set Standards Do Not Define
Information Content of Characters
Unicode Specifies Important Character Attributes

a member of a set of elements used for the organization,
control, or representation of data

ISO/IEC 10646-1: 2000

Having seen the model for the character and glyph domains, let’s turn to
the relevant standards in each domain.

In the character domain, we have coded-character-set standards. ISO defines
a character as “a member of a set of elements used for the organization,
control or representation of data”. However, we are concerned with graphic
characters rather than control characters. Coded-character-set standards have
the following elements: a set of characters (the repertoire), and for each
character in the set, code or value, a name, and a representative shape
(glyph). For example, in Unicode and ISO/IEC 10646-1, the code 0041
represents LATIN CAPITAL LETTER A, which has a representative shape of
“A”.

ISO coded-character-set standards do not define the information content of a
character. However, Unicode specified important character attributes to aid
implementation.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200418

18

Glyph
Glyph Registration Standard

ISO/IEC 10036: 1996
Registrar: Centre for Global Communications,
International University of Japan

Elements
Representative Glyph Image (Abstract Shape)
Standard Glyph Identifier
Description

ISO/IEC 10036 Does Not Define Precise Usage and
Appearance of Glyphs in Implemented Font Resources

a recognizable abstract graphic symbol which is
independent of a specific design

ISO/IEC 9541-1: 1991

For the glyph domain, ISO defines a glyph as “a recognizable abstract
graphic symbol which is independent of a specific design”. ISO has the
10036 standard that describes the ISO glyph registry. Glyphs registered in
the 10036 registry have the following elements: a representative shape
(which is an abstract shape), a standard glyph identifier, and a description
of the glyph. In addition, the standard does not define the precise usage
and appearance of glyphs that are implemented in a font (resource). AFII,
the Association for Font Information Interchange, was the first Registrar for
the glyph registry, but AFII ceased operations in September, 1999. Now, the
Centre for Global Communications of the International University of Japan is
the Registrar for the glyph registry.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200419

19

A minimum distinctive unit of the writing system of a
particular language, … the grapheme has no physical
identify, but is an abstraction based on the different
shapes of written signs and their distribution within a
given system.

R. R. K. Hartmann and F. C. Stork,
Dictionary of language and linguistics,
Applied Science Publishers Ltd., 1976.

Grapheme

Examples:
English: 26 letters of English alphabet
Spanish: 26 English letters + “ñ” + “ch” + “ll”

Application of Grapheme Concept:
The unit of information most appropriate to a given process
is language-dependent and may or may not correspond to a
single character or a single glyph.

We need to introduce the linguistic concept of a grapheme. A grapheme is
“the minimum distinctive unit of the writing system of a particular
language”. In English, the 26 letters of the English alphabet are graphemes.
In Spanish, the 26 English letters plus the “ñ” plus the two digraphs, “ch”
and “ll” are graphemes. This linguistic concept can be extended into
information systems to say that the unit of information most appropriate to a
given process is language-dependent and may or may not correspond to a
single character or a single glyph. Applying this concept, an implementer
may decide to transform character codes or glyph identifiers into a different
encoding to optimize a particular process. An example of this is the
transformation of a character code into weights for correctly sorting text
data according to a particular culture. See Unicode Technical Standard #10,
Unicode Collation Algorithm at www.unicode.org.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200420

20

Use of the Character-Glyph Model in Standards

ISO/IEC 10646-1: 2000,
ISO/IEC 10646-2: 2001,
Unicode Version 4.0,
and the ISO/IEC 10036: 1996 Glyph Registry
generally follow the Character-Glyph model
—but not completely.

How well are the principles found in this Character-Glyph model followed
in the ISO/IEC 10646-1, ISO/IEC 10646-2, and the Unicode Version 4.0
standards, and in the ISO/IEC 10036 Glyph Registry? For the most part,
they follow the model. However, each has exceptions and the next few
figures illustrate some of them.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200421

21

ISO/IEC 10646/UnicodeTM:
Encoding Information or Shapes?

0132 LATIN CAPITAL LIGATURE IJ “Ĳ” “IJ”
0133 LATIN SMALL LIGATURE IJ “ĳ” “ij”
0152 LATIN CAPITAL LIGATURE OE “Œ” “Œ”
0153 LATIN SMALL LIGATURE OE “œ” “œ”
FB00 LATIN SMALL LIGATURE FF “ff”
FB01 LATIN SMALL LIGATURE FI “fi”
FB02 LATIN SMALL LIGATURE FL “fl”
FB03 LATIN SMALL LIGATURE FFI “ffi”
FB04 LATIN SMALL LIGATURE FFL “ffl”
Arabic Presentation Forms

First, ISO/IEC 10646 and Unicode code several ligatures. Here, you can see
ligatures for “IJ”, “OE”, and the various “FF”, “FI”, and “FFI” and
“FFL” ligatures. In addition, ISO/IEC 10646 and Unicode code presentation
forms and an extensive set of ligatures for Arabic letters. However, these
were encoded as part of the merger of 10646 and Unicode for compatibility
with existing coded-character-set standards. According to the principles of
the Character-Glyph Model, characters for these ligatures and presentation
forms should not have been encoded because they are needed only for
rendering the characters.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200422

22

Unit of Information “One” Forms
in ISO/IEC 10646/UnicodeTM

Should 1 character have been coded in
ISO/IEC 10646/UnicodeTM versus … ?

0031 DIGIT ONE “1”
00B9 SUPERSCRIPT ONE “1”
0661 ARABIC-INDIC DIGIT ONE “١”
2081 SUBSCRIPT ONE “1”
2160 ROMAN NUMERAL ONE “Ⅰ”
2170 SMALL ROMAN NUMBERAL ONE “ⅰ”
4E00 CJK UNIFIED IDEOGRAPH-4E00 “一”
FF11 FULLWIDTH DIGIT ONE “１”

. . .

Similarly, could coding one character for the concept of “one” or “unity”
been sufficient in 10646 and Unicode? The ISO/IEC Technical Report lists
about 30 different characters that are encoded to represent this concept.
Some of the characters are different forms for the same script (DIGIT ONE,
SUPERSCRIPT ONE, SUBSCRIPT ONE, FULLWIDTH DIGIT ONE); others are different
forms for the various scripts. Don’t all of these forms encode the same
information?

