
Chapter 2

General Structure 2

This chapter discusses the fundamental principles governing the design of the Unicode
Standard and presents an informal overview of its main features. The chapter starts by
placing the Unicode Standard in an architectural context by discussing the nature of text
representation and text processing and its bearing on character encoding decisions. Next,
the Unicode Design Principles are introduced—ten basic principles which convey the
essence of the standard. The Unicode Design Principles can serve as a kind of tutorial
framework for understanding the Unicode Standard, and are a useful place to start from to
get a summary of the overall nature of the standard.

The chapter then moves on to the Unicode character encoding model, introducing the con-
cepts of character, code point, and encoding forms, and diagramming the relationships
between them. This provide an explanation of UTF-8, UTF-16, and UTF-32 and some gen-
eral guidelines regarding the circumstances under which one form would be preferable to
another.

The section on Unicode allocation then describes the overall structure of the Unicode
codespace, showing a summary of the code charts and the locations of blocks of characters
associated with different scripts or sets of symbols.

Next, the chapter discusses the issue of writing direction and introduces several special
types of characters important for understanding the Unicode Standard. In particular, the
use of combining characters, the byte order mark, and control characters is explored in some
detail.

Finally, there is an informal statement of the conformance requirements for the Unicode
Standard. This informal statement, with a number of easy-to-understand examples, gives a
general sense of what conformance to the Unicode Standard means. The rigorous, formal
definition of conformance is given in the subsequent Chapter 3, Conformance.

2.1 Architectural Context
A character code standard such as the Unicode Standard enables the implementation of
useful processes operating on textual data. The interesting end products are not the charac-
ter codes but the text processes, because these directly serve the needs of a system’s users.
Character codes are like nuts and bolts—minor, but essential and ubiquitous components
used in many different ways in the construction of computer software systems. No single
design of a character set can be optimal for all uses, so the architecture of the Unicode Stan-
dard strikes a balance among several competing requirements.
The Unicode Standard 4.0 DRAFT 4 Oct 02 11

Julie Allen

2.1 Architectural Context General Structure
Basic Text Processes

Most computer systems provide low-level functionality for a small number of basic text
processes from which more sophisticated text-processing capabilities are built. The follow-
ing text processes are supported by most computer systems to some degree:

• Rendering characters visible (including ligatures, contextual forms, and so on)

• Breaking lines while rendering (including hyphenation)

• Modifying appearance, such as point size, kerning, underlining, slant, and
weight (light, demi, bold, and so on)

• Determining units such as “word” and “sentence”

• Interacting with users in processes such as selecting and highlighting text

• Accepting keyboard input and editing stored text through insertion and dele-
tion

• Comparing text in operations such as determining the sort order of two strings,
or filtering or matching strings

• Analyzing text content in operations such as spell-checking, hyphenation, and
parsing morphology (that is, determining word roots, stems, and affixes)

• Treating text as bulk data for operations such as compressing and decompress-
ing, truncating, transmitting, and receiving

Text Elements, Characters, and Text Processes

One of the more profound challenges in designing a worldwide character encoding stems
from the fact that, for each text process, written languages differ in what is considered a
fundamental unit of text, or a text element.

For example, in traditional German orthography, the letter combination “ck” is a text ele-
ment for the process of hyphenation (where it appears as “k-k”), but not for the process of
sorting; in Spanish, the combination “ll” may be a text element for the traditional process
of sorting (where it is sorted between “l” and “m”), but not for the process of rendering;
and in English, the letters “A” and “a” are usually distinct text elements for the process of
rendering, but generally not distinct for the process of searching text. The text elements in
a given language depend upon the specific text process; a text element for spell-checking
may have different boundaries from a text element for sorting purposes. For example, in
the phrase, “the quick brown fox”, the sequence “fox” is a text element for the purpose of
spell-checking.

However, a character encoding standard provides just the fundamental units of encoding
(that is, the abstract characters), which must exist in a unique relationship to the assigned
numerical code points. Assigned characters are the smallest interpretable units of stored
text.

An important class of text elements is called a grapheme cluster, which typically corre-
sponds to what a user thinks of as a “character.” A precise definition of this concept can be
found in Unicode Standard Annex #29, “Text Boundaries.” Figure 2-1 illustrates the rela-
tionship between abstract characters and grapheme clusters.

[errata email from Mark on 8-24-00 had corrected figure for Devanagari grapheme in
Fig 2-1-- still need to correct first glyph in third column.]

The design of the character encoding must provide precisely the set of characters that
allows programmers to design applications capable of implementing a variety of text pro-
12 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.1 Architectural Context
cesses in the desired languages. These characters may not map directly to any particular set
of text elements that is used by one of these processes.

Text Processes and Encoding

In the case of English text using an encoding scheme such as ASCII, the relationships
between the encoding and the basic text processes built on it are seemingly straightforward:
characters are generally rendered visible one by one in distinct rectangles from left to right
in linear order. Thus one character code inside the computer corresponds to one logical
character in a process such as simple English rendering.

When designing an international and multilingual text encoding such as the Unicode Stan-
dard, the relationship between the encoding and implementation of basic text processes
must be considered explicitly, for several reasons:

• Many assumptions about character rendering that hold true for the English
alphabet fail for other writing systems. Characters in these other writing sys-
tems are not necessarily rendered visible one by one in rectangles from left to
right. In many cases, character positioning is quite complex and does not pro-
ceed in a linear fashion. See Section 8.2, Arabic, in Chapter 8, Middle Eastern
Scripts, and Section 9.1, Devanagari, in Chapter 9, South Asian Scripts, for
detailed examples of this situation.

• It is not always obvious that one set of text characters is an optimal encoding
for a given language. For example, two approaches exist for the encoding of
accented characters commonly used in French or Swedish: ISO/IEC 8859
defines letters such as “ä” and “ö” as individual characters, whereas ISO 5426
represents them by composition with diacritics instead. In the Swedish lan-
guage, both are considered distinct letters of the alphabet, following the letter
“z”. In French, the diaeresis on a vowel merely marks it as being pronounced in

Figure 2-1. Text Elements and Characters

Grapheme:

Characters

Word:

Text Elements

(Spanish)

cat c a t

· ã ççS

ch c h

C ü

�

�

÷

The Unicode Standard 4.0 DRAFT 4 Oct 02 13

2.2 Unicode Design Principles General Structure
isolation. In practice, both approaches can be used to implement either lan-
guage.

• No encoding can support all basic text processes equally well. As a result, some
trade-offs are necessary. For example, ASCII defines separate codes for upper-
case and lowercase letters. This choice causes some text processes, such as ren-
dering, to be carried out more easily, but other processes, such as comparison,
to become more difficult. A different encoding design for English, such as case-
shift control codes, would have the opposite effect. In designing a new encoding
scheme for complex scripts, such trade-offs must be evaluated and decisions
made explicitly, rather than unconsciously.

For these reasons, design of the Unicode Standard is not specific to the design of particular
basic text-processing algorithms. Instead, it provides an encoding that can be used with a
wide variety of algorithms. In particular, sorting and string comparison algorithms cannot
assume that the assignment of Unicode character code numbers provides an alphabetical
ordering for lexicographic string comparison. Culturally expected sorting orders require
arbitrarily complex sorting algorithms. The expected sort sequence for the same characters
differs across languages; thus, in general, no single acceptable lexicographic ordering exists.
(See Unicode Technical Standard #10, “Unicode Collation Algorithm” for the standard
default mechanism for comparing Unicode strings.)

Text processes supporting many languages are often more complex than they are for
English. The character encoding design of the Unicode Standard strives to minimize this
additional complexity, enabling modern computer systems to interchange, render, and
manipulate text in a user’s own script and language—and possibly in other languages as
well.

2.2 Unicode Design Principles
The design of the Unicode Standard reflects the 10 fundamental principles stated in
Table 2-1. Not all of these principles can be satisfied simultaneously. The design strikes a
balance between maintaining consistency for the sake of simplicity and efficiency and
maintaining compatibility for interchange with existing standards.

Table 2-1. The 10 Unicode Design Principles

Principle Statement

Universality The Unicode Standard provides a single, universal repertoire.

Efficiency Unicode text is simple to parse and process.

Characters, not glyphs The Unicode Standard encodes characters, not glyphs.

Semantics Characters have well-defined semantics.

Plain text Unicode characters represent plain text.

Logical order The default for memory representation is logical order.

Unification The Unicode Standard unifies duplicate characters within scripts
across languages.

Dynamic composition Accented forms can be dynamically composed.

Equivalent sequence Static precomposed forms have an equivalent dynamically composed
sequence of characters.

Convertibility Accurate convertibility is guaranteed between the Unicode Standard
and other widely accepted standards.
14 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.2 Unicode Design Principles
Universality

The Unicode Standard encodes a single, very large set of characters, encompassing all the
characters needed for worldwide use. This single repertoire is intended to be universal in
coverage, containing all the characters for textual representation in all modern writing sys-
tems, in most historic writing systems for which sufficient information is available to
enable reliable encoding of characters, and symbols used in plain text.

Because the universal repertoire is known and well-defined in the standard, it is possible to
specify a rich set of character semantics. By relying on those character semantics, imple-
mentations can provide detailed support for complex operations on text at a reasonable
cost.

The Unicode Standard, by supplying a universal repertoire associated with well-defined
character semantics, obsoletes the code set independent model of internationalization and
text handling. That model abstracts away string handling as manipulation of byte streams
of unknown semantics to protect implementations from the details of hundreds of differ-
ent character encodings, and selectively late-binds locale-specific character properties to
characters. By contrast, the Unicode approach assumes that characters and their properties
are inherently and inextricably associated. All levels of Unicode implementations can reli-
ably and efficiently access character storage and be assured of the universal applicability of
character property semantics.

Efficiency

The Unicode Standard is designed to make efficient implementation possible. There are no
escape characters or shift states in the Unicode character encoding model. Each character
code has the same status as any other character code; all codes are equally accessible.

All Unicode encoding forms are self-synchronizing and non-overlapping. This makes ran-
domly accessing and searching inside streams of characters efficient.

By convention, characters of a script are grouped together as far as is practical. Not only is
this practice convenient for looking up characters in the code charts, but it makes imple-
mentations more compact, and compression methods more efficient. The common punc-
tuation characters are shared.

Formatting characters are given specific and unambiguous functions in the Unicode Stan-
dard. This design simplifies the support of subsets. To keep implementations simple and
efficient, stateful controls and formatting characters are avoided wherever possible.

Characters, Not Glyphs

The Unicode Standard draws a distinction between characters and glyphs. Characters are
the abstract representations of the smallest components of written language that have
semantic value. Glyphs represent the shapes that characters can have when they are ren-
dered or displayed. Various relationships may exist between character and glyph: a single
glyph may correspond to a single character, or to a number of characters, or multiple
glyphs may result from a single character. The distinction between characters and glyphs is
illustrated in Figure 2-2.

