ISO

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC 1/SC 2/WG 2

Universal Multiple-Octet Coded Character Set

(U C S)

						ISO/IEC JTC 1/SC 2/WG 2 N 1036

						Date: 1994-08-01 (spell checked)

	Title:	ISO/IEC 10646-1 Proposed Draft Amendment 2 (UTF-8)

	Source:	Mark Davis, WG2 Project Editor

	Action:	For consideration by SC2 and for information to WG2

	Distribution:	ISO/IEC JTC 1/SC 2 members and SC2/WG 2 members

As directed by ISO/IEC JTC1/SC2/WG2, the following proposed draft amendment to ISO/IEC 10646-1: 1993 (E) has been prepared, incorporating the modifications directed by N 1024.

�
�
INTERNATIONAL	ISO/IEC

STANDARD	10646-1

	First edition

	1993-05-01

	AMENDMENT 2

	1994-XX-XX

Information technology — Universal Multiple-Octet Coded Character Set (UCS) —

Part 1:

Architecture and Basic Multilingual Plane

AMENDMENT 2: UCS Transformation Format 8 (UTF-8)

Technologies de l”information — Jeu universel decaractères codés à plusieurs octets —

Partie 1: Architecture et table multilingue

AMENDEMENT 2: UTF-8

	Reference number

	ISO/IEC 10646-1: 1993/AMD.2: 1994 (E)

�

CONTENTS	Page

Forward	iii

Introduction	iv

Annex P	1

N.1 Features of UTF-8	1

N.2 Specification	1

N.3 Incorrect sequences of octets: Interpretation by receiving de�vices	2

N.4 Notation	2

N.5 Converting UCS-4 to UTF-8	3

N.5 Converting UTF-8 to UCS-4	3

© ISO/IEC 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writ�ing from the publisher.

ISO/IEC Copyright Office · Case postale 56 · CH-1211 Genève 20 · Switzerland

Printed in Switzerland

�
Forward

ISO (the International Organisation for Standardization) and IEC (the International Electrotechnical Commission) form the spe�cialised system for worldwide standardisation. National bodies that are members of ISO or IEC participate in the development of International Standards through techni�cal committees established by the respective organisation to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organisations, gov�ernmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have estab�lished a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

Amendment 2 to International Standard ISO/IEC 10646-1 was prepared by Joint Technical Committee ISO/IEC JTC1, Information technology.

Annex P forms an integral part of this amendment.

�
Introduction

ISO/IEC 10646 specifies the Universal Multiple-Octet Coded Character Set (UCS). It is applicable to the representation, transmission, inter�change, processing, storage, input and presentation of the written form of the languages (scripts) of the world as well as additional symbols.

This amendment to ISO/IEC 10646 specifies an additional transformation format, UTF-8. UTF-8 addresses problems found in UTF-1, and is computationally much simpler.

�

Information technology — Universal Multiple-Octet Coded Character Set (UCS) —

Part 1:

Architecture and Basic Multilingual Plane

AMENDMENT 2: UCS Transformation format 8 (UTF-8)

�

Annex P

(Normative)

UCS Transformation Format 8 (UTF-8)

�
N.1 Features of UTF-8

•	UCS characters from 0000 0000 to 0000 007E (ASCII repertoire) map to UTF-8 octets 00 to 7E(ASCII values).

•	ASCII values do not otherwise occur in a UTF-8 transformation. This provides compatibility with historical file systems and other systems which parse for ASCII octets.

•	It is easy to convert to and from UCS-4.

•	The first octet indicates the number of octets to follow in a multi-octet sequence.

•	It is efficient to find the start of a charac�ter starting from an arbitrary location in an octet stream.

•	UTF-8 is not extravagant in terms of number of octets used for encoding.

•	The transformation defined for UTF-8 is applicable to characters coded according to UCS-4, but not for characters coded according to UTF-16.

	If it is desired to transform data coded in UTF-16 into UTF-8, this can be accom�plished first by transforming from UTF-16 to UCS-4 (see Annex 0)before applying UTF-8.