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200423

23

Mathematical Alphanumeric Symbols
in Unicode 3.1 & ISO/IEC 10646-2: 2001

MATHEMATICAL CAPITAL A & MATHEMATICAL SMALL A
BOLD
ITALIC
BOLD ITALIC
DOUBLE-STRUCK
FRAKTUR
BOLD FRAKTUR
MONOSPACE
SANS-SERIF
SANS-SERIF BOLD
SANS-SERIF ITALIC
SANS-SERIF BOLD ITALIC
SCRIPT
BOLD-SCRIPT

LATIN CAPITAL LETTER A & LATIN SMALL LETTER A

Unicode 3.1 and ISO/IEC 10646-2:2001 added a block of mathematical
alphanumeric symbols. Mathematicians and scientists have the requirement
to differentiate different forms of letters in plain text because such forms
conveyed different meaning to them. For example, variables are shown in
italic, matrix names are shown by bold capital letters. After considering
several alternatives, ISO decided to code them as separate characters but to
differentiate them as “Mathematical Alphanumeric Symbols” from the normal
letters and digits. Unicode assigns different properties to the normal letters
and digits and the Mathematical Alphanumeric Symbols.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200424

24

ISO/IEC 10036:
Encoding Information or Shapes?

Should 1 glyph or 3 glyphs have been
registered in ISO/IEC 10036?
10036 Registry has 3 glyphs for “A”

0041 LATIN CAPITAL LETTER A “A”
0391 GREEK CAPITAL LETTER ALPHA “A”
0410 CYRILLIC CAPITAL LETTER A “A”

Let’s switch our focus to the Glyph Registry for ISO/IEC 10036. Should 3
glyphs have been registered for the shape needed for the LATIN CAPITAL
LETTER A, and the GREEK CAPITAL LETTER ALPHA, and the CYRILLIC
CAPITAL LETTER A? Are not all of these the same abstract shape?

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200425

25

Validity of Character-Glyph Model

The fact that ISO/IEC 10646/Unicode™,
ISO/IEC 10036, and other standards
did not completely follow the principles in
this idealized model
does not invalidate the model, nor
diminish its utility.

Even though the standards did not completely follow the principles in the
idealized Character-Glyph Model, this does not invalidate the model, nor
diminish its utility. The model is very important to understanding the
concepts of a “character” and a “glyph”, and how to use them to render
characters into glyphs.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200426

26

Guidelines for Characters and Glyphs

Which characters to code
Which glyphs to register

Given that ISO did not follow the model in developing ISO/IEC 10646 and
the 10036 Registrar did not follow them for registering glyphs, can we
derive any benefit from this model? In fairness to ISO, it could not be
expected to follow the principles in this report when, in fact, the first draft
of what was to become ISO/IEC Technical Report 15285 was not written
until after the first edition of ISO/IEC 10646-1 and the Unicode Standard,
Version 1.0 were published.

Given the existence of the model, does it provide ISO any guidelines for
deciding which characters to encode, and which glyphs should be registered?
The answer is that it does provide such guidance.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200427

27

Guidelines for Deciding
Which Characters to Code

Same Shape, Different Meaning
—Code Separate Characters

Sans Serif LATIN CAPITAL LETTER I (I I)
Sans Serif LATIN SMALL LETTER L (l l)

Different Shape, Same Meaning
—Code 1 Character

Roman LATIN SMALL LETTER A (a)
Italic LATIN SMALL LETTER A (a)

Compatibility
“Round-Trip Rule”
—Code Separate Characters

GREEK SMALL LETTER SIGMA (σ)
GREEK SMALL LETTER FINAL SIGMA (ς)

Presentation Forms
—Do Not Code Any Additional Presentation Forms

Based on the theory of the character-glyph model just described, here are
some guidelines for deciding which characters to code.

If two glyphs have the same shape but different meaning, then code separate
characters. An example of this is two characters that appear the same in a
sans serif font, the LATIN CAPITAL LETTER I and the LATIN SMALL LETTER
L.

If two glyphs have different shapes but the same meaning, then code one
character. An example of this occurs in the Roman (upright) font and the
Italic (slanted) font for the LATIN SMALL LETTER A.

When one of the source codes for Unicode and 10646 includes separate
characters, encode separate characters for compatibility (“Round-Trip Rule:
A character in a source code must map to a Unicode/10646 character and
the Unicode/10646 character must map back to the character in the source
code). ISO/IEC 8859-7, Latin/Greek is one of the source codes for
Unicode and ISO/IEC 10646. Since this code has separate characters for
GREEK SMALL LETTER SIGMA and GREEK SMALL LETTER FINAL SIGMA,
Unicode and ISO/IEC 10646 have separate characters as well.

Do not code any additional presentation forms. Unicode and ISO/IEC
10464 do not need to code new characters for glyph variations and
ligatures. These belong in the glyph domain in fonts.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200428

28

Guidelines for Deciding
Which Glyphs to Register (Include in Font)

Same Shape, Same Glyph Metrics
—Register 1 Glyph

LATIN CAPITAL LETTER A (A)
GREEK CAPITAL LETTER A (A)
CYRILLIC CAPITAL LETTER A (A)

Same Shape, Same Metrics, Different Character
—Register 1 Glyph

LATIN CAPITAL LETTER A WITH RING ABOVE (Å)
ANGSTROM SIGN (Å)

Same Shape, Different Glyph Metrics
—Register Different Glyphs

HYPHEN MINUS (-)
MINUS (-)

Based on the theory of the character-glyph model just described, here are
some guidelines for deciding which glyphs to register or include in a font.

If two glyphs have the same shape and the same glyph metrics (e.g.,
spacing before or after), then include only one glyph.

If two glyphs have the same shape and the same glyph metrics, but are
mapped from different characters, then still include only one glyph. The
fact that two different characters map into the same shape with the same
glyph metrics does not require a separate glyph in a font.

If two glyphs have the same shape, but have different glyph metrics, then
include different glyphs in the font.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200429

29

Glyph Selection

The process is located
between the Character domain and the Glyph domain.
Glyph Selection is an important part
of the Composition and Layout process.
The necessity for Glyph Selection, not its complexity,
was one of the motivations for developing the Character-
Glyph Model.

Glyph selection is the process of selecting
(possibly through several iterations)
the most appropriate glyph identifier
or combination of glyph identifiers
to render a coded character
or composite sequence of coded characters.