[Mark to rewrite the following two paras and Fig 2-2 with material from “Where is my
Character?” 8-18-02]

Unicode characters represent primarily, but not exclusively, the letters, punctuation, and
other signs that constitute natural language text and technical notation. Characters are rep-
The Unicode Standard 4.0 DRAFT 4 Oct 02 15

2.2 Unicode Design Principles General Structure
resented by code points that reside only in a memory representation, as strings in memory,
or on disk. The Unicode Standard deals only with character codes.

In contrast to characters, glyphs appear on the screen or paper as particular representations
of one or more characters. A repertoire of glyphs makes up a font. Glyph shape and meth-
ods of identifying and selecting glyphs are the responsibility of individual font vendors and
of appropriate standards and are not part of the Unicode Standard.

For certain scripts, such as Arabic and the various Indic scripts, the number of glyphs
needed to display a given script may be significantly larger than the number of characters
encoding the basic units of that script. The number of glyphs may also depend on the
orthographic style supported by the font. For example, an Arabic font intended to support
the Nastaliq style of Arabic script may possess many thousands of glyphs. However, the
character encoding employs the same few dozen letters regardless of the font style used to
depict the character data in context.

A font and its associated rendering process define an arbitrary mapping from Unicode val-
ues to glyphs. Some of the glyphs in a font may be independent forms for individual char-
acters; others may be rendering forms that do not directly correspond to any single
character.

The process of mapping from characters in the memory representation to glyphs is one
aspect of text rendering. The final appearance of rendered text may also depend on context
(neighboring characters in the memory representation), variations in typographic design
of the fonts used, and formatting information (point size, superscript, subscript, and so
on). The results on screen or paper can differ considerably from the prototypical shape of a
letter or character, as shown in Figure 2-3.

For all scripts, an archetypical relation exists between character code sequences and result-
ing glyphic appearance. For the Latin script, this relationship is simple and well known; for
several other scripts, it is documented in this standard. However, in all cases, fine typogra-
phy requires a more elaborate set of rules than given here. The Unicode Standard docu-
ments the default relationship between character sequences and glyphic appearance solely
for the purpose of ensuring that the same text content is always stored with the same, and
therefore interchangeable, sequence of character codes.

Semantics

Characters have well-defined semantics. Character property tables are provided for use in
parsing, sorting, and other algorithms requiring semantic knowledge about the code
points. The properties identified by the Unicode Standard include numeric, spacing, com-
bination, and directionality properties (see Chapter 4, Character Properties). Additional

Figure 2-2. Characters Versus Glyphs

Glyphs Unicode Characters

+

U+0041 LATIN CAPITAL LETTER A

U+0066 LATIN SMALL LETTER F
U+0069 LATIN SMALL LETTER I

U+0061 LATIN SMALL LETTER A

U+0647 ARABIC LETTER HEH

fi fi

a f j a b h a d

A e i _ ` g A c

k l n m
16 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.2 Unicode Design Principles
properties may be defined as needed from time to time. By itself, neither the character
name nor its location in the code table designates its properties.

Plain Text

Plain text is a pure sequence of character codes; plain Unicode-encoded text is therefore a
sequence of Unicode character codes. In contrast, styled text, also known as rich text, is any
text representation consisting of plain text plus added information such as a language iden-
tifier, font size, color, hypertext links, and so on. For example, the text of this book, a mul-
tifont text as formatted by a desktop publishing system, is rich text.

Many kinds of data structures can be built into rich text. For example, in rich text contain-
ing ideographs an application may store the phonetic readings of ideographs somewhere in
the rich text structure.

The simplicity of plain text gives it a natural role as a major structural element of rich text.
SGML, RTF, HTML, XML, or TEX are examples of rich text fully represented as plain text
streams, interspersing plain text data with sequences of characters that represent the addi-
tional data structures. Many popular word processing packages rely on a buffer of plain text
to represent the content, and implement links to a parallel store of formatting data.

[Kern TEX above. 8-18-02]

Figure 2-3. Unicode Character Code to Rendered Glyphs

①
②
③
④
⑤
⑥

Text Character Sequence

ÌüÒ
①

②

③ ④

⑤

⑥

êç

Text
Rendering

Process

Font
(Glyph Source)

Ò
@ê
Ú
@ ÷
Ì
ç@

0000 1001 0010 1010

0000 1001 0100 0010

0000 1001 0011 0000

0000 1001 0100 1101

0000 1001 0010 0100

0000 1001 0011 1111
The Unicode Standard 4.0 DRAFT 4 Oct 02 17

2.2 Unicode Design Principles General Structure
The relative functional roles of both plain and fancy text are well established:

• Plain text is the underlying content stream to which formatting can be applied.

• Rich text carries complex formatting information, as well as text context.

• Plain text is public, standardized, and universally readable.

• Rich text representation may be implementation-specific or proprietary.

Although some rich text formats have been standardized or made public, the majority of
rich text designs are vehicles for particular implementations and are not necessarily read-
able by other implementations. Given that rich text equals plain text plus added informa-
tion, the extra information in rich text can always be stripped away to reveal the “pure” text
underneath. This operation is often employed, for example, in word processing systems
that use both their own private rich format and plain text file format as a universal, if lim-
ited, means of exchange. Thus, by default, plain text represents the basic, interchangeable
content of text.

Standards for markup languages, such as XML and HTML, use plain text for the entire file.
They use special conventions embedded within the plain text file such as “<p>” to distin-
guish the markup or tags from the “real” content.

Because plain text represents character content, it has no inherent appearance. It requires a
rendering process to make it visible. If the same plain text sequence is given to disparate
rendering processes, there is no expectation that rendered text in each instance should have
the same appearance. Instead, the disparate rendering processes are simply required to
make the text legible according to the intended reading. Therefore, the relationship
between appearance and content of plain text may be stated as follows:

Plain text must contain enough information to permit the text to be rendered legibly,
and nothing more.

The Unicode Standard encodes plain text. The distinction between data encoded in the
Unicode Standard and other forms of data in the same data stream is the function of a
higher-level protocol and is not specified by the Unicode Standard itself.

Logical Order

Unicode text is stored in logical order in the memory representation, roughly correspond-
ing to the order in which text is typed in via the keyboard. In some circumstances, the order
of characters differs from this logical order when the text is displayed or printed. Where
needed to ensure consistent legibility, the Unicode Standard defines the conversion of Uni-
code text from the memory representation to readable (displayed) text. The distinction
between logical order and display order for reading is shown in Figure 2-4.

When the text in Figure 2-4 is ordered for display, the glyph that represents the first charac-
ter of the English text appears at the left. The logical start character of the Hebrew text,

Figure 2-4. Bidirectional Ordering
18 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.2 Unicode Design Principles
however, is represented by the Hebrew glyph closest to the right margin. The succeeding
Hebrew glyphs are laid out to the left.

Logical order applies even when characters of different dominant direction are mixed: left-
to-right (Greek, Cyrillic, Latin) with right-to-left (Arabic, Hebrew), or with vertical script.
Properties of directionality inherent in characters generally determine the correct display
order of text. This inherent directionality is occasionally insufficient to render plain text
legibly, however. This situation can arise when scripts of different directionality are mixed.
For this reason, the Unicode Standard includes characters to specify changes in direction.
Unicode Standard Annex #9, “The Bidirectional Algorithm,” provides rules for the correct
presentation of text containing left-to-right and right-to-left scripts.

Note that there are circumstances where the implicit bidirectional ordering will not suffice
to produce comprehensible text. To deal with these cases, a minimal set of directional for-
matting codes is defined in the Unicode Standard to control the ordering of characters
when rendered. This allows for exact control of the display ordering for legible interchange
and also ensures that plain text used for simple items like file names or labels can always be
correctly ordered for display.

For the most part, logical order corresponds to phonetic order. The only current exceptions
are the Thai and Lao scripts, which employ visual ordering; in these two scripts, users tra-
ditionally type in visual order rather than phonetic order.

Characters such as the short i in Devanagari are displayed before the characters that they
logically follow in the memory representation. (See Section 9.1, Devanagari, for further
explanation.)

Combining marks (accent marks in the Greek, Cyrillic, and Latin scripts, vowel marks in
Arabic and Devanagari, and so on) do not appear linearly in the final rendered text. In a
Unicode character sequence, all such characters follow the base character that they modify
(for example, the Latin letter “ã” is stored as “a” followed by combining “ÄÉ” when not
stored in a precomposed form).

Unification

The Unicode Standard avoids duplicate encoding of characters by unifying them within
scripts across languages; characters that are equivalent are given a single code. Common
letters, punctuation marks, symbols, and diacritics are given one code each, regardless of
language, as are common Chinese/Japanese/Korean (CJK) ideographs. (See Section 11.1,
Han.)

It is quite normal for many characters to have different usages, such as comma “,” for either
thousands-separator (English) or decimal-separator (French). The Unicode Standard
avoids duplication of characters due to specific usage in different languages; rather, it
duplicates characters only to support compatibility with base standards. This is important
in order to avoid visual ambiguity.

The Unicode Standard does not attempt to encode features such as language, font, size,
positioning, glyphs, and so forth. For example, it does not preserve language as a part of
character encoding: just as French i grec, German ypsilon, and English wye are all repre-
sented by the same character code, U+0057 “Y”, so too are Chinese zi, Japanese ji, and
Korean ja all represented as the same character code, U+5B57 .

In determining whether to unify variant ideograph forms across standards, the Unicode
Standard follows the principles described in Section 11.1, Han. Where these principles
determine that two forms constitute a trivial difference, the Unicode Standard assigns a
single code. Otherwise, separate codes are assigned.
The Unicode Standard 4.0 DRAFT 4 Oct 02 19

2.2 Unicode Design Principles General Structure
There are many characters in the Unicode Standard which could have been unified with
existing visually similar Unicode characters, or which could have been omitted in favor of
some other Unicode mechanism for maintaining the kinds of text distinctions for which
they were intended. However, considerations of interoperability with other standards and
systems often require that such compatibility characters be included in the Unicode Stan-
dard. The status of a character as a compatibility character does not mean that the charac-
ter is deprecated in the standard.

Dynamic Composition

The Unicode Standard allows for the dynamic composition of accented forms and Hangul
syllables. Combining characters used to create composite forms are productive. Because the
process of character composition is open-ended, new forms with modifying marks may be
created from a combination of base characters followed by combining characters. For
example, the diaeresis, “¨”, may be combined with all vowels and a number of consonants
in languages using the Latin script and several other scripts.

Equivalent Sequence

Some text elements can be encoded either as static precomposed forms or by dynamic
composition. Common precomposed forms such as U+00DC “Ü”

 are included for compatibility with current standards. For static pre-
composed forms, the standard provides a mapping to the canonically equivalent dynami-
cally composed sequence of characters. (See also Section 3.7, Decomposition.)

In many cases, different sequences of Unicode characters are considered equivalent. For
example, a precomposed character may be represented as a composed character sequence
(see Figure 2-5 and Figure 2-17).