	If it is desired to transform data coded in UTF-8 to UTF-16, this can be accomplished first by transforming from UTF-8 to UCS-4 before applying UTF-16.�

N.2 Specification

In UTF-8 the characters from this standard shall have coded representations that comprise sequences of octets of length 1, 2, 3, 4, 5, and 6 octets. For all encodings of more than one octet, the initial octet deter�mines the number of octets used by setting 1 in the equivalent number of high-order octets. The next most significant bit is always 0. For example a 2-octet sequence starts with binary 110 and a 6-octet se�quence starts with 1111110.

The following table shows the format of the first octet of a coded character; the free bits available for coding the character are indi�cated by an x.

Octets	Binary	Bits Free	Max. UCS-4

1st of 1	0xxxxxxx	7	0000 007F

1st of 2	110xxxxx	5	0000 07FF

1st of 3�	1110xxxx	4	0000 FFFF	

1st of 4	11110xxx	3	001F FFFF

1st of 5	111110xx	2	03FF FFFF

1st of 6	1111110x	1	7FFF FFFF

2nd .. nth	10xxxxxx	6

Coded representations in the range 0000 D800 to 0000 DFFF shall be excluded from this conversion process. Therefore any UTF-8 octet that starts with binary 0 is a se�quence of one; any octet that starts with 10 is a trailing octet of a multi-octet sequence; any other octet is the start of a multi-octet UTF-8 sequence.

Note

Fundamentally, UTF-8 distributes the UCS-4 bits among the xxxx bits in the appropriate sequence above. The algorithm can be explained in a fairly simple manner:

•	To convert UCS-4 to UTF-8, determine which sequence to use based on the Maximum UCS-4 value in the above table. Take the bits in the UCS-4 coded representation and distribute them among the xxxx bits in that se�quence, starting with the low bits in the last octet of the sequence.

•	To convert UTF-8 to UCS-4, take all the xxxx bits of each octet in the se�quence and concatenate them to�gether, with the bits in the last octet going in the low bits of the result. Any high-order bits not represented in the sequence are set to zero.

 The formal definition of the conversion be�tween UTF-8 and UCS-4 is presented be�low.�
Example 1: (binary)

UCS-4	UTF-8

00000000 00000000 00000000 00000001; 	00000001;

00000000 00000000 0000000001111111; 	01111111;

00000000 00000000 00000000 10000000; 	11000010; 10000000;

00000000 00000000 00000111 11111111; 	11011111; 10111111;

00000000 00000000 00001000 00000000; 	11100000; 10100000; 10000000;

00000000 00000000 11111111 11111111; 	11101111; 10111111; 10111111;

00000000 00000001 00000000 00000000; 	11110000; 10010000; 10000000;10000000;

00000000 00011111 11111111 11111111; 	11110111; 10111111; 10111111;10111111;

00000000 00100000 00000000 00000000; 	11111000; 10001000; 10000000;10000000; 10000000;

00000011 11111111 11111111 11111111; 	11111011; 10111111; 10111111;10111111; 10111111;

00000100 00000000 00000000 00000000; 	11111100; 10000100; 10000000;10000000; 10000000; 10000000;

01111111 11111111 11111111 11111111; 	11111101; 10111111; 10111111;10111111; 10111111; 10111111;

�
Example 2:(hex)

UCS-4	UTF-16	UTF-8

0000 0001; 	0001; 	01;

0000 007F; 	007F; 	7F;

0000 0080; 	0080; 	C2; 80;

0000 07FF; 	07FF; 	DF; BF;

0000 0800; 	0800; 	E0; A0; 80;

0000 FFFF; 	FFFF; 	EF; BF; BF;

0001 0000; 	D800; DC00; 	F0; 90; 80; 80;

0010 FFFF; 	DBFF; DFFF; 	F4; 8F; BF; BF;

001F FFFF; 	FFFD; 	F7; BF; BF; BF;

0020 0000; 	FFFD; 	F8; 88; 80; 80; 80;

03FF FFFF; 	FFFD; 	FB; BF; BF; BF; BF;

0400 0000; 	FFFD; 	FC; 84; 80; 80; 80;80;

7FFF FFFF;	FFFD; 	FD; BF; BF; BF; BF; BF;

N.3 Incorrect sequences of octets: Interpretation by receiving devices

If a CC-data-element includes either:

•	a first octet that is not immediately fol�lowed by the correct number of following octets, or

•	one or more adjacent following octets that are not required to complete a sequence of first and following octets,

then according to N.2 such a sequence of octets is not in conformance with the re�quirements of UTF-8. It is known as a malformed sequence, and it cannot be transmit�ted by an originating device that is in con�formance with the requirements of UTF-8, un�less that originating device is retransmitting a malformed sequence that it previously re�ceived.