ISO/IEC TR 15285: 1998

Quoting from the Technical Report (ISO/IEC TR 15285), “Glyph selection is
the process of selecting (possibly through several iterations) the most
appropriate glyph identifier or combination of glyph identifiers to render a
coded character or composite sequence of coded characters.” The process is
located between the Character domain and the Glyph domain and converts
coded character into glyph identifiers. This process is an important part of
the composition and layout process. Moreover, the necessity for glyph-
selection, not its complexity, was one of the motivations for developing the
Character-Glyph Model.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200430

30

Glyph Selection,
An Historical Perspective

Displays and Printers for Latin Fonts
fixed-width glyphs

character = glyph (1-1 mapping)
variable-width glyphs

character = glyph (1-1 mapping)

Multi-script Fonts
variable-width glyphs

many times
character = glyph (1-1 mapping)
sometimes
M characters = N glyphs (M-N mapping)

One of the reasons for the confusion is typewriter and the historical
development of printing from computers. When typing on a typewriter,
striking one key created one and only one glyph on the paper. Because
computer input is based on typewriter technology, many of our
misunderstandings of characters and glyphs derive from this origin.

In the early days of computing, no one distinguished a character from a
glyph. Printers would only print digits, English letters and a few symbols.
(In fact, it was rare to have a printer that would print both upper-case and
lower-case characters.) At this time, the mapping between characters and
glyphs was one-to-one and defined by the coding of the characters. At that
time, no one conceived of any need to distinguish characters and glyphs—we
thought that they were the same thing! This concept prevailed even as the
vendors delivered more sophisticated printers that would print variable-width,
proportionally-spaced “characters” (i.e., glyphs).

At this point, for the most part the one-to-one relationship between
characters and glyphs still holds for the majority of characters in 10646 and
Unicode. However, sometimes the relationship fails to render the characters
correctly; sometimes something more sophisticated is needed to render the
characters correctly.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200431

31

Glyph Selection Process

Mapping Characters to Glyphs

Context-sensitive M-to-N mapping
where:

M > 0, N ≥ 0

Sometimes the glyph-selection process for 10646 and Unicode characters
needs to be extended from a one-to-one mapping. In the general case,
glyph selection is a context-sensitive mapping of M characters into N glyphs.
The next few figures will show examples of the general case.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200432

32

M-to-1 Character to Glyph Mapping
Ligatures

I + J “IJ” 2-1
i + j “ij” 2-1
O + E “Œ” 2-1
o + e “œ” 2-1
f + f “ff” 2-1
f + i “fi” 2-1
f + l “fl” 2-1
f + f + i “ffi” 3-1
f + f + l “ffl” 3-1

What you see here are several examples of an M-to-1 one glyph mapping.
This occurs with ligatures used in the Latin script. The “IJ” ligatures could
easily be implemented with a Kerning table. (A “Kerning table” in a
“font” describes the spacing required between each pair of glyphs.) If fact,
the illustrated glyphs in the figure are Kerned “I” and “J” glyphs from the
Baskerville Old Face font rather than a true “IJ” ligature glyph.

For mapping into the “OE” ligatures in French, the glyph selection process
would need to know the context when the “Œ” ligature glyph is used
instead of separate “O” and “E” glyphs. The last 5 ligatures illustrate
various forms of the “FI” and “FL” ligatures. Note that the last two
represent a 3-to-1 mapping. Also note that these ligatures occur more
frequently in a serif font (as illustrated in Times New Roman) rather than a
sans serif font.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200433

33

M-to-N Character to Glyph Mapping
Base + Combining Characters/Glyphs

Characters Glyphs (font dependent)

“ê” “ê” 1-1

“e” + “ˆ” 1-2

“e” + “ê” 2-1

“e” + “ˆ” 1-1

“e” + + 3-1

“ê” + “.” 3-2

“e” + “ˆ” + “.” 1-1

“E” + “Ê” 2-1

“E” + “ˆ” 1-1

.“ê”“ˆ” “.”

“ˆ”

“ˆ”

Depending on the particular font implementation, the combination sequences
of 10646 and Unicode may require more sophisticated mapping. Recall that
a combining sequence consists of a base character followed by one or more
combining characters. Combining sequences are frequently used to code
accented characters. Recall also that many accented characters may be
represented in 10646 and Unicode as either a single character or a
combining sequence. The illustrated LATIN LETTER E WITH CIRCUMFLEX is
one of these. Note that just as the accented characters may be encoded as
a single character or a combining sequence in 10646 and Unicode, a font
designer may choose to implement accented characters as either a single
glyph or multiple glyphs that correspond to an encoded combining sequence.
This figure illustrates several possible implementations and the corresponding
mapping. Note that for the placement of the COMBINING CIRCUMFLEX
ACCENT glyph needs to be higher for the LATIN CAPITAL LETTER E glyph
than for the LATIN SMALL LETTER E glyph.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200434

34

1-to-N Character to Glyph Mapping
Arabic Positional Forms

Positional Forms of ARABIC LETTER HEH
1-4 mapping

Isolated ”ه“
Initial “ه”

Medial “ه”

Final “ه”

Recall that Arabic is a cursive script where the characters in words are
connected. Minimum legibility of the Arabic script requires a 1-to-4
mapping to account for when the letter is alone (isolated form), at the
beginning of a word (initial form), in the middle of a word (medial form),
or at the end of a word (final form). This figure illustrates four forms of
the ARABIC LETTER HEH. (However, Thomas Milo indicated that a fifth
form, which looks like the initial form without the trailing connector, is
required for enumeration to distinguish it from the ARABIC-INDIC DIGIT 5
“٥”.)

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200435

35

M-to-1 Character to Glyph Mapping
Arabic Ligatures

”ا“ + ”ل“ ”لا“ 2-1

”ا“ + ”ل“ ”لا“ 2-1

ARABIC LETTER LAM ”ل“

ARABIC LETTER ALEF ”ا“
ARABIC LIGATURE LAM WITH ALEF
ISOLATED/INITIAL FORM ”لا“
ARABIC LIGATURE LAM WITH ALEF
MEDIAL/FINAL FORM ”لا“

Depending on the Arabic font,
M-to-N mappings are possible.

Arabic fonts also require glyphs for the LAM WITH ALEF ligature. Note that
like the Arabic letters, this ligature has forms that depend on the position of
the two Arabic letters in a word.