In such cases, the Unicode Standard does not prescribe one particular sequence; all of the
sequences in the examples are equivalent. Any distinctions made between nonidentical
equivalent sequences by applications or users are not guaranteed to be interchangeable;
such distinctions must be avoided wherever possible. Where uniqueness is required, a nor-
malized form of Unicode can be used. There are two forms that are defined. These are
known as Normalization Form D (NFD) and Normalization Form C (NFC). Roughly
speaking, NFD decomposes characters where possible, while NFC composes characters
where possible. For more information, see Unicode Standard Annex #15, “Unicode Nor-
malization Forms” and Section 5.7, Normalization.

Decompositions

Precomposed characters are formally known as decomposables, because they have decom-
positions to one or more other characters. There are two types of decompositions:

Figure 2-5. Equivalent Sequences

B + Ä B + A +
L + J + ALJ + A

@̈

20 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.2 Unicode Design Principles
• Canonical. The character and its decomposition should be treated as essentially
equivalent.

• Compatibility. The decomposition may remove some information (typically
formatting information) that is important to preserve in particular contexts. By
definition, compatibility decomposition is a superset of canonical decomposi-
tion.

Thus there are three types of characters, based on their decomposition behavior:

• Canonical Decomposable. The character has a distinct canonical decomposition.

• Compatibility Decomposable. The character has a distinct compatibility decom-
position.

• Nondecomposable. The character has no distinct decomposition: neither canon-
ical nor compatibility. Loosely speaking, these characters are said to have “no
decomposition,” even though technically they decompose to themselves.

Figure 2-6 illustrates these three types. The solid arrows indicate canonical decompositions,
and the dotted arrows indicate compatibility decompositions. If an arrow loops back and
points to the character itself, that indicates that there is no decomposition of that type
(other than in the trivial sense of a character “decomposing” to itself).The figure illustrates
two important things to keep in mind:

• Decompositions may be to single characters or to sequences of characters.
Decompositions to a single character, also known as singleton decompositions,
are seen for the ohm sign and the halfwidth katakana ka in the figure. Because of
examples like these, decomposable characters in Unicode do not always consist
of obvious, separate parts; one can only know their status by examining the
data tables for the standard.

• There are a very small number of characters that are both canonical and com-
patibility decomposable. The example shown in the figure is for the Greek
hooked upsilon symbol with an acute accent. It has a canonical decomposition
to one sequence and a compatibility decomposition to a different sequence.

For more precise definitions of some of these terms, see Chapter 3, Conformance.

Convertibility

Character identity is preserved for interchange with a number of different base standards,
including national, international, and vendor standards. Where variant forms (or even the
same form) are given separate codes within one base standard, they are also kept separate
within the Unicode Standard. This choice guarantees the existence of a mapping between
the Unicode Standard and base standards.

Accurate convertibility is guaranteed between the Unicode Standard and other standards in
wide usage as of May 1993. In general, a single code point in another standard will corre-
spond to a single code point in the Unicode Standard. Sometimes, however, a single code
point in another standard corresponds to a sequence of code points in the Unicode Stan-
dard, or vice versa. Conversion between Unicode text and text in other character codes
must in general be done by explicit table-mapping processes. (See also Section 5.1,
Transcoding to Other Standards.)

[Fig 2-6 needs a title; possibly need to fix anchor. JDA 10-3-02]
The Unicode Standard 4.0 DRAFT 4 Oct 02 21

2.3 Compatibility Characters General Structure
2.3 Compatibility Characters

Compatibility Characters

Compatibility characters are those that would not have been encoded (except for compati-
bility) because they are in some sense variants of characters that already have encodings as
normal (that is non-compatibility) characters in the Unicode Standard. Examples of com-
patibility characters in this sense include all of the glyph variants in the Compatibility and
Specials Area: halfwidth or fullwidth characters from East Asian character encoding stan-
dards, Arabic contextual form glyphs from preexisting Arabic code pages, Arabic ligatures
and ligatures from other scripts, and so on. Other examples include CJK compatibility
ideographs, which are generally duplicates of a unified Han ideograph, legacy alternate for-
mat characters such as U+206C , and fixed-width space
characters used in old typographical systems.

There is an area called the Compatibility and Specials Area, which contains a large number
of compatibility characters, but the Unicode Standard also contains many compatibility
characters that do not appear in that area. These include examples such as U+2163 “IV”
 , U+2007 , and U+00B2 “2” .

Figure 2-6. Title?

2126

03A9

FF76

30AB

0041

3384

006B

a
0061

Non-decomposables

Canonical decomposables Compatability decomposables

Á
00C1

A
0041 0301

03D3

030103D2 030103A5

03D3

030103D2 030103A5
22 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.4 Code Points and Characters
Compatibility Decomposable Characters

There is a second, narrow sense of “compatibility character” in the Unicode Standard,
which is strictly defined in the conformance clauses: any Unicode character whose compat-
ibility decomposition is not identical to its canonical decomposition. (See definition D21
in Section 3.7, Decomposition.) Because a compatibility character in this narrow sense must
also be a composite character, it may also be unambiguously referred to as a compatibility
composite character, or compatibility composite for short.

In the past compatibility decomposable characters have been referred to ambiguously sim-
ply as compatibility characters. The compatibility decomposable characters are precisely
defined in the Unicode Character Database, whereas the compatibility characters in the
more inclusive sense are not. It is important to remember that not all compatibility char-
acters are compatibility decomposables. For example, the deprecated alternate format
characters do not have any distinct decomposition, and CJK compatibility ideographs have
canonical decomposition mappings rather than compatibility decomposition mappings.

Mapping Compatibility Characters

Identifying one character as a compatibility variant of another character usually implies
that the first can be remapped to the other without the loss of any textual information
other than formatting and layout. However, such remapping cannot always take place
because many of the compatibility characters are included in the standard precisely to allow
systems to maintain one-to-one mappings to other existing character encoding standards
and code pages. In such cases, a remapping would lose information that is important to
maintaining some distinction in the original encoding. By definition, a compatibility com-
posite decomposes into a compatibly equivalent character or character sequence. Even in
such cases, an implementation must proceed with due caution—replacing one with the
other may change not only formatting information, but also other textual distinctions on
which some other process may depend.

In many cases there exists a visual relationship between a compatibility composition and a
standard character that is akin to a font style or directionality difference. Replacing such
characters with unstyled characters could affect the meaning of the text. Replacing them
with rich text would preserve the meaning for a human reader, but could cause some pro-
grams that depend on the distinction to behave unpredictably.

2.4 Code Points and Characters
On a computer, abstract characters are encoded internally as numbers. To create a complete
character encoding, it is necessary to define the list of all the characters to be encoded and
to establish systematic rules for how the numbers represent the characters.

The range of integers used to code the abstract characters is called the codespace. A particu-
lar integer in this set is called a code point. When an abstract character is mapped or
assigned to a particular code point in the codespace, it is then referred to as an encoded char-
acter.

In the Unicode Standard, the codespace consists of the integers from 0 to 10FFFF16, com-
prising 1,114,112 code points available for assigning the repertoire of abstract characters.
Of course, there are constraints on how the codespace is organized, and particular areas of
the codespace have been set aside for encoding of certain kinds of abstract characters or for
other uses in the standard. For more on the allocation of the Unicode codespace, see
Section 2.7, Unicode Allocation.
The Unicode Standard 4.0 DRAFT 4 Oct 02 23

2.4 Code Points and Characters General Structure
Figure 2-7 illustrates the relationship between abstract characters and code points, which
together constitute encoded characters. Note that some abstract characters may be associ-
ated with more than one character (that is, be encoded “twice”). In other instances, an
abstract character may be represented by a sequence of two (or more) other encoded char-
acters. The solid arrows connect encoded characters with the abstract characters that they
represent and encode. The hollow arrow shows a case where an encoded character
sequence represents an abstract character, but does directly encode it.

When referring to code points in the Unicode Standard, the usual practice is to refer to
them by their numeric value expressed in hexadecimal, with a “U+” prefix. (See Section 0.3,
Notational Conventions.) Encoded characters can also be referred to by their code point,
but to prevent ambiguity, the official Unicode name of the character is often also added;
this clearly identifies the abstract character which is encoded. Thus, for example:

U+0061

U+10330

U+201DF -

Such citations refer only to the encoded character per se, associating the code point (as an
integral value) with the abstract character which is encoded.

Types of Code Points

There are many different ways to categorize code points. Table 2-2 illustrates some of the
categorizations and basic terminology used in the Unicode Standard.

Not all assigned code points represent abstract characters; only Graphic, Format, Control
and Private-use do. Surrogates and Noncharacters are assigned code points but not
assigned to abstract characters. Reserved code points are assignable: any may be assigned in
a future version of the standard. The General category provides a finer breakdown of
Graphic characters, and is also used to distinguish the other basic types (except between
Noncharacter and Reserved). Other properties defined in the Unicode Character Database
provide for different categorizations of Unicode code points.

Control Codes. Sixty-five codes (U+0000..U+001F and U+007F..U+009F) are reserved
specifically as control codes. Of the control codes, null (U+0000) can be used as a string

Figure 2-7. Codespace and Encoded Characters

Abstract Encoded

C5

212B

41 30A

 ä

A

 äA

Ã

24 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.4 Code Points and Characters
terminator as in the C language, tab (U+0009) retains its customary meaning, and the oth-
ers may be interpreted according to ISO/IEC 6429. (See Section 2.11, Controls and Control
Sequences, and Section 15.1, Control Codes.)

Noncharacters. Sixty-six codes are not used to encode characters: U+FFFF is reserved for
internal use (as a sentinel) and should not be transmitted or stored as part of plain text.
U+FFFE is also reserved; its presence indicates byte-swapped Unicode data. Other non-
characters include U+FDD0..U+FDEF and the last two code points on each plane. (See
Section 15.8, Noncharacters.)

Private Use. Three ranges of codes have been set aside for private use. Characters in these
areas will never be defined by the Unicode Standard. These codes can be freely used for
characters of any purpose, but successful interchange requires an agreement between
sender and receiver on their interpretation. (See Section 15.7, Private Use Characters.)

Surrogates. In addition, 2,048 codes have been allocated for surrogates, which are used in
the UTF-16 encoding form. (See Section 15.5, Surrogates Area.)

Restricted Interchange. Code points which are not assigned to abstract characters are sub-
ject to restrictions in interchange.

• Surrogate code points cannot be conformantly interchanged using Unicode
encoding forms. They do not correspond to Unicode scalar values, and thus do
not have well-formed representations in any Unicode encoding form.

• Noncharacter code points are reserved only for internal use, such as for sentinel
values. They should never be interchanged. They do, however, have well-
formed representations in Unicode encoding forms and survive conversions
between encoding forms. This allows sentinel values to be preserved internally
across Unicode encoding forms, even though they are not designed to be used
in open interchange.

