From: Joe [Becker] [joe@unicode.org]

To: ‘Markus Kuhn’; fyergeau@alis.com

CC: linux-utf8@nl.linux.org; unicore@juncode.org

Subject: RE: Revision of UTF-8 history in draft-yergeau-rfc2279bis-05.txt

> It replaced an earlier attempt to design a FSS/UTF (file system safe UCS transformation format) that was circulated in an X/Open working document in August 1992 by Gary Miller (IBM), Greger Leijonhufvud and John Entenmann (SMI) as a replacement for the division-heavy UTF-1 encoding from the first edition of ISO 10646-1. ... FSS/UTF was briefly also referred to as UTF-2 and later renamed into UTF-8

This corresponds to what I know of the history, I believe Gary Miller was a major initiator and proponent of the first FSS-UTF design.

Despite Ed's qualifications, I believe it is a fair shorthand to say that Ken Thompson designed what is now known as UTF-8, and Plan 9 was its initial venue.

Joe

From: ken@research.att.com

Date: Tue, 8 Sep 92 03:22:07 EDT

To: xojig@xopen.co.uk

Subject: (XoJIG 620) <Subject missing>

Here is our modified FSS-UTF proposal. The words are the same as on the previous proposal. My apologies to the author. The code has been tested to some degree and should be [in] pretty good shape. We have converted Plan 9 to use this encoding and are about to issue a distribution to an initial set of university users.

File System Safe Universal Character Set Transformation Format (FSS-UTF)

With the approval of ISO/IEC 10646 (Unicode) as an international standard and the anticipated wide spread use of this universal coded character set (UCS), it is necessary for historically ASCII based operating systems to devise ways to cope with representation and handling of the large number of characters that are possible to be encoded by this new standard.

There are several challenges presented by UCS which must be dealt with by historical operating systems and the C-language programming environment. The most significant of these challenges is the encoding scheme used by UCS. More precisely, the challenge is the marrying of the UCS standard with existing programming languages and existing operating systems and utilities.

The challenges of the programming languages and the UCS standard are being dealt with by other activities in the industry. However, we are still faced with the handling of UCS by historical operating systems and utilities. Prominent among the operating system UCS handling concerns is the representation of the data within the file system. An underlying assumption is that there is an absolute requirement to maintain the existing operating system software investment while at the same time taking advantage of the use the large number of characters provided by the UCS.

UCS provides the capability to encode multi-lingual text within a single coded character set. However, UCS and its UTF variant do not protect null bytes and/or the ASCII slash ("/") making these character encodings incompatible with existing Unix implementations. The following proposal provides a Unix compatible transformation format of UCS such that Unix systems can support multi-lingual text in a single encoding. This transformation format encoding is intended to be used as a file code. This transformation format encoding of UCS is intended as an intermediate step towards full UCS support. However, since nearly all Unix implementations face the same obstacles in supporting UCS, this proposal is intended to provide a common and compatible encoding during this transition stage.

Goal/Objective

With the assumption that most, if not all, of the issues surrounding the handling and storing of UCS in historical operating system file systems are understood, the objective is to define a UCS transformation format which also meets the requirement of being usable on a historical operating system file system in a non-disruptive manner. The intent is that UCS will be the process code for the transformation format, which is usable as a file code.

Criteria for the Transformation Format

Below are the guidelines that were used in defining the UCS transformation format:

1) Compatibility with historical file systems:

Historical file systems disallow the null byte and the ASCII slash character as a part of the file name.

2) Compatibility with existing programs:

The existing model for multibyte processing is that ASCII does not occur anywhere in a multibyte encoding. There should be no ASCII code values for any part of a transformation format representation of a character that was not in the ASCII character set in the UCS representation of the character.

3) Ease of conversion from/to UCS.

4) The first byte should indicate the number of bytes to follow in a multibyte sequence.

5) The transformation format should not be extravagant in terms of number of bytes used for encoding.

6) It should be possible to find the start of a character efficiently starting from an arbitrary location in a byte stream.

Proposed FSS-UTF

The proposed UCS transformation format encodes UCS values in the range [0,0x7fffffff] using multibyte characters of lengths 1, 2, 3, 4, 5, and 6 bytes. For all encodings of more than one byte, the initial byte determines the number of bytes used and the high-order bit in each byte is set. Every byte that does not start 10xxxxxx is the start of a UCS character sequence.

An easy way to remember this transformation format is to note that the number of high-order 1's in the first byte signifies the number of bytes in the multibyte character:

 Bits Hex Min Hex Max Byte Sequence in Binary

1 7 00000000 0000007f 0vvvvvvv

2 11 00000080 000007FF 110vvvvv 10vvvvvv

3 16 00000800 0000FFFF 1110vvvv 10vvvvvv 10vvvvvv

4 21 00010000 001FFFFF 11110vvv 10vvvvvv 10vvvvvv 10vvvvvv

5 26 00200000 03FFFFFF 111110vv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv

6 31 04000000 7FFFFFFF 1111110v 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv

The UCS value is just the concatenation of the v bits in the multibyte encoding. When there are multiple ways to encode a value, for example UCS 0, only the shortest encoding is legal.

Below are sample implementations of the C standard wctomb() and mbtowc() functions which demonstrate the algorithms for converting from UCS to the transformation format and converting from the transformation format to UCS. The sample implementations include error checks, some of which may not be necessary for conformance:

typedef

struct

{

int
cmask;

int
cval;

int
shift;

long
lmask;

long
lval;

} Tab;

static

Tab
tab[] =

{

0x80,
0x00,
0*6,
0x7F,

0,

/* 1 byte sequence */

0xE0,
0xC0,
1*6,
0x7FF,

0x80,

/* 2 byte sequence */

0xF0,
0xE0,
2*6,
0xFFFF,
0x800,

/* 3 byte sequence */

0xF8,
0xF0,
3*6,
0x1FFFFF,
0x10000,
/* 4 byte sequence */

0xFC,
0xF8,
4*6,
0x3FFFFFF,
0x200000,
/* 5 byte sequence */

0xFE,
0xFC,
5*6,
0x7FFFFFFF,
0x4000000,
/* 6 byte sequence */

0,

/* end of table */

};

int

mbtowc(wchar_t *p, char *s, size_t n)

{

long l;

int c0, c, nc;

Tab *t;

if(s == 0)

return 0;

nc = 0;

if(n <= nc)

return -1;

c0 = *s & 0xff;

l = c0;

for(t=tab; t->cmask; t++) {

nc++;

if((c0 & t->cmask) == t->cval) {

l &= t->lmask;

if(l < t->lval)

return -1;

*p = l;

return nc;

}

if(n <= nc)

return -1;

s++;

c = (*s ^ 0x80) & 0xFF;

if(c & 0xC0)

return -1;

l = (l<<6) | c;

}

return -1;

}

int

wctomb(char *s, wchar_t wc)

{

long l;

int c, nc;

Tab *t;

if(s == 0)

return 0;

l = wc;

nc = 0;

for(t=tab; t->cmask; t++) {

nc++;

if(l <= t->lmask) {

c = t->shift;

*s = t->cval | (l>>c);

while(c > 0) {

c -= 6;

s++;

*s = 0x80 | ((l>>c) & 0x3F);

}

return nc;

}

}

return -1;

}

3
2