To obtain minimum legibility for the Arabic script, a font must contain all
of the presentation forms for the Arabic letters plus the two LAM WITH
ALEF ligature. However, this is the minimum that might be used, for
example, in an Arabic newspaper. Rendering Arabic for books, requires
that the fonts contain an extensive set of Arabic ligatures which, in turn,
requires a much more sophisticated glyph selection process than the one
required for minimum legibility of Arabic.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200436

36

Newspaper Quality (Microsoft PowerPoint)

Book Quality (DecoType Arabic Calligraphy Engine)

Literal Translation: The Art of Script, i.e., Islamic Calligraphy for Beginners

Arabic Rendering Levels

لْخَطِّ للِْمُبْتَدِئِينََٱفَنُّ

Rendering Arabic has an additional consideration, the level of quality of the
rendering. Recall that Unicode is designed for plain text, that is text
without formatting information. Implementations of Unicode need to legibly
render the Unicode characters. Many implementations of Arabic using
Unicode produce what Thomas Milo calls “newspaper” quality rendering.
Such rendering provides a relatively low level of legibility to people
familiar with Arabic. However, being a calligraphic script, Arabic readers
expect a higher quality of rendering in books. In the Koran, they expect
rendering of the highest quality. The highest quality Arabic rendering needs
to approach the rendering level of hand-drawn calligraphy as would be done
by a scribe. The ultimate goal of Thomas Milo is build the technology to
deliver the highest level of rendering Arabic.

I thank Thomas Milo (DecoType) for providing these examples and the translation.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200437

37

Operations
between

Domains

Character
Selection

Secondary Focus:
Keyboard & Character Domains

Keys
Keyboard

Processing

Characters
Content

Processing

Search
Sort/Order

Spell Checking
Grammar
Checking

This figure shows two separate domains, the keyboard key domain on the
left and the character domain on the right. It also uses an arrow for the
character selection operation for going from the key domain to the character
domain.

The key domain on the left concerns itself with processing keyboard and
keyboard scan codes. In this domain, the operation is converting keystrokes
into keyboard scan codes.

Earlier, we discussed the character domain with its operations on the
character content.

In the middle, we see the character-selection operation that transforms
keyboard scan codes into characters. An implementation of the
transformation is frequently called an “input method”. Unlike the character
and glyph domains, these domains have no reverse operation to convert
characters into scan codes.

Like the earlier discussion of the character and glyph domains, notice that
the two domains complement each other and the types of processes in one
domain are distinct from those in the other domain.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200438

38

Keyboards

Elements
Key arrangement on keyboard
Character and functional overlay for the keys
Scan code (number) for each key
Keyboard state

Reference:
ISO/IEC 9995
Information technology —
Keyboard layouts for text and office systems
(8 parts)

an assemblage of systematically arranged keys by which
a machine is operated

Webster’s Ninth New Collegiate Dictionary

We are all intimately familiar with using keyboards, but do we know how
they work? This information will be new to some of you and a review for
the rest. The keyboard arrangements or keyboard layout is the geometry of
how the keys are arranged on the keyboard. Over each key is some
printed description of what the key is supposed to do, for example, to
produce a character, control the keyboard state, or indicate a function.
Keyboard layouts are fairly consistent now. Associated with each key is a
scan code. The keyboard also has different shift states (e.g., due to the
“Shift”, “Ctrl”, “Alt”, “Caps Lock”, “Num Lock” or “Scroll Lock” keys
on a US English keyboard).

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200439

39

Keyboard
Processing

Content-based
Processing

Keyboard Input Processing

Both

Sorting,
Searching,

Spell-
checking

Input
Method

Character
Information

(code positions)

Composition
&

Layout

Displaying
&

Printing

Key
Information

(key scan code)

Key-
board

Typing
(key-strokes)

Let’s examine a model for keyboard input. This model, in some ways, is
an overlay of the Key and Character domains in the earlier figure. Note
the input method area of processing is in both the key and the character
domains.

Now, let’s examine the keyboard input process. First, someone strikes a key
on the keyboard. The keyboard transforms that action into a keyboard scan
code or possibly a change of state for the keyboard (e.g., typing the “Caps
Lock” key). In the “Keyboard Processing” area, this is all keyboard
information. The input method process converts the keyboard scan codes
into character codes (code positions). The character codes are, in turn,
serve as input to other information processes in the “Content-based
Processing” area.

Like the earlier text-processing model, the area labeled “Both” is interesting
because the input method process here must be aware of both domains.
The input method process must know both the keyboard layout (e.g., US
English, French Canadian, Japanese) in the Key domain and the character
coding (Unicode, ISO/IEC 8859-1, ASCII) used for the characters in the
Character domain to properly convert the scan codes into character codes in
the Character domain.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200440

40

Keyboard Input Method

Uses the keyboard state,
to map a keyboard scan code,
or a series of keyboard scan codes,
into a character code,
or a series of character codes

The input method process must know both the keyboard layout (e.g., US
English, French Canadian, Japanese) in the Key domain and the character
coding (Unicode, ISO/IEC 8859-1, ASCII) used for the characters in the
Character domain to properly convert the scan codes into character codes in
the Character domain. It then takes the state of the keyboard to map one
or more keyboard scan codes into one or more character codes.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200441

41

Keyboard-to-Character
Mapping Dependencies

Assignment of keys on the keyboard
(the assignment of glyphs and functions to the tops of the keys)

Keys with accented letters (“ê”) versus
Accents on “dead keys” (“ˆ” + “e”)

Target character code
Unicode normalization preference

Precomposed characters (“ê”) versus Combining characters (“e” + “ˆ”)
Other codes with combining characters

the order of combining character relative to the base character/letter
Script and language conventions for text entry

Keystroke order
Written/display order versus Phonetic (sound) order

Ideographic text entry conventions
Mapping process

Straightforward keystrokes into characters
Sophisticated phonetic characters into an ideograph
Others

Several things determine the functions the input method must perform.

1. The first of these is how the assignment of keys to the keyboard and
whether “dead keys” are used.

2. The second is the target character code. If it is Unicode, different
processing is required if the preference is for precomposed characters
versus using combining characters and a base character. If the target is
another code that uses combining characters, processing will be required
to place the combining characters in the proper order relative to the
base character.

3. The third is the script or language conventions for typing the characters.
This is an issue for some scripts where the display order is different
from the phonetic order. Moreover, sometimes for the same script in
the same area, the input method needs to allow the user to choose
between display-order and phonetic-order data-entry. This is also a
major issue for entering ideographic characters in East Asia.