Table 2-2. Types of Code Points

Basic Type Brief Description
General
Category

Character
Status

Code Point
Status

1 Graphic
letter, mark, number,
punctuation, symbol,
and spaces

L, M, N, P, S, Zs

Assigned to
abstract charac-
ter

Designated
(Assigned) code
point

2 Format

invisible but affects
neighboring charac-
ters; includes line/para-
graph separators

Cf, Zl, Zp

3 Control

usage defined by proto-
cols or standards out-
side the Unicode
Standard

Cc

4 Private-use
usage defined by private
agreement outside the
Unicode Standard

Co

5 Surrogate
permanently reserved
for UTF-16; restricted
interchange

Cs

Not assigned to
abstract charac-
ter

6 Noncharacter
permanently reserved
for internal usage;
restricted interchange

Cn

7 Reserved
reserved for future
assignment; restricted
interchange

Undesignated
(Unassigned)
code point
The Unicode Standard 4.0 DRAFT 4 Oct 02 25

2.5 Encoding Forms General Structure
• Reserved code points that are reserved in the latest version of the Unicode Stan-
dard cannot be interchanged. However, all implementations need to preserve
reserved code points because they may originate in implementations that use a
future version of the Unicode Standard. For example, suppose that one person
is using a Unicode 4.0 system and second person is using a Unicode 3.2 system.
The first person sends the second person a document, containing some code
points newly assigned in Unicode 4.0; thus they were unassigned in Unicode
3.2. The second person may edit the document, not changing the reserved
codes, and send it on. In that case the second person is interchanging what are,
as far as the second person knows, reserved code points.

Code Point Semantics. The semantics of most code points are established by the standard;
the exceptions are Controls, Private-use and Noncharacters. While the semantics of some
common Control characters (Tab, CR, LF, FF, NEL) are specified by the Unicode standard,
most Control characters have semantics determined by other standards or protocols (such
as ISO/IEC 6429). The semantics of private-use characters are determined by private agree-
ment, as for example, between vendors. Noncharacters have semantics in internal use only.

2.5 Encoding Forms
Computers handle numbers not simply as abstract mathematical objects, but as combina-
tions of fixed-size units like bytes and 32-bit words. A character encoding model must take
this into account when determining how to associate numbers with the characters.

Actual implementations in computer systems represent integers in specific code units of
particular size: usually 8-bit (= byte), 16-bit, or 32-bit. In the Unicode character encoding
model, precisely-defined encoding forms specify how each integer (code point) for a Uni-
code character is to be expressed as a sequence of one or more code units. The Unicode
Standard provides three distinct encoding forms for Unicode characters, using 8-bit, 16-
bit, and 32-bit units. These are correspondingly named UTF-8, UTF-16, and UTF-32.
(The “UTF” is a carryover from earlier terminology meaning Unicode (or UCS) Transfor-
mation Format.) Each of these three encoding forms is an equally legitimate mechanism
for representing Unicode characters; each has advantages in different environments.

All three encoding forms can be used to represent the full range of encoded characters in
the Unicode Standard; they are thus fully interoperable for implementations which may
choose different encoding forms for various reasons. Each of the three Unicode encoding
forms can be efficiently transformed into either of the other two without any loss of data.

Non-overlap. Each of the Unicode encoding forms is designed with the principle of non-
overlap in mind. This means that if a given code point is represented by a certain sequence
of one or more code units, it is impossible for any other code point to ever be represented
by a sequence that contains the same code units.

To illustrate the problems with overlapping encodings, see Figure 2-8. In this encoding
(Windows code page 932), characters are formed from either one or two code bytes.
Whether a sequence is one or two depends on the first byte, so that the values for lead bytes
(of a two byte sequence) and single bytes are disjoint. However, single byte values and trail
byte values can overlap. That means that when someone searchs for the character “D”, for
example, they might find it (mistakenly) as the trail byte of a two byte sequence, or as a sin-
gle, independent byte. To find out which alternative is correct, a program must look back-
wards through text.

The situation is made more complex by the fact that lead and trail bytes can also overlap, as
in the second part of Figure 2-8. This means that the scan backwards has to repeat until it
26 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.5 Encoding Forms
hits the start of the text or hits a sequence that could not exist as a pair as shown in
Figure 2-9. This is not only inefficient, it is extremely error-prone: corruption of one byte
can cause entire lines of text to be corrupted.

The Unicode encoding forms avoid this problem, because none of the lead, trail or single
code units in any of those encoding forms overlap.

Non-overlap makes all of the Unicode encoding forms well-behaved for searching and
comparison. When searching for a particular character, there will never be a mismatch
against some code unit sequence that represents just part of another character. The fact that
all Unicode encoding forms observe this principle of non-overlap distinguishes them from
many legacy East Asian multibyte character encodings, for which overlap of code unit
sequences may be a significant problem for implementations.

Another aspect of non-overlap in the Unicode encoding forms is that all Unicode charac-
ters have determinate boundaries when expressed in any of the encoding forms. That is, the
edges of code unit sequences representing a character are easily determined by local exam-
ination of code units; there is never any need to scan back indefinitely in Unicode text in
order to correctly determine a character boundary. This property of the encoding forms
has sometimes also been referred to as self-synchronization. This property has another very
important implication: corruption of a single code unit corrupts only a single character;
none of the surrounding characters are affected.

For example, when randomly accessing a string, a program can find the boundary of a
character with limited backup. In UTF-16, if a pointer points to a low-surrogate, a single
backup is required. In UTF-8, if a pointer points to a byte starting with 10xxxxxx (in
binary), one to three backups are required to find the beginning of the character.

Conformance. The Unicode Consortium fully endorses the use of any of the three Unicode
encoding forms as a conformant way of implementing the Unicode Standard. It is impor-
tant not to fall into the trap of trying to distinguish “UTF-8 versus Unicode”, for example.
UTF-8, UTF-16, and UTF-32 are all equally valid and conformant ways of implementing
the encoded characters of the Unicode Standard.

Figure 2-8. Overlap in Legacy Mixed-Width Encodings

Figure 2-9. Boundaries and Interpretation

84

44

44

84 84

84 84

D

0442

0414

0044

Trail & Single

Lead & Trail

84 84 84 84 84 84 44?? ...

D
0414 0044?
The Unicode Standard 4.0 DRAFT 4 Oct 02 27

2.5 Encoding Forms General Structure
Figure 2-10 shows the three Unicode encoding forms, and how they are related to Unicode
scalar values.

• The dotted arrow illustrates a hypothetical private-use variant of the A-ring
character (The value F000016 is the Unicode code point in one of the supple-
mentary private use areas; in UTF-16 it would be represented by surrogate code
units <DB80 DC00>.)

UTF-8, UTF-16, and UTF-32 are further described in the subsections which follow. See
each subsection for a general overview of how each encoding form is structured, and the
general benefits or drawbacks of each encoding form for particular purposes. For the
detailed formal definition of the encoding forms and conformance requirements, see
Section 3.9, Unicode Encoding Forms.

Encoding Schemes. Whenever character data must be serialized into a sequence of bytes,
those resulting byte sequences must be exactly defined. Machine architectures differ in
ordering in terms of whether the most significant byte or the least significant byte comes
first. These sequences are known as “big-endian” and “little-endian” orders, respectively.
The details of serialization not only differ for each of the encoding forms, but for 16- and
32-bit encoding forms they also depend on whether the CPU supports big-endian or little-
endian integral data. Providing the detailed specification of serialization into bytes is the
function of character encoding schemes.

A character encoding scheme consists of a specified character encoding form plus a specifi-
cation of how the bytes are serialized. The Unicode Standard also specifies the use of an ini-
tial byte order mark (BOM) to explicitly differentiate big-endian or little-endian data in
some of the Unicode encoding schemes. (For more on the byte order mark, see
Section 15.9, Specials.)

For UTF-8, as for any encoding form that uses 8-bit code units, the encoding scheme con-
sists merely of the UTF-8 code units (= bytes) in sequence. However, for 16-bit and 32-bit
encoding forms, byte serialization must break up the code units into two or four bytes,
respectively, and the order of those bytes must be clearly defined. Because of this, and
because of the rules for the use of the byte order mark, the three encoding forms of the Uni-
code Standard result in a total of seven Unicode encoding schemes as shown in Table 2-3.

*Because UTF-8 code units are 8 bits in size, the usual machine issues of endian order for
larger code units do not apply. The serialized order of the bytes must not depart from the
order defined by the UTF-8 encoding form. Use of a BOM is neither required nor recom-

Figure 2-10. Unicode Encoding Forms

[Insert new figure to illustrate the relationship between encoded characters and UTF-
32, UTF-16, UTF-8 (but not byte serializations).] Rick to do 9-29-02.

Table 2-3. The 7 Unicode Encoding Schemes

Encoding Scheme Endian Order BOM Allowed?

UTF-8 N/A* yes*

UTF-16
UTF-16BE
UTF-16LE

Big-endian or Little-endian
Big-endian
Little-endian

yes
no
no

UTF-32
UTF-32BE
UTF-32LE

Big-endian or Little-endian
Big-endian
Little-endian

yes
no
no
28 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.5 Encoding Forms
mended, but may be encountered in contexts where UTF-8 data is converted from other
encoding forms which use a BOM.

[Need to fix table footnote style above; fix widow/orphan on table 9-29-02]

Note that some of the Unicode encoding schemes have the same labels as the three Unicode
encoding forms. This could cause confusion, so it is important to keep the context clear
when using these terms: character encoding forms refer to integral data units in memory or
in APIs, and byte order is irrelevant; character encoding schemes refer to byte-serialized
data, as for streaming I/O or in file storage, and byte order must be specified or be deter-
minable somehow.

The Internet Assigned Names Authority (IANA) maintains a registry of charset names used
on the Internet. Those charset names are very close in meaning to the Unicode character
encoding model’s concept of character encoding schemes, and all of the Unicode character
encoding schemes are in fact registered as charsets. While the two concepts are quite close,
and the names used are identical, some important differences may arise in terms of the
requirements for each, particularly when it comes to handling of the byte order mark. Exer-
cise due caution when equating the two.

Figure 2-11 illustrates the Unicode character encoding schemes, showing how each is
derived from one of the encoding forms by serialization of bytes.

In Figure 2-11, the columns labeled “Serialized” show how the encoded character or
encoded character sequence would be serialized in each of two different Unicode encoding
schemes. These representations just show sequences of byte values, rather than encoded
characters.

For the detailed formal definition of the Unicode encoding schemes and conformance
requirements, see Section 3.9, Unicode Encoding Forms. For further general discussion
about character encoding forms and character encoding schemes, both for the Unicode
Standard and as applied to other character encoding standards, see Unicode Technical
Report #17, “Character Encoding Model.” For information about charsets and character
conversion, see Unicode Technical Report #22, “Character Mapping Markup Language.”

UTF-32

UTF-32 is the simplest Unicode encoding form. Each Unicode code point is represented
directly by a single 32-bit code unit. Because of this, UTF-32 has a one-to-one relationship
between encoded character and code unit; it is a truly fixed-width character encoding form.

Figure 2-11. Unicode Encoding Schemes

00

Encoded Serialized

C5

21 2B

DB 80 DC 00

C3 85

E2 84

F3 B0 80 80

AB

C 5

212B

F0000

UTF-16BE UTF-8
The Unicode Standard 4.0 DRAFT 4 Oct 02 29

2.5 Encoding Forms General Structure
As for all of the Unicode encoding forms, UTF-32 is restricted to representation of code
points in the range 0..10FFFF16, that is, the Unicode codespace. This precisely matches the
range of characters defined for other standards such as XML, and also guarantees interop-
erability with the UTF-16 encoding form.