If a receiving device receives a malformed sequence, because of error conditions ei�ther:

•	in the originating device, or

•	in the interchange between the originat�ing and the receiving device, or

•	in the receiving device itself,

then it shall interpret that malformed sequence in the same way that it interprets a character that is outside the adopted subset that has been identified for the device (see 2.3c).

N.4 Notation

The notation is similar to the notation of Annex G.2.

1.	All numbers are in hexadecimal nota�tion.

2.	Boundaries in the text are indicated with semicolons; these are octet boundaries for UTF-8 text; quadruple-octet bound�aries for UCS-4 text.

3.	The symbol "%" indicates the modulo operation, e.g.: x % y = x modulo y

4.	The symbol "/" indicates the integer di�vision operation, e.g.: 7 / 3= 2

5.	Superscripting indicates the power-of operation, e.g.: 23 =8

6.	Precedence is "3" > "/" > "%", e.g.: x / yz % w =((x / (yz)) % w)

N.5 Converting UCS-4 to UTF-8

The following table defines the transformation from UCS-4 to UTF-8.

UTF-4	| |	UTF-8

x < 80;	x;

x < 800;	C0 + x / 26;

	80 + x %26;

D800 <= x <DC00;	E0 + t/212%26;

DC00 <= y <E000;	80 + t/26%26; 80 + t%26;

where t = (x -D800)*210 + (y - DC00) + 10 0000)

x < 1 0000;	E0 + x/212;

	80 + x/26%26;

	80 + x%26;

x < 200000;	F0 + x/218;

	80 + x/212%26;

	80 + x/26%26;

	80 + x%26;

x < 4000000;	F8 + x/224;

	80 + x/218%26;

	80 + x/212%26;

	80 + x/26%26;

	80 + x%26;

x;	FC + x/230;

	80 + x/224%26;

	80 + x/218%26;

	80 + x/212%26;

	80 + x/26%26;

	80 + x%26;

N.5 Converting UTF-8 to UCS-4

The following table defines the transformation from UTF-8 to UCS-4.

UTF-8	 | |	UCS-4

z <C0;	z;

z < E0; y;	(z-C0)*26 + (y-80);

z < F0; y; x;	(z-E0)*212 + (y-80)*26 + (x-80);

z < F8; y; x; w;	(z-F0)*218 + (y-80)*212 +(x-80)*26 + (w-80);

z < FC; y; x; w; v;	(z-F8)*224 + (y-80)*218 +(x-80)*212 + (w-80)*26 + (v - 80);

z; y; x; w; v; u;	(z-FC)*230 + (y-80)*224 +(x-80)*218 + (w-80)*212 + (v-80)*26 + (u-80);

�	The X/Open Company Ltd published a transformation format called File System Safe UCS Transformation Format (FSS_UTF). The format is published as an X/Open Preliminary Specification, Document Number: P316. UTF-8 is based that transformation format.

�	Excluding 0000 D800 to 0000 DFFF.

ISO/IEC 10646-1 PDAM 1	�	UTF-16

ISO/IEC 10646-1: 1993/AMD.2:1994 (E)

	ISO/IEC 10646-1:1993/AMD.2: 1994 (E)

�

		�

ISO/IEC 10646-1: 1993/AMD.2:1994 (E)

	ISO/IEC 10646-1:1993/AMD.2: 1994 (E)

�

		�

ISO/IEC 10646-1:1993/AMD.2: 1994 (E)

	ISO/IEC 10646-1:1993/AMD.2: 1994 (E)

�

		�

Annex N	�	UTF-8

Annex N	�	UTF-8

Annex N	�	UTF-8