4. Resolution of these types of issues determine the complexity of the
keystroke to character mapping process.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200442

42

Keyboard Text Mapping: Examples

Keystrokes / Scan Codes
“e”

<shift> + “e”
“ê”

“ˆ” + “e”

Character Codes
“e”
“E”
“ê”

“ˆ” + “e” (ISO 6937)

“e” + “ˆ” (Unicode)

“ê”
“ˆ” + “e” (ISO 6937)

“e” + “ˆ” (Unicode)

Here are some examples of the types of processing done to map scan codes
into character codes.

1. In the first example, the user types the “E” key to produce the LATIN
SMALL LETTER E, “e” character.

2. In the second example, the user holds a shift key down and presses the
“E” key to produce the LATIN CAPITAL LETTER E, “E” character.

3. In the third example, a user on a French keyboard types the “ê” key to
produce the LATIN SMALL LETTER E WITH CIRCUMFLEX, “ê” character.
However, if the code uses combining characters, the input method will
need to produce both the COMBINING CIRCUMFLEX ACCENT and the
LATIN CAPITAL LETTER E, and then place them in the proper order
depending on the character code.

4. In the last example, a user on a keyboard with “dead keys” for the
accents types the “dead key” with the circumflex accent followed by the
“E” key to produce the LATIN SMALL LETTER E WITH CIRCUMFLEX, “ê”
character. However, like the third example, the target character code
could using combining characters and require that the input method
produce two character codes in the correct order.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200443

43

Corollaries to Guidelines for
Characters and Glyphs

Coding Guidelines
The glyphs on the keys on a keyboard do not necessarily
determine the minimum set of characters required for a script.
The keystroke order or writing/display order does not necessarily
define the order in which the character codes should be stored.

Input Method Guidelines
Input methods must allow flexibility for entering characters in
either phonetic order or display order where common practice
includes both.

Rendering Guidelines
The order in which character codes are typed or stored does not
necessarily define the order in which the glyphs should be
displayed.

As a result of our discussion of keyboard entry, here are some additions to
the guidelines for characters and glyphs presented earlier.

For deciding which characters to code in Unicode, the primary criteria is
the information content. The coding decision should not depend solely on
what is on the tops of the key of the keyboard.

In Unicode, the order of storing characters is the logical or phonetic order.
The order in which characters are keyed on the keyboard does not
necessarily determine the order in which they will be stored.

For those scripts where the phonetic order of the characters and their
display order may be different, and where the culture allows for writing the
characters in either phonetic order or display order, the input method must
provide the user with the choice of the order of entering the text: display
order or phonetic order.

Rendering characters into glyphs is a function of taking the logical
(phonetic) ordering of characters in storage and displaying them in the
proper order. The order of rendering characters is independent of the order
in which the user typed them into the computer.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200444

44

Models for
Rendering Characters into Glyphs

Background

Model for Keyboards, Characters and
Glyphs

Models for Rendering Characters
into Glyphs
Summary and Conclusion

We are now at the next major section of this presentation.

In the previous section, we discussed the character domain and the glyph
domain. We also discussed the glyph-selection process that maps characters
into glyphs for displaying or printing. In this section, we will discuss three
technologies for rendering characters into glyphs. At least two of these
technologies are implemented now, and the third if it has not yet be
delivered in products is not far from delivery.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200445

45

Rendering (Presentation) Models

Rendering Models Describe
Data Structures
Processes

The three technologies rely on both data structures and processes to render
characters.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200446

46

Target of the Rendering Process:
Device-Independent Formatted Document

Source
sequence of coded characters
(code positions)
with or without formatting
information

Final-Form Document
font-resource identifier(s)
glyph structures

glyph position
glyph attributes

font resource identifier
glyph identifier
color/shading
size

object structures
object position
object attributes

object or object index
color(s)
size

However, before we start discussing the data structures, let’s discuss the
inputs and outputs.

The input to the process is a sequence of coded characters (code positions).
The input may or may not contain information for formatting the characters
(bold, italic, underline, headers, paragraphs, lists, etc.).

The output of the process is what is called a “final-form document”, which
is ready for printing or displaying. In general, this output is independent of
the particular output device, be it a display or a printer. The final form
document consists of a list of fonts used in the document (font-resource
identifiers), a list of glyph n-tupples (which typically contain the glyph
position and glyph attributes such as the font resource, the glyph identifier,
its color or shading, its size, etc.), and object structures (which contains the
object’s position and attributes).

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200447

47

Data Structures for Presentation
Font Resource
(of Glyph Representations) (“Font”)

glyph identifiers
glyph representations

glyph shapes
glyph metrics

Character-to-Glyph Mapping Table
maps character codes to glyph identifiers

Glyph Index Map
maps the subset of glyph identifiers actually used
to font resources

We will be discussing three data structures: the “Font Resource” typically
called a “Font”, the Character-to-Glyph Mapping Table, and a Glyph Index
Map. Note that these are not the only data structures used, they are
merely the most common ones.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200448

48

Data Structures:
Font Resource (“Font”) of Glyph Representations

Font Resource

G
ly

ph
 Id

en
tif

ie
rs

Glyph
Representations

Glyph
Shapes

Glyph
Metrics

A Font Resource contains information to describe the set of glyphs in the
font. It contains “Glyph Metrics” (which describe a glyph’s height, width,
placement relative to the baseline, and space from the previous character),
and “Glyph Shapes” (which may be either a bitmap or the outline with
some optional hinting). The Font Resource also includes a table to map
each glyph identifier into its metric and shape information. This is the
minimum information included in a Font Resource. However, the font
designer may choose to include additional information.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200449

49

Some Features of Font Resources

Characters Glyph Shape Glyph Metrics Comments

same same Arial Å Å
Times New Roman Å Å

LATIN CAPITAL LETTER A WITH
RING, ANGSTROM SIGN

different same Lucida Sans Unicode Å Å
LATIN CAPITAL LETTER A,
GREEK CAPITAL LETTER ALPHA,
CYRILLIC CAPITAL LETTER A

same same
(possible
language

differences)

Arial A Α А
Times New Roman A Α А
Lucida Sans Unicode A Α А

SPACE, NO-BREAK SPACE,
EN-SPACE, EM-SPACE, ETC.

same
(null)

different

same different Arial - - - -
Times New Roman - - - -

HYPHEN-MINUS, SOFT HYPHEN,
HYPHEN, NON-BREAKING
HYPHEN

different different Lucida Sans Unicode - - -
PLUS SIGN, MINUS SIGN,
MULTIPLICATION SIGN,
DIVISION SIGN

different same Lucida Sans Unicode + - × ÷

CJK Ideographs Includes glyphs
for CSCTJK

horizontal and
vertical layout

Font layering for multiple locales

This table illustrates some of the ways that the font resource designers
implement fonts to reuse common data.