The value of each UTF-32 code unit corresponds exactly to the Unicode code point value.
This situation differs significantly from that for UTF-16 and especially UTF-8, where the
code unit values often change unrecognizably from the code point value. For example,
U+10000 is represented as <00010000> in UTF-32, but it is represented as <F0 90 80 80>
in UTF-8. For UTF-32 it is trivial to determine a Unicode character from its UTF-32 code
unit representation, whereas UTF-16 and UTF-8 representations often require doing a
code unit conversion before the character can be identified in the Unicode code charts.

UTF-32 may be a preferred encoding form where memory or disk storage space for charac-
ters are no particular concern, but where fixed-width, single code unit access to characters
is desired.

UTF-16

In the UTF-16 encoding form, code points in the range U+0000..U+FFFF are represented
as a single 16-bit code unit; code points in the supplementary planes, in the range
U+10000..U+10FFFF, are instead represented as pairs of 16-bit code units. These pairs of
special code units are known as surrogate pairs. The values of the code units used for surro-
gate pairs are completely disjunct from the code units used for the single code unit repre-
sentations, thus maintaining non-overlap for all code point representations in UTF-16. For
the formal definition of surrogates, see Section 3.8, Surrogates.

UTF-16 optimizes the representation of characters in the Basic Multilingual Plane (BMP),
that is, the range U+0000..U+FFFF. For that range, which contains the vast majority of
common use characters for all modern scripts of the world, each character requires only
one 16-bit code unit, thus requiring just half the memory or storage of the UTF-32 encod-
ing form. And for the BMP, UTF-16 can effectively be treated as if it were a fixed-width
encoding form.

However, for supplementary characters, UTF-16 requires two 16-bit code units. The dis-
tinction between characters represented with one versus two 16-bit code units means that
formally UTF-16 is a variable-width encoding form. That fact can create implementation
difficulties, if not carefully taken into account; UTF-16 is definitely somewhat more com-
plicated to handle than UTF-32.

UTF-16 may be a preferred encoding form in many environments that need to balance effi-
cient access to characters with economical use of storage. It is reasonably compact, and all
the common, heavily-used characters fit into a single 16-bit code unit.

UTF-16 is the historic descendant of the earliest form of Unicode, which was originally
designed to use a fixed-width 16-bit encoding form exclusively. The surrogates were added,
however, to provide an encoding form for the supplementary characters at code points past
U+FFFF. The design of the surrogates made them a simple and efficient extension mecha-
nism which works well with older Unicode implementations, and which avoids many of the
problems of other variable-width character encodings. See Section 5.4, Handling Surrogate
Pairs in UTF-16, for more information about surrogates and their processing.

Note that UTF-16 binary order is not the same as code point order. This means that a
slightly different comparison implementation is needed for code point order. For more
information, see Section 5.18, Binary Order.
30 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.5 Encoding Forms
UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, a third encoding form is
specified by the Unicode Standard: UTF-8. It is a variable-length encoding form that pre-
serves ASCII transparency, making use of 8-bit code units.

Much existing software and practice in information technology has long depended on
character data being represented as a sequence of bytes. Furthermore, many of the proto-
cols depend not only on ASCII values being invariant, but must make use of or avoid spe-
cial byte values that may have associated control functions. The easiest way to adapt
Unicode implementations to such a situation is to make use of an encoding form that is
already defined in terms of 8-bit code units and which represents all Unicode characters
while not disturbing or reusing any ASCII or C0 control code value. That is the function of
UTF-8.

UTF-8 is a variable-length encoding form, using 8-bit code units, in which the high bits of
each code unit indicate the part of the code unit sequence to which each byte belongs. A
range of 8-bit code unit values is reserved for the first, or leading element of a UTF-8 code
unit sequences, and a completely disjunct range of 8-bit code unit values is reserved for the
subsequent, or trailing elements of such sequences; this convention preserves non-overlap
for UTF-8. Table 3-5 on page 67 shows how the bits in a Unicode code point are distributed
among the bytes in the UTF-8 encoding form. See Section 3.9, Unicode Encoding Forms for
the full, formal definition of UTF-8.

The UTF-8 encoding form maintains transparency for all of the ASCII code points
(0x00..0x7F). That means Unicode code points U+0000..U+007F are converted to single
bytes 0x00..0x7F in UTF-8, and are thus indistinguishable from ASCII itself. Furthermore,
the values 0x00..0x7F do not appear in any byte for the representation of any other Unicode
code point, so that there can be no ambiguity. Beyond the ASCII range of Unicode, many of
the non-ideographic scripts are represented by two bytes per code point in UTF-8; the Uni-
code code points between U+0800 and U+FFFF are represented by three bytes; and supple-
mentary code points above U+FFFF require four bytes.

UTF-8 is typically the preferred encoding form for HTML and similar protocols, particu-
larly for the Internet. The ASCII transparency helps migration. UTF-8 also has the advan-
tage that it is already inherently byte-serialized, as for most existing 8-bit character sets;
strings of UTF-8 work easily with C or other programming languages, and many existing
APIs that work for typical Asian multibyte character sets adapt to UTF-8 as well with little
or no change required.

In environments where 8-bit character processing is required for one reason or another,
UTF-8 also has the following attractive features as compared to other multi-byte encod-
ings:

• The first byte of a UTF-8 code unit sequence indicates the number of bytes to
follow in a multibyte sequence. This allows for very efficient forward parsing.

• It is also efficient to find the start of a character when beginning from an arbi-
trary location in a byte stream of UTF-8. Programs need to search at most four
bytes backward, and usually much less. It is a simple task to recognize an initial
byte, because initial bytes are constrained to a fixed range of values.

• As with the other UTFs, there is no overlap.

Comparison of the Advantages of UTF-32, UTF-16, and UTF-8

On the face of it, UTF-32 would seem to be the obvious choice of Unicode encoding forms
for an internal processing code because it is a fixed-width encoding form. It can be confor-
The Unicode Standard 4.0 DRAFT 4 Oct 02 31

2.5 Encoding Forms General Structure
mantly bound to the C and C++ wchar_t, which means that such programming languages
may offer built-in support and ready-made string APIs that programmers can take advan-
tage of. However, UTF-16 has many countervailing advantages that may lead implementers
to choose it instead as an internal processing code.

While all three encoding forms need at most 4 bytes (or 32 bits) of data for each character,
in practice UTF-32 in almost all cases for real data sets occupies twice the storage that UTF-
16 requires. Therefore, a common strategy is to have internal string storage use UTF-16 or
UTF-8, but to use UTF-32 when manipulating individual characters.

On average, over 99% of all UTF-16 data is expressed using single code units. This includes
nearly all of the typical characters that software needs to handle with special operations on
text—for example, format control characters. Because of this, most text scanning opera-
tions do not need to unpack UTF-16 surrogate pairs at all, but can safely treat them as an
opaque part of a character string.

As a result, for many operations, UTF-16 is as easy to handle as UTF-32, and the perfor-
mance of UTF-16 as a processing code tends to be quite good. UTF-16 is the internal pro-
cessing code of choice for a majority of implementations supporting Unicode. UTF-16
provides for them the right mix of compact size with the ability to handle the occasional
character outside the BMP.

The performance of UTF-32 as a processing code may actually be worse than UTF-16 for
the same data, because the additional memory overhead means that cache limits will be
exceeded more often and memory paging will occur more frequently. For systems with
processor designs that have penalties for 16-bit aligned access, but with very large memo-
ries, this effect may be less.

In any event, Unicode code points do not necessarily match user expectations for “charac-
ters”. For example, the following are not represented by a single code point: a combining
character sequence such as <g, acute>; a conjoining jamo sequence for Korean; or the
Devanagari conjunct “ksha”. Because some Unicode text processing must be aware of and
handle such sequences of characters as text elements, the fixed-width encoding form
advantage of UTF-32 is somewhat offset by the inherently variable-width nature of pro-
cessing text elements. See Unicode Technical Report #18, “Unicode Regular Expression
Guidelines,” for an example where user expectations of the identity of “characters” may
lead to requirements that commonly implemented processes deal with inherently variable-
width text elements.

UTF-8 is reasonably compact in terms of the number of bytes used. It is really only at a sig-
nificant size disadvantage when used for East Asian implementations such as Chinese, Jap-
anese, and Korean, which use Han ideographs or Hangul syllables requiring 3-byte code
unit sequences in UTF-8. UTF-8 is also significantly less efficient in processing than the
other encoding forms.

A binary sort of UTF-8 strings gives the same ordering as a binary sort of Unicode code
points. This is also, obviously, the same order as for a binary sort of UTF-32 strings.

All three encoding forms give the same results for binary string comparisons or string sort-
ing when dealing only with BMP characters (in the range U+0000..U+FFFF). However,
when dealing with supplementary characters (in the range U+10000..U+10FFFF), UTF-16
binary order does not match Unicode code point order. This can lead to complications
when trying to interoperate with sorted lists between UTF-8 systems and UTF-16 systems.
32 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.6 Unicode Strings
2.6 Unicode Strings
A Unicode string datatype is simply an ordered sequence of code units. Thus a Unicode 8-
bit string is an ordered sequence of 8-bit code units, a Unicode 16-bit string is an ordered
sequence of 16-bit code sequences, and a Unicode 32-bit string is an ordered sequence of
32-bit code units.

Depending on the programming environment, a Unicode string may or may not also be
required to be in the corresponding Unicode encoding form. For example, strings in Java,
C#, or ECMAScript are Unicode 16-bit strings, but are not necessarily well-formed UTF-16
sequences. In normal processing, it can be far more efficient to allow such strings to con-
tain code unit sequences that are not well-formed UTF-16—that is, isolated surrogates.
Because strings are such a fundamental component of every program, checking for isolated
surrogates in every operation that modifies strings can be significant overhead, especially
because supplementary characters are extremely rare as a percentage of overall text in pro-
grams worldwide.

It is straightforward to design basic string manipulation libraries that handle isolated sur-
rogates in a consistent and straightforward manner. They cannot ever be interpreted as
abstract characters, but can be internally handled the same way as noncharacters where
they occur. Typically they only occur ephemerally, such as in dealing with keyboard events.
While an ideal protocol would allow keyboard events to contain complete strings, many
only allow a single UTF-16 code unit per event. As a sequence of events is transmitted to
the application, a string that is being built up by the application in response to those events
may contain isolated surrogates at any particular point in time.

However, whenever such strings are converted into a Unicode encoding form—even one
with the same code unit size—the resulting Unicode encoding form must not violate the
requirements of that encoding form. For example, isolated surrogates in a Unicode 16-bit
string must not carry over into UTF-16. There are a number of different techniques for
handling such conversion: omitting the isolated surrogate, converting it into U+FFFD
 , or halting the conversion with an error. For more information
on this topic, see Unicode Technical Report #22, “Character Mapping Markup Language
(CharMapML).”

2.7 Unicode Allocation
For the convenience of people who use them, the encoded characters of the Unicode Stan-
dard are grouped by linguistic and functional categories, such as script or writing system.
For practical reasons, there are occasional departures from this general principle, as when
punctuation associated with the ASCII standard is kept together with other ASCII charac-
ters in the range U+0020..U+007E, rather than being grouped with other sets of general
punctuation characters. By and large, however, the code charts are arranged so that related
characters can be found near each other in the charts.

Grouping encoded characters by script or other functional categories offers the additional
benefit of supporting various space-saving techniques in actual implementations, as for
conversion tables, character property tables, or fonts.

For more information on writing systems, see Section 6.1, Writing Systems.
The Unicode Standard 4.0 DRAFT 4 Oct 02 33

2.7 Unicode Allocation General Structure
Planes

The Unicode codespace consists of the numeric values from 0 to 10FFFF16, but in practice
it has proven convenient to think of the codespace as divided up into planes of characters—
each plane consisting of 64K code points. The numerical sense of this is immediately obvi-
ous if one looks at the ranges of code points involved, expressed in hexadecimal. Thus, the
lowest plane, or Basic Multilingual Plane consists of the range 000016..FFFF16. The next
plane, the Supplementary Multilingual Plane, consists of the range 1000016..1FFFF16, and is
also known as Plane 1, since the most significant hexadecimal digit for all its code positions
is “1”. Plane 2, the Supplementary Ideographic Plane, consists of the range 2000016..2FFFF16,
and so on.

The Basic Multilingual Plane (BMP) contains all the common-use characters for all the
modern scripts of the world, as well as many historic and rare characters. By far the major-
ity of all Unicode characters for almost all textual data can be found in the BMP.

The Supplementary Multilingual Plane (SMP, or Plane 1) is dedicated to the encoding of
lesser-used historic scripts (such as Gothic), special-purpose invented scripts (such as Sha-
vian), and special notational systems (such as musical symbols), which either could not be
fit into the BMP or which would be of very infrequent usage. While few scripts are cur-
rently encoded in the SMP in Unicode 4.0, there are many major and minor historic scripts
do not yet have their characters encoded in the Unicode Standard, and many of those will
eventually be allocated in the SMP.

The Supplementary Ideographic Plane (SIP, or Plane 2) is the spillover allocation area for
those CJK characters which could not be fit in the blocks set aside for more common CJK
characters in the BMP. While there are a small number of common-use CJK characters in
the SIP (for example, for Cantonese usage), the vast majority of Plane 2 characters are
extremely rare or of historic interest only.

The Supplementary Special-purpose Plane (SPP, or Plane 14), is the spillover allocation
area for format control characters which do not fit into the small allocation areas for for-
mat control characters in the BMP.

Areas and Blocks

The Unicode Standard does not have any normatively defined concept of areas or zones for
the BMP (or other planes), but it is often handy to refer to the allocation areas of the BMP
by the general types of the characters they include. These areas are only a rough organiza-
tional device and do not restrict the types of characters that may end up being allocated in
them. The description and ranges of areas may change from version to version of the stan-
dard as more new scripts, symbols, and other characters are encoded in previously reserved
ranges.

The various allocation areas are, in turn, divided up into character blocks, which are nor-
matively defined, and which are used to structure the actual charts in Chapter 16, Code
Charts. For a complete listing of the normative character blocks in the Unicode Standard,
see Blocks.txt in the Unicode Character Database.

The normative status of character blocks should not, however, be taken as indicating that
they define significant sets of characters. For the most part, the character blocks serve only
as ranges to divide up the code charts and do not necessary imply anything else about the
types of characters found in the block. Block identity cannot be taken as a reliable guide to
the source, use, or properties of characters, for example, and cannot be reliably used alone
to process characters. In particular:

• Blocks are simply ranges, and many contain reserved code points.
34 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.7 Unicode Allocation
• Characters used in a single writing system may be found in several different
blocks. For example, characters used for letters for Latin-based writing systems
are found in at least eight different blocks: Basic Latin, Latin-1 Supplement,
Latin Extended-A, Latin Extended-B, IPA Extensions, Latin Extended Addi-
tional, Spacing Modifier Letters, and Combining Diacritical Marks.

• Characters in a block may be used with different writing systems. For example,
the danda character is encoded in the Devanagari block, but is used with
numerous other scripts; Arabic combining marks in the Arabic block are used
with the Syriac script, and so on.

• Block definitions are not at all exclusive. For instance, there are many mathe-
matical operator characters which are not encoded in the Mathematical Opera-
tors block—and which are not even in any block containing “Mathematical” in
its name; there are many currency symbols not located in the Currency Sym-
bols block, and so on.

For reliable specification of the properties of characters, one should instead turn to the
detailed, character-by-character property assignments available in the Unicode Character
Database. See also Chapter 4, Character Properties. For further discussion of the relation-
ship between Unicode character blocks and significant property assignments and sets of
characters, see Unicode Technical Report #24, “Script Names,” and Unicode Technical
Report #18, “Unicode Regular Expression Guidelines.”

Details of Allocation

Figure 2-12 gives an overall picture of the allocation areas of the Unicode Standard, with an
emphasis on the identity of the planes.

[New figure 2-12 Unicode Allocation goes here -- Rick to provide figure.].

In Figure 2-12, Plane 2 and Plane 14 are shown in expanded form, to illustrate their alloca-
tion substructures. Plane 2 consists primarily of one big area, starting from the first code
point in the plane, dedicated to more unified CJK character encoding. Then there is a much
smaller area, towards the end of the plane, dedicated to additional CJK compatibility ideo-
graphic characters—which are basically just duplicated character encodings required for
roundtrip conversion to various existing legacy East Asian character sets. The CJK compat-
ibility ideographic characters in Plane 2 are currently all dedicated to roundtrip conversion
for the CNS standard, and are intended to supplement the CJK compatibility ideographic
characters in the BMP, a smaller number of characters dedicated to roundtrip conversion
for various Korean, Chinese, and Japanese standards.

Plane 14 contains a small area set aside for language tag characters, and another small area
containing supplementary variation selection characters.

Figure 2-12 also shows that Plane 15 and Plane 16 are allocated, in their entirety, for private
use. Those two planes contain a total of 131,068 characters, to supplement the 6400 private
use characters located in the BMP.

Figure 2-13 shows the BMP in an expanded format to illustrate the allocation substructure
of that most important plane in more detail.

Figure 2-12. Unicode Allocation
The Unicode Standard 4.0 DRAFT 4 Oct 02 35

2.7 Unicode Allocation General Structure
[Figure anchor.]

The first allocation area in the BMP is the General Scripts Area. It contains a large number
of modern-use scripts of the world, including Latin, Greek, Cyrillic, Arabic, and so on. This
area is shown in expanded form in Figure 2-13. The order of the various scripts can serve as
a guide to the relative position where these scripts are found in the code charts. Most of the
characters encoded in this area are graphic characters, but all 65 control characters are also

Figure 2-13. Allocation on the BMP

U+0000

U+1000

U+2000

U+3000

U+4000

U+5000

U+6000

U+7000

U+8000

U+9000

U+A000

U+B000

U+C000

U+D000

U+E000

U+F000

General
Scripts

Symbols

CJK Misc.

CJKV
Ideographs

Yi

Hangul

Surrogates

Private Use

Compatibility

U+0000

U+0100

U+0200

U+0300

U+0400

U+0500

U+0600

U+0700

U+0800

U+0900

U+0A00

U+0B00

U+0C00

U+0D00

U+0E00

U+0F00

U+1000

U+1100

U+1200

U+1300

U+1400

U+1500

U+1600

U+1700

U+1800

U+1900

U+1A00

U+1B00

U+1C00

U+1D00

U+1E00

U+1F00

U+2000

Latin

Greek

Cyrillic

Armenian/Hebrew

Arabic

Syriac/Thaana

Devanagari/Bengali

Gurmukhi/Gujarati

Oriya/Tamil

Telugu/Kannada

Malayalam/Sinhala

Thai/Lao

Tibetan

Myanmar/Georgian

Hangul Jamo

Ethiopic

Cherokee

Canadian Aboriginal
Syllabics

Ogham/Runic

Khmer

Mongolian

Extended Latin

Extended Greek

Primary Private Use Compatibility Reserved
36 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.7 Unicode Allocation
located here because the first two character blocks in the Unicode Standard are organized
for exact compatibility with the ASCII and ISO/IEC 8859-1 standards.

A Symbols Area follows the General Scripts Area. This contains all kinds of symbols,
including many characters for use in mathematical notation. It also contains symbols for
punctuation, as well as most of the important format control characters.

Next is a CJK Miscellaneous Area. This contains some East Asian scripts, such as Hiragana
and Katakana for Japanese, punctuation typically used with East Asian scripts, lists of CJK
radical symbols, and a large number of East Asian compatibility characters.

Immediately following the CJK Miscellaneous Area is the CJKV Ideographs Area. This con-
tains all the unified Han ideographs in the BMP. It is subdivided into a block for the Uni-
fied Repertoire and Ordering (the initial block of 20,902 unified Han ideographs), and
another block containing Vertical Extension A (an additional 6,582 unified Han ideo-
graphs).

An Asian Scripts Area follows the CJKV Ideographs Area. It currently contains only the Yi
script and 11,172 Hangul syllables for Korean.

The Surrogates Area contains only surrogate code points, and no encoded characters. See
Section 15.5, Surrogates Area, for more details.

The Private Use Area in the BMP contains 6,400 private-use characters.

Finally, at the very end of the BMP, there is a Compatibility and Specials Area. It contains
many compatibility characters from widely used corporate and national standards that
have other representations in the Unicode Standard. For example, it contains Arabic pre-
sentation forms, whereas the basic characters for the Arabic script are located in the Gen-
eral Scripts Area. The Compatibility and Specials Area also contains a few important
format control characters and other special characters. See Section 15.9, Specials for more
details.

Note that the allocation order of various scripts and other groups of characters reflects the
historical evolution of the Unicode Standard. While there is a certain geographic sense to
the ordering of the allocation areas for the scripts, this is only a very loose correlation. The
empty spaces will be filled with future script encodings on a space-available basis. The rel-
evant character encoding committees make use of rationally organized roadmap charts to
help them decide where to encode new scripts amongst the available space, but until the
characters for a script are actually standardized, there are no absolute guarantees where
future allocations will occur. In general, implementations should not make assumptions
about where future scripts may be encoded, based on the identity of neighboring blocks of
characters already encoded.

The detailed allocation of Plane 1 is shown in Figure 2-14.

[Need Fig 2-14 Unicode Alloc of Plane 1- Rick to supply diagrams.]

Plane 1 currently only has two allocation areas. There is a General Scripts Area at the begin-
ning of the plane, containing various small historic scripts. Then there is a Notational Sys-
tems Area, which currently contains sets of musical symbols, alphanumeric symbols for
mathematics, and a system of divination symbols similar to those used for the Yijing.