In the first row, the Arial and Times New Roman fonts use the same glyph
shape for the LATIN CAPITAL LETTER A WITH RING, and the ANGSTROM
SIGN. However, although it is not clear in this table, the Lucida San
Unicode font includes different glyphs for each character.

In the second row, the three fonts use the same shape and the same glyph
metrics for the LATIN CAPITAL LETTER A, the GREEK CAPITAL LETTER
ALPHA, and the CYRILLIC CAPITAL LETTER A. However, in the general
case, the font may have different metrics that depend on the language or
script.

For the third row, the various SPACE characters have the same (null) shape,
but different metrics.

The fourth row illustrates different implementations of HYPHEN characters.
Note that Lucida San Unicode uses a different shape.

The fifth row shows that spacing for the four basic arithmetic operators is
the same.

The sixth and last row is a relatively new development where a single font
will contain traditional and simplified Chinese, Japanese and Korean glyphs
for the unified ideographic characters plus metrics for both horizontal and
vertical layout.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200450

50

Font Resource

G
ly

ph
 Id

en
tif

ie
rs

Glyph
Representations

Glyph
Shapes

Glyph
Metrics

Data Structures:
Indices to Glyph Representations in a Font Resource

Glyph
Identifiers
(Indices)
Registered
ISO/IEC 10036
Private

Character
Code-Position
Vendor
Defined

This figure illustrates different types of glyph identifiers used to index into
the Font Resource. A font designer can use the registered glyph identifiers
from the 10036 Registry or private glyph identifiers. Two types of private
glyph identifiers are the character code position and vendor defined indices.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200451

51

Font Resource

G
ly

ph
 Id

en
tif

ie
rs

Glyph
Representations

Glyph
Shapes

Glyph
Metrics

Data Structures:
Mapping Characters to Glyphs in a Font Resource

Glyph
Identifiers
(Indices)
Registered
ISO/IEC 10036
Private

Character
Code-Position
Vendor
Defined

Text
(Character Code-Positions)

If the private, character code position is used for the glyph identifiers, glyph
selection is one-to-one and consists of using the code position for a
character to index into the font resource to obtain the glyph metrics and
glyph shapes.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200452

52

Font Resource

G
ly

ph
 Id

en
tif

ie
rs

Glyph
Representations

Glyph
Shapes

Glyph
Metrics

Data Structures:
Mapping Characters to Glyphs in a Font Resource

Glyph
Identifiers
(Indices)
Registered
ISO/IEC 10036
Private

Character
Code-Position
Vendor
Defined

Text
(Character Code-Positions)

Mapping Table(s)

Character Code-
Positions

to

Glyph Identifiers

If glyph identifiers, either registered or vendor defined, are used, glyph
selection requires tables to map from the character code position into the
glyph identifier used to index into the font resource to obtain the glyph
metrics and glyph shapes. The mapping tables may implement one-to-one
mappings or more sophisticated M-to-N mappings.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200453

53

Font Resource

G
ly

ph
 Id

en
tif

ie
rs

Glyph
Representations

Glyph
Shapes

Glyph
Metrics

Data Structures:
Option of a Glyph Index Map

Glyph
Identifiers
(Indices)
Registered
ISO/IEC 10036
Private

Character
Code-Position
Vendor
Defined

Glyph Index Map
(dynamically created)

Glyph
Identifier

Glyph
Index

An optional data structure is the “Glyph Index Map”. This table is specific
to a document and consists of entries for only those glyphs used in a
particular document. The usefulness of this data structure depends on the
assumption that rendering requires only a subset of the glyphs in a font
rather than all of the glyphs in a font. The glyph index is used to obtain
the glyph identifier (be it registered or private) to index into the Font
Resource. The advantage of using this data structure is for large fonts,
such as those that implement glyphs for large subsets of 10646 and Unicode.
By using a Glyph Index Map, only the subset of glyph information for the
glyphs actually used in the document need to be downloaded to render the
document. This is valuable for printers with limited memory or for
downloading pages from the WWW over slow telephone lines.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200454

54

3 Font Models

Coded Font Model
Font Resource Model
Intelligent Font Model

We will now turn to examine three font technologies to see how they use
the various data structures to render characters into glyphs for display and
printing.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200455

55

Coded Font Model
Revisable
Document

Text
(Character Codes)
Format Control

(format & code table
information)

Style
Information

(optional)

Device
Information

C
od

ed
 F

on
t

Glyph Shapes
(identified by character code)

Glyph Metrics
(identified by character code)

Images on
Presentation

Surface

General Layout Process
(Page Layout)

(access glyph metrics
by character code)

Formatted Document
(Device Independent)

(character codes
with position information)

Presentation Process
(Raster Image Processing RIP)

(access shape information
by character code)

C
od

ed
 F

on
t

C
od

ed
 F

on
t

La
yo

ut
 &

 P
re

se
nt

at
io

n
Pr

oc
es

s

A coded font (or a character-coded font) is a data structure in which character codes are
used to index the glyph metric and glyph shape information contained in the font. The data
structure depends on a one-to-one mapping of character codes to the glyphs in a font. Note
that each code supported requires a separate coded font even if the glyphs are the same.

This font model is the historic presentation model for data processing. In this model, each
character code encountered by the layout process is used to locate a corresponding glyph in
the coded font. The glyph metric information for that character code is used to determine
positioning of the glyph, along with line and page breaks. The formatted document may be
interchanged to another location for presentation processing or transmitted to a local
presentation process. The presentation process would use the character codes contained in
the formatted document to locate a corresponding glyph in the coded font and use the
associated glyph shape information to image the glyph on the presentation surface at the
position indicated by the layout process.

With the coded font model, if a desired glyph is not associated with a character in a coded
character set, then the glyph cannot be displayed or printed. This fact and the widespread
implementation of the coded font model have resulted in pressure to include some glyphs in
coded character sets. The other two font models do not require that all the glyphs in a font
resource be coded as characters in the coded character set to print or display the glyphs.