Figure 2-14. Allocation on Plane 1
The Unicode Standard 4.0 DRAFT 4 Oct 02 37

2.8 Writing Direction General Structure
Assignment of Code Points

Code Points in the Unicode Standard are assigned using the following guidelines:

• Where there is a single accepted standard for a script, the Unicode Standard
generally follows it for the relative order of characters within that script.

• The first 256 codes follow precisely the arrangement of ISO/IEC 8859-1 (Latin
1), of which 7-bit ASCII (ISO/IEC 646 IRV) accounts for the first 128 code
positions.

• Characters with common characteristics are located together contiguously. For
example, the primary Arabic character block was modeled after ISO/IEC 8859-
6. The Arabic script characters used in Persian, Urdu, and other languages, but
not included in ISO/IEC 8859-6, are allocated after the primary Arabic charac-
ter block. Right-to-left scripts are grouped together.

• To the extent possible, scripts do not cross even 128-code-point boundaries or
even 1,024-code-point boundaries.

• Codes that represent letters, punctuation, symbols, and diacritics that are gen-
erally shared by multiple languages or scripts are grouped together in several
locations.

• The Unicode Standard does not correlate character code allocation with lan-
guage-dependent collation or case. For more information on collation order,
see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

• Unified CJK ideographs are laid out in three sections, each of which is arranged
according to the Han ideograph arrangement defined in Section 11.1, Han. This
ordering is roughly based on a radical-stroke count order.

2.8 Writing Direction
Individual writing systems have different conventions for arranging characters into lines on
a page or screen. Such conventions are referred to as a script’s directionality. For example, in
the Latin script, characters run horizontally from left to right to form lines, and lines run
from top to bottom.

In Semitic scripts such as Hebrew and Arabic, characters are arranged from right to left
into lines, although digits run the other way, making the scripts inherently bidirectional.
Left-to-right and right-to-left scripts are frequently used together. In such a case, arranging
characters into lines becomes more complex. The Unicode Standard defines an algorithm
to determine the layout of a line. See Unicode Standard Annex #9, “The Bidirectional Algo-
rithm,” for more information.

East Asian scripts are frequently written in vertical lines that run from top to bottom. Lines
are arranged from right to left, except for Mongolian. Most characters have the same shape
and orientation when displayed horizontally or vertically, but many punctuation characters
change their shape when displayed vertically. In a vertical context, letters and words from
other scripts are generally rotated through 90-degree angles so that they, too, read from top
to bottom. That is, letters from left-to-right scripts will be rotated clockwise and letters
from right-to-left scripts will be rotated counterclockwise.

In contrast to the bidirectional case, the choice to lay out text either vertically or horizon-
tally is treated as a formatting style. Therefore, the Unicode Standard does not provide
directionality controls to specify that choice.
38 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.9 Combining Characters
Other script directionalities are found in historical writing systems. For example, some
ancient Numidian texts are written bottom to top, and Egyptian hieroglyphics can be writ-
ten with varying directions for individual lines.

Early Greek used a system called boustrophedon (literally, “ox-turning”). In boustrophedon
writing, characters are arranged into horizontal lines, but the individual lines alternate
between running right to left and running left to right, the way an ox goes back and forth
when plowing a field. The letter images are mirrored in accordance with the direction of
each individual line.

Boustrophedon writing is of interest almost exclusively to scholars intent on reproducing
the exact visual content of ancient texts. The Unicode Standard does not provide direct
support for boustrophedon. Fixed texts can, however, be written in boustrophedon by
using hard line breaks and directionality overrides.

2.9 Combining Characters
Combining Characters. Characters intended to be positioned relative to an associated base
character are depicted in the character code charts above, below, or through a dotted circle.
They are also annotated in the names list or in the character property lists as “combining”
or “nonspacing” characters. When rendered, the glyphs that depict these characters are
intended to be positioned relative to the glyph depicting the preceding base character in
some combination. The Unicode Standard distinguishes two types of combining charac-
ters: spacing and nonspacing. Nonspacing combining characters do not occupy a spacing
position by themselves. In rendering, the combination of a base character and a nonspacing
character may have a different advance width than the base character by itself. For example,
an “Ó” may be slightly wider than a plain “i”. The spacing or nonspacing properties of a
combining character are defined in the Unicode Character Database.

Diacritics. Diacritics are the principal class of nonspacing combining characters used with
European alphabets. In the Unicode Standard, the term “diacritic” is defined very broadly
to include accents as well as other nonspacing marks.

All diacritics can be applied to any base character and are available for use with any script.
A separate block is provided for symbol diacritics, generally intended to be used with sym-
bol base characters. The blocks contain additional combining characters for particular
scripts with which they are primarily used. As with other characters, the allocation of a
combining character to one block or another identifies only its primary usage; it is not
intended to define or limit the range of characters to which it may be applied. In the Uni-
code Standard, all sequences of character codes are permitted.

Other Combining Characters. Some scripts, such as Hebrew, Arabic, and the scripts of
India and Southeast Asia, have spacing or nonspacing combining characters. Many of these
combining marks encode vowel letters; as such, they are not generally referred to as “dia-
critics.”

Sequence of Base Characters and Diacritics

In the Unicode Standard, all combining characters are to be used in sequence following the
base characters to which they apply. The sequence of Unicode characters U+0061 “a”

 + U+0308 “Äà” + U+0075 “u”

 unambiguously encodes “äu” not “aü”.

The ordering convention used by the Unicode Standard is consistent with the logical order
of combining characters in Semitic and Indic scripts, the great majority of which (logically
The Unicode Standard 4.0 DRAFT 4 Oct 02 39

2.9 Combining Characters General Structure
or phonetically) follow the base characters with respect to which they are positioned. This
convention conforms to the way modern font technology handles the rendering of non-
spacing graphical forms (glyphs) so that mapping from character memory representation
order to font rendering order is simplified. It is different from the convention used in the
bibliographic standard ISO 5426.

A sequence of a base character plus one or more combining characters generally has the
same properties as the base character. For example, “A” followed by “ Ç” has the same prop-
erties as “Â”. In some contexts, enclosing diacritics confer a symbol property to the charac-
ters they enclose. This idea is discussed more fully in Section 3.11, Canonical Ordering
Behavior, but see also Unicode Standard Annex #9, “The Bidirectional Algorithm.”

In the charts for Indic scripts, some vowels are depicted to the left of dotted circles (see
Figure 2-15). This special case must be carefully distinguished from that of general combin-
ing diacritical mark characters. Such vowel signs are rendered to the left of a consonant let-
ter or consonant cluster, even though their logical order in the Unicode encoding follows
the consonant letter. The coding of these vowels in pronunciation order and not in visual
order is consistent with the ISCII standard.

Multiple Combining Characters

In some instances, more than one diacritical mark is applied to a single base character (see
Figure 2-16). The Unicode Standard does not restrict the number of combining characters
that may follow a base character. The following discussion summarizes the treatment of
multiple combining characters. (For the formal algorithm, see Chapter 3, Conformance.)

If the combining characters can interact typographically—for example, a U+0304 -

 and a U+0308 —then the order of graphic display is
determined by the order of coded characters (see Figure 2-17). The diacritics or other com-
bining characters are positioned from the base character’s glyph outward. Combining char-
acters placed above a base character will be stacked vertically, starting with the first
encountered in the logical store and continuing for as many marks above as are required by
the character codes following the base character. For combining characters placed below a
base character, the situation is reversed, with the combining characters starting from the
base character and stacking downward.

An example of multiple combining characters above the base character is found in Thai,
where a consonant letter can have above it one of the vowels U+0E34 through U+0E37 and,
above that, one of four tone marks U+0E48 through U+0E4B. The order of character codes
that produces this graphic display is base consonant character + vowel character + tone mark
character.

Figure 2-15. Indic Vowel Signs

Figure 2-16. Stacking Sequences
2

Ó + ç @ çÓ

Characters Glyph

@¬ ÷@a
.
@

ö

@

ö

ä.÷
40 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.9 Combining Characters
Some specific combining characters override the default stacking behavior by being posi-
tioned horizontally rather than stacking or by ligature with an adjacent nonspacing mark
(see Figure 2-18). When positioned horizontally, the order of codes is reflected by
positioning in the predominant direction of the script with which the codes are used. For
example, in a left-to-right script, horizontal accents would be coded left to right. In
Figure 2-18, the top example is correct and the bottom example is incorrect.

Prominent characters that show such override behavior are associated with specific scripts
or alphabets. For example, when used with the Greek script, the “breathing marks”
U+0313 (psili) and U+0314

 (dasia) require that, when used together with a following acute or grave accent, they
be rendered side-by-side above their base letter rather than the accent marks being stacked
above the breathing marks. The order of codes here is base character code + breathing mark
code + accent mark code. This example demonstrates the script-dependent nature of ren-
dering combining diacritical marks.

Figure 2-17. Interaction of Combining Characters

Figure 2-18. Nondefault Stacking

LATIN SMALL LETTER A WITH TILDE
LATIN SMALL LETTER A + COMBINING TILDE

LATIN SMALL LETTER A + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING TILDE

LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE
LATIN SMALL LETTER A WITH CIRCUMFLEX + COMBINING ACUTE
LATIN SMALL LETTER A + COMBINING CIRCUMFLEX + COMBINING ACUTE

LATIN SMALL LETTER A ACUTE + COMBINING CIRCUMFLEX
LATIN SMALL LETTER A + COMBINING ACUTE + COMBINING CIRCUMFLEX

LATIN SMALL LETTER A + COMBINING DOT ABOVE + COMBINING DOT BELOW

aá

�.

aá.

�«

ö�

�

GREEK SMALL LETTER ALPHA
+ COMBINING COMMA ABOVE (psili)
+ COMBINING ACUTE ACCENT (oxia)αÕ«

αÕ«
GREEK SMALL LETTER ALPHA
+ COMBINING ACUTE ACCENT (oxia)
+ COMBINING COMMA ABOVE (psili)

This is
correct

This is
incorrect
The Unicode Standard 4.0 DRAFT 4 Oct 02 41

2.10 Special Character and Noncharacter Values General Structure
Multiple Base Characters

When the glyphs representing two base characters merge to form a ligature, then the com-
bining characters must be rendered correctly in relation to the ligated glyph (see
Figure 2-19). Internally, the software must distinguish between the nonspacing marks that
apply to positions relative to the first part of the ligature glyph and those that apply to the
second. (For a discussion of general methods of positioning nonspacing marks, see
Section 5.13, Strategies for Handling Nonspacing Marks.)

For more information, see the subsection on “Application of Combining Marks,” in
Section 3.11, Canonical Ordering Behavior.

Multiple base characters do not commonly occur in most scripts. However, in some scripts,
such as Arabic, this situation occurs quite often when vowel marks are used. It arises
because of the large number of ligatures in Arabic, where each element of a ligature is a
consonant, which in turn can have a vowel mark attached to it. Ligatures can even occur
with three or more characters merging; vowel marks may be attached to each part.