The coded font model is less suitable than the other two for the more complex glyph-
selection requirements of printing and publishing. For example, the Arabic script requires
special processing in the coded font model. If the input to the general layout process
includes Arabic characters, the process also needs to convert the Arabic characters to the
correct Arabic presentation forms, which is not normally part of this model.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200456

56

Coded Font Model Characteristics
No Glyph-Selection Process

1-to-1 Mapping from Characters to Glyphs
Uses Character Code (Code-Position) to Index Font Resource

Applicable to Most Characters in Unicode™ 4.0
Widely Implemented
Separate Font Resource for Each Code Table
Inadequate for Multilingual Text and Advanced Typography
for example, Processing the Arabic Script

Glyph Selection Process Required for Arabic Presentation Forms
Each Glyph Must Be Coded as a Character

Glyphs Not in the Code Cannot Be Rendered
Pressure to Code Glyphs in 10646/Unicode™

Optional Glyph-Index Map

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200457

57

Font Resource Model

La
yo

ut
 &

 P
re

se
nt

at
io

n
Pr

oc
es

s

Fo
nt

 R
es

ou
rc

e

Character-to-Glyph Maps
Coded-Characters to

Glyph-Identifiers
(for various character encodings)

Glyph Shapes
(identified by glyph

identifier)

Glyph Metrics
(identified by glyph identifier)

Glyph Index
Map

(glyph index to
glyph identifiers)

Revisable
Document

Text
(Character Codes)
Format Control

(format & code table
information)

Style
Information

(optional)

Device
Information

Images on
Presentation

Surface

General Layout Process
(Select Glyph, Layout Page & Build Glyph Index)

(access glyph metrics by glyph identification)

Formatted Document
(Device Independent)

(glyph index
with position information)

Presentation Process
(Raster Image Processing RIP)

(access shape information by glyph index)

The font resource model permits definition of font resources that are less
dependent on any single coded character set or document-processing model.
This model is more suited to the document printing and publishing
environment. Glyph identifiers index the glyph metrics and glyph shape
representations in the font resource. In this model, the layout process uses
predefined character-to-glyph maps to determine the mapping of character
codes to presentation glyphs and replaces the character codes in the
formatted document with glyph index values.

Optionally, a composition and layout process may generate a glyph index
map that accesses only and exactly those glyphs of a large font resource
that are needed to image the output of the process.

In the font resource model, the relationship between the character repertoire
and the glyph collection may involve a one-to-one mapping but may also
involve a one-to-many or many-to-one mapping. It is essential for successful
presentation that the set of glyphs in the glyph collection be mappable to the
repertoire of characters used in the text string.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200458

58

Font Resource Model Characteristics
Adds Glyph-Selection Process

Could Be Sophisticated M-to-N or Merely 1-to-1 Mapping
Adequate for Multilingual Text and Advanced Typography

Uses Glyph Identifiers (Different from Character
Codes) to Index Font Resource

Less Dependent on Character Encoding
Private or Registered Glyph Identifiers
Font Resource May Cover Characters from Several Codes
Font Resource May Cover a Subset of 10646/Unicode

Optional Glyph-Index Map

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200459

59

Intelligent Font Model

La
yo

ut
 &

 P
re

se
nt

at
io

n
Pr

oc
es

s

Images on
Presentation Surface

Glyph Selection Process

Glyph Identifiers
(in character order)

General Layout Process
(no knowledge of writing system)

Modified Glyph Identifiers
(in display order)

with Position Information

Presentation Process

Device
Information

Style
Information

(optional)

Layout Transformation

In
te

lli
ge

nt
 F

on
t

Feature Selection

Glyph Metrics

Glyph Shapes

Character-to-Glyph
Maps

(for various encodings)

Text
(Character
Codes in
memory
order)

Character
Code

Identification

An intelligent font is a data structure that augments a font resource with additional
information describing
• how a sequence of coded characters is transformed into a sequence of glyph identifiers,
with associated position information

• how the transformation of coded characters to glyph identifiers is affected by style
information

The first set of additional information typically includes several mappings from various
coded character sets to private (font-specific) glyph identifiers. Subsequent transformations
use the glyph identifiers. The subsequent transformations may be complex and may result in
changes to the number and ordering of the glyph identifiers. The second type of additional
information permits, for example, substitution of glyph subsets (for example, swash variants,
vertical substitution) based on style information.
Within the layout and presentation process of the intelligent font model, the glyph selection
process transforms coded characters to glyph identifiers. This process requires
• information about how the characters are coded
• the map from coded characters to glyph identifiers for the specified character coding

The process takes coded characters in memory or logical order and produces glyph
identifiers in character or logical order. Logical order is the order in which a person would
normally read the characters regardless of the normal direction of the characters. For Latin
text included in the middle of Arabic text, the logical order would be the rightmost Arabic
character to the end of the Arabic text, then the leftmost Latin character to the end of the
Latin text, and then the rightmost Arabic character of the second group of Arabic text to
the end of the Arabic text.
Next, the general layout process transforms the glyph identifiers in logical order into
(possibly modified) glyph identifiers in display order. Display order is the order in which
the characters are to appear on paper or on a screen.
The presentation process is the final process. It takes the glyph identifiers in display order,
the glyph positions, and the glyph shapes to produce the images on paper or a screen

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200460

60

Intelligent Font Model Characteristics
Font Resource with More Information

M-to-N Character-to-Glyph Maps with Position Information
Feature Selection Indicates Affects of Style Information
Layout Transformation Information Includes Provisions for
Bi-Directional Text

Potentially, More-Sophisticated M-to-N Glyph-
Selection Process than Font Resource Model

Adequate for Multilingual Text and Advanced Typography

Works with “Plain Text”, Character Stream without
Formatting Information
Uses Private Glyph Identifiers to Index Font
Resource
Optional Glyph-Index Map

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200461

61

Comparison of Font Models
Characteristic Coded Font Font Resource Intelligent Font

Glyph Selection
Process
(character-to-glyph
mapping)

None
(1-to-1)

Yes (1 Process)
(1-to-1 or M-to-N)

Yes (2 Processes)
(1-to-1 or M-to-N)

Font Structure
Character-to-Glyph
Mapping

No
(implied by character

code position)

Yes
(external to font resource)

Yes
(in font resource)

Index to Glyphs Code Position in
Character Code Table

Glyph Identifier
(private or registered)

Glyph Identifier
(private)

Glyph Metrics and
Shapes

Yes Yes Yes

Additional Data No No Feature Selection,
Layout Transformation

Examples Adobe PostScript Type1
Fonts

Classic Printing in Data-
Processing

Adobe CID Fonts

Apple/Microsoft TrueType
Fonts

IBM Advanced Function
Presentation (AFP)

Apple Advanced
Typography

Adobe/Microsoft
OpenType

The principal differences between the font models are:

• the presence of a glyph selection process and the potential sophistication of that
process

• how the glyphs are indexed in the font resource
• the presence of additional data in the font resource

Examples of Coded Fonts are Adobe PostScript Type 1 fonts and classic printing in
data processing.

Examples of Font Resources are Adobe CID fonts, Apple/Microsoft TrueType fonts,
and IBM Advanced Function Presentation (APF).

Examples of Intelligent fonts are Apple Advanced Typography, and Adobe/Microsoft
OpenType. Since the Intelligent font technology allows potentially more
sophisticated implementations of Unicode, here are some references. For Apple
Advanced Typography see

http://developer.apple.com/fonts/

For OpenType, see

http://www.microsoft.com/typography/specs/ and

http://partners.adobe.com/asn/tech/type/opentype/index.jsp

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200462

62

Recommended Font Models

For Multilingual Processing &
Advanced Typography

Need M-to-N Character-to-Glyph
Mapping
Need

Font Resource Model
Intelligent Font Model

For multilingual and advanced typography, the more sophisticated M-to-N
glyph selection is required. Potentially, both the Font Resource Model and
the Intelligent Font have this capability. However, frequently this potential
is unrealized with the Font Resource Model because only a one-to-one glyph
selection is implemented.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200463

63

Summary and Conclusion

Background

Model for Keyboards, Characters and
Glyphs

Models for Rendering Characters into
Glyphs

Summary and Conclusion

At this point, let me try to draw some conclusions and summarize the
presentation.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200464

64

Design Considerations
Determine Script and Language Requirements

Single or Multiple Scripts
Single or Multiple Languages

Review Resources Available
Input Mechanism
Fonts
Font Model
Glyph Selection (1-to-1, M-to-N)
Hyphenation Rules and Dictionaries

Decide Domain (Content or Rendering or Both)
Decide Appropriate Unit of Information Coding
(Grapheme)
Account for Typography and Conventions in Language
and Culture
Review with Native Speakers

Let me first attempt to summarize how a developer might use the
information presented by listing some design considerations.

First, determine your script and language requirements. Are you working
with one or multiple scripts, or one or multiple languages in your product?

Second, review the resources available on the platforms on which you are
building your products. Does it have an input mechanism for the
script/languages of your product? Are fonts available? Which font model
is used for rendering? Does it provide one-to-one or M-to-N glyph
selection? Are dictionaries with hyphenation rules available?

Third, decide the domain or domains required for your product. Is it in
the content domain, or the presentation domain, or both? Based on your
answer, consider if you should recode the information to optimize it to your
processing.

Fourth, consider the typography and conventions used in the language and
culture. This will have sometime subtle but import differences between
cultures.

Finally, have native speakers review your product before you ship it. They
will find problems that the “experts” miss and which may turn your product
into a failure.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200465

65

Benefits
of the Keyboard-Character-Glyph Model

Framework
domains

characters
glyphs
keyboards

rendering
Guidance

which characters to code
which glyphs to register
which glyphs to include in a font

What are the benefits of the Character-Glyph model that was just described?

First, it provides a framework to developers and the standards committees to
characterize the character domain and the glyph domain and to describe the
glyph-selection process and models for rendering characters into glyphs for
presentation. It also characterizes keyboards and input method processing to
convert keystrokes into characters.

Second, it provides guidance to the standards committees about whether to
code an entity as a character or to register it as a glyph. Note that I said
“guidance” because frequently other considerations besides the idealized
principles presented here become important in the decision process. Finally,
it provides guidance for which additional presentation glyphs should be
included in a font.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200466

66

Summary
People Equate a Character with Its Shape
In Information Technology, Keyboards,
Characters and Glyphs Have Separate Domains

Characters: Content Processing
Glyphs: Presentation Processing
Rendering Multilingual Text Requires
M-to-N Character-to-Glyph Mapping
(frequently, but not always, 1-to-1 mapping)
Keyboards: Text and Data Entry
Input Methods for Converting Keystrokes to Characters
Can Become Complex

3 Font Models for Rendering Characters to Glyphs
Data Structures
Processes

Design Considerations

Let me conclude the presentation with a summary.

People equate a character with its shape. To a person, they are
inseparable.

However, in the world of Information Technology, we have decided to
distinguish between the character attribute of its information content, which
we code as characters, and the attribute of its shape, which we call a
glyph. We divide these into a character domain and a glyph domain.
Converting from characters in the character domain to glyphs in the glyph
domain requires a glyph selection process. The glyph selection process is
frequently a one-to-one mapping but sometimes requires a more complex M-
to-N mapping. In general, rendering multilingual text requires an M-to-N
mapping.

Information Technology has a third domain for keyboards for text and data
entry. The process for mapping keystrokes into characters, while simple for
US English keyboards, can become quite complex.

Three technologies, or three font models, are available for rendering
characters into glyphs. Each uses similar data structures and processes to
render text. The presentation compared the font models and recommended
two to use for multilingual rendering.

Finally, we listed several considerations for the developer of multilingual
products.

The Unicode Keyboard-Character-Glyph Model
What You Need to Know About Processing and Rendering Multilingual Text

25th Internationalization and Unicode Conference Washington, DC, March/April 200467

67

Reference: ISO/IEC TR 15285: 1998

ISO/IEC Technical Report 15285: 1998
Information Technology —
An operation model for characters and glyphs

Canada
Canadian Standards Association
Standards Sales

Association canadienne de normalisation
Vente des normes

178 Rexdale Blvd.
Etobicoke, ON M9W 1R3
1-416-747-4044
1-416-747-2475 (fax)

US
Attn: Customer Service
American National Standards
Institute

1 W. 42nd St.
New York, NY 10026
1-212-642-4900
1-212-302-1286 (fax)

http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htmPubliclyAvailableStandards.htm

You can obtain a copy of the ISO Technical Report on which this
presentation is based from the ISO web site, www.iso.ch, or from your
national standards organization. Since at times, ISO has redesigned its web
site, you may need to go to www.iso.org (the new ISO URL in 2002) and
search for “publicly available standards”.