Spacing Clones of European Diacritical Marks

By convention, diacritical marks used by the Unicode Standard may be exhibited in (appar-
ent) isolation by applying them to U+0020 or to U+00A0 . This tac-
tic might be employed, for example, when talking about the diacritical mark itself as a
mark, rather than using it in its normal way in text. The Unicode Standard separately
encodes clones of many common European diacritical marks that are spacing characters,
largely to provide compatibility with existing character set standards. These related charac-
ters are cross-referenced in the names list in Chapter 16, Code Charts.

2.10 Special Character and Noncharacter Values
The Unicode Standard includes a small number of important characters with special
behavior; some of them are introduced in this section. It is important that implementa-
tions treat these characters properly. For a list of these and similar characters, see
Section 3.11, Canonical Ordering Behavior; for more information about such characters, see
Section 15.1, Control Codes, Section 15.2, Layout Controls, and Section 15.9, Specials.

Byte Order Mark (BOM)

The UTF-16 and UTF-32 encoding forms of Unicode plain text are sensitive to the byte
ordering that is used when serializing text into a sequence of bytes, such as when writing to
a file or transferring across a network. Some processors place the least significant byte in
the initial position; others place the most significant byte in the initial position. Ideally, all
implementations of the Unicode Standard would follow only one set of byte order rules,
but this scheme would force one class of processors to swap the byte order on reading and
writing plain text files, even when the file never leaves the system on which it was created.

To have an efficient way to indicate which byte order is used in a text, the Unicode Standard
contains two code points, U+FEFF - (byte order mark) and

Figure 2-19. Multiple Base Characters

fi.̃.@i÷@f
42 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.11 Controls and Control Sequences
U+FFFE (not a character code), which are the byte-ordered mirror images of one another.
The byte order mark is not a control character that selects the byte order of the text; rather,
its function is to notify recipients as to which byte ordering is used in a file.

Unicode Signature. An initial BOM may also serve as an implicit marker to identify a file as
containing Unicode text. The sequence FE16 FF16 (or its byte-reversed counterpart, FF16
FE16) is exceedingly rare at the outset of text files that use other character encodings. It is
therefore not likely to be confused with real text data. The same is true for both single-byte
and multibyte encodings.

Data streams (or files) that begin with U+FEFF byte order mark are likely to contain Uni-
code characters. It is recommended that applications sending or receiving untyped data
streams of coded characters use this signature. If other signaling methods are used, signa-
tures should not be employed.

Conformance to the Unicode Standard does not requires the use of the BOM as such a sig-
nature. See Section 15.9, Specials, for more information on byte order mark and its use as an
encoding signature.

Special Noncharacter Values

The Unicode Standard contains a number of code points which are intentionally not used
to represent assigned characters. These code points are known as noncharacters. They are
permanently reserved for internal use and should never be used for open interchange of
Unicode text. For more information on noncharacters, see Section 15.8, Noncharacters.

Layout and Format Control Characters

The Unicode Standard defines several characters that are used to control joining behavior,
bidirectional ordering control, and alternative formats for display. These characters are
explicitly defined as not affecting line-breaking behavior. Unlike space characters or other
delimiters, they do not serve to indicate word, line, or other unit boundaries. Their specific
use in layout and formatting is described in Section 15.2, Layout Controls.

The Replacement Character

U+FFFD is the general substitute character in the Unicode
Standard. It can be substituted for any “unknown” character in another encoding that can-
not be mapped in terms of known Unicode values (see Section 5.3, Unknown and Missing
Characters, and Section 15.9, Specials).

2.11 Controls and Control Sequences

Control Characters

The Unicode Standard provides 65 code points for the representation of control characters.
These ranges are U+0000..U+001F and U+007F..U+009F, which correspond to the 8-bit
controls 0016 to 1F16 (C0 controls) and 7F16 to 9F16 (delete and C1 controls). For example,
the 8-bit version of horizontal tab (HT) is at 0916; the Unicode Standard encodes tab at
U+0009. When converting control codes from existing 8-bit text, they are merely zero-
extended to generate the Unicode value of the characters.
The Unicode Standard 4.0 DRAFT 4 Oct 02 43

2.11 Controls and Control Sequences General Structure
Programs that conform to the Unicode Standard may treat these control codes in exactly
the same way as they treat their 7- and 8-bit equivalents in other protocols, such as ISO/IEC
2022 and ISO/IEC 6429. Such usage constitutes a higher-level protocol and is beyond the
scope of the Unicode Standard. Similarly, the use of ISO/IEC 6429:1992 control sequences
(represented in one of the three Unicode encoding forms) for controlling bidirectional for-
matting is a legitimate higher-level protocol layered on top of the plain text of the Unicode
Standard. As with all higher-level protocols, both the sender and the receiver must agree
upon a common protocol beforehand.

The Unicode Standard provides specific guidelines for the handling of control characters
which affect line breaking. See Section 5.9, Newline Guidelines for more information.

Escape Sequences. In converting text containing escape sequences to the Unicode character
encoding, text must be converted to the equivalent Unicode characters. Converting escape
sequences into Unicode characters on a character-by-character basis (for instance, ESC–A
turns into U+001B , U+0041) allows the reverse conver-
sion to be performed without forcing the conversion program to recognize the escape
sequence as such.

Control Code Sequences Encoding Additional Information about Text. If a system uses
sequences beginning with control codes to embed additional information about text (such
as formatting attributes or structure), then such sequences form a higher-level protocol
outside the scope of the Unicode Standard. Such higher-level protocols are not specified by
the Unicode Standard; their existence cannot be assumed without a separate agreement
between the parties interchanging such data.

Representing Control Sequences

Control sequences can be represented in the Unicode encoding design but must then be
represented in terms of the Unicode encoding forms. For example, suppose that an applica-
tion allows embedded font information to be transmitted by means of an 8-bit sequence. In
the following, the notation ^A refers to the C0 control code 0116, ^B refers to the C0 con-
trol code 0216, and so on:

^ATimes^B = 01,54,69,6D,65,73,02

Then the corresponding sequence of Unicode code units in UTF-16 would be

^ATimes^B = 0001,0054,0069,006D,0065,0073,0002

That is, each Unicode code unit is a 16-bit zero-extended value of the corresponding 8-bit
code.

Where the embedded data are not interpreted as a sequence of characters by the protocol,
the information could be encoded as follows:

^ATimes^B = 0001,5469,6D65,7300,0002

The data could never be encoded as

^ATimes^B = 0154,696D,6573,0200

because in the Unicode character encoding this sequence represents four characters—
 (U+0154), two Han characters (U+696D and U+6573,
respectively), and (U+0200). None of these
characters is a control character. If a control sequence contains embedded binary data, then
the data bytes do not necessarily need to be zero-extended because the control sequence
constitutes a higher protocol. However, doing so allows code conversion algorithms to suc-
ceed even in the absence of explicit knowledge of employed control sequences.
44 4 Oct 02 The Unicode Standard 4.0 DRAFT

General Structure 2.12 Conforming to the Unicode Standard
2.12 Conforming to the Unicode Standard
Chapter 3, Conformance, specifies the set of unambiguous criteria to which a Unicode-
conformant implementation must adhere so that it can interoperate with other conform-
ant implementations. The following section gives examples of conformance and non-
conformance to complement the formal statement of conformance.

An implementation that conforms to the Unicode Standard has the following characteris-
tics:

• It treats characters according to the specified Unicode encoding form.

<20 20> is interpreted as U+2020 ‘†’ in the UTF-16 encoding
form.

<20 20> is interpreted as the sequence <U+0020, U+0020>, two spaces,
in the UTF-8 encoding form.

• It interprets characters according to the identities, properties, and rules defined
for them in this standard.

U+2423 is ‘£’ , not ‘√’ hiragana small i (which is the meaning
of the bytes 242316 in JIS).

U+00F4 ‘ô’ is equivalent to U+006F ‘o’ followed by U+0302 ‘ÄÇ’, but not
equivalent to U+0302 followed by U+006F.

U+05D0 ‘–’ followed by U+05D1 ‘—’ looks like ‘—–’, not ‘–—’ when dis-
played.

When an implementation supports Arabic or Hebrew characters and
displays those characters, they must be ordered according to the bidirec-
tional algorithm described in Unicode Standard Annex #9, “The Bidirec-
tional Algorithm.”

When an implementation supports Arabic, Devanagari, Tamil, or other
shaping characters and displays those characters, at a minimum the
characters are shaped according to the appropriate character block
descriptions given in Section 8.2, Arabic, Section 9.1, Devanagari, or
Section 9.6, Tamil. (More sophisticated shaping can be used if available.)

• It does not use unassigned codes.

U+2073 is unassigned and not usable for ‘3’ (superscript 3) or any other
character.

• It does not corrupt unknown characters.

U+2029 is and should not be dropped by appli-
cations that do not yet support it.

U+03A1 “P” should not be changed to
U+00A1 (first byte dropped), U+0050 (mapped to Latin letter P),
U+A103 (bytes reversed), or anything other than U+03A1.

However, it is acceptable for a conforming implementation:

• To support only a subset of the Unicode characters.

An application might not provide mathematical symbols or the Thai
script, for example.
The Unicode Standard 4.0 DRAFT 4 Oct 02 45

2.12 Conforming to the Unicode Standard General Structure
• To transform data knowingly.

Uppercase conversion: ‘a’ transformed to ‘A’

Romaji to kana: ‘kyo’ transformed to Õá

U+247D ‘(10)’ decomposed to 0028 0031 0030 0029

• To build higher-level protocols on the character set.

Compression of characters

Use of rich text file formats

• To define private-use characters.

Examples of characters that might be defined for private use include
additional ideographic characters (gaiji) or existing corporate logo char-
acters.

• To not support the bidirectional algorithm or character shaping in implemen-
tations that do not support complex scripts, such as Arabic and Devanagari.

• To not support the bidirectional algorithm or character shaping in implemen-
tations that do not display characters, such as on servers or in programs that
simply parse or transcode text, such as an XML parser.

Code conversion between other standards and the Unicode Standard will be considered
conformant if the conversion is accurate in both directions.

Characters Not Used in a Subset

The Unicode Standard does not require that an application be capable of interpreting and
rendering all Unicode characters so as to be conformant. Many systems will have fonts only
for some scripts, but not for others; sorting and other text-processing rules may be imple-
mented only for a limited set of languages. As a result, an implementation is able to inter-
pret a subset of characters.

The Unicode Standard provides no formalized method for identifying an implemented
subset. Furthermore, such a subset is typically different for different aspects of an imple-
mentation. For example, an application may be able to read, write, and store any Unicode
character, and to sort one subset according to the rules of one or more languages (and the
rest arbitrarily), but have access only to fonts for a single script. The same implementation
may be able to render additional scripts as soon as additional fonts are installed in its envi-
ronment. Therefore, the subset of interpretable characters is typically not a static concept.

Conformance to the Unicode Standard implies that whenever text purports to be unmodi-
fied, uninterpreted code points must not be removed or altered. (See also Section 3.1, Con-
formance Requirements.)
46 4 Oct 02 The Unicode Standard 4.0 DRAFT

