
 Technical Reports

Proposed Update Unicode Technical Standard #39

UNICODE SECURITY MECHANISMS
Version 2 (draft 3)
Authors Mark Davis (markdavis@google.com),

Michel Suignard (michel@suignard.com)
Date 2010-02-04
This
Version

http://www.unicode.org/reports/tr39/tr39-3.html

Previous
Version

http://www.unicode.org/reports/tr39/tr39-2.html

Latest
Version

http://www.unicode.org/reports/tr39/

Latest
Working
Draft

http://www.unicode.org/draft/reports/tr39/tr39.html

Revision 3

Summary

Because Unicode contains such a large number of characters and
incorporates the varied writing systems of the world, incorrect usage can
expose programs or systems to possible security attacks. This document
specifies mechanisms that can be used in detecting possible security
problems.

[Review Note: The primary changes are to the data: see Modifications for
more information, and how to submit suggestions. More identifer
restrictions will be added over time, and the idnchars.txt file will need to

Page 1 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

rick@unicode.org
Text Box
L2/10-023

be updated in accordance with UTS#46 Unicode IDNA Compatibility
Processing.]

[Review Note: The tables will be renumbered consecutively from one in
the final version.]

Status

This is a draft document which may be updated, replaced, or superseded
by other documents at any time. Publication does not imply endorsement
by the Unicode Consortium. This is not a stable document; it is
inappropriate to cite this document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance
to any UTS.

Please submit corrigenda and other comments with the online reporting
form [Feedback]. Related information that is useful in understanding this
document is found in References. For the latest version of the Unicode
Standard see [Unicode]. For a list of current Unicode Technical Reports
see [Reports]. For more information about versions of the Unicode
Standard, see [Versions].

To allow access to the most recent work of the Unicode security
subcommittee on this document, the "Latest Working Draft" link in the
header points to the latest working-draft document under development.

Contents

1. Introduction
2. Conformance
3. Identifier Characters

3.1 General Security Profile for Identifiers
3.2 IDN Security Profiles for Identifiers

4. Confusable Detection
4.1 Whole-Script Confusables
4.2 Mixed-Script Confusables

5. Mixed Script Detection
6. Development Process
7. Data_Files
Acknowledgements

Page 2 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

References
Modifications

1. Introduction

Unicode Technical Report #36: Unicode Security Considerations [UTR36]
provides guidelines for detecting and avoiding security problems
connected with the use of Unicode. This document specifies mechanisms
that are used in that document, and can be used elsewhere. Readers
should be familiar with [UTR36] before continuing.

2. Conformance

An implementation claiming conformance to this specification must do so
in conformance to the following clauses.

C0. An implementation claiming to implement the General Profile for
Identifiers shall do so in accordance with the specifications in
Section 3.1 General Security Profile for Identifiers.

Alternatively, it shall declare that it uses a modification, and
provide a precise list of characters that are added to or removed
from the profile.

C1. An implementation claiming to implement the IDN Identifier
Profiles shall do in accordance with the specifications in Section
3.2 IDN Security Profiles for Identifiers.

Alternatively, it shall declare that it uses a modification, and
provide a precise list of characters that are added to or removed
from the profile.

C2. An implementation claiming to implement any of the following
confusable-detection functions must do so in accordance with the
specifications in Section 4. Confusable Detection.

Page 3 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

X and Y are single-script confusables1.
X and Y are mixed-script confusables2.
X and Y are whole-script confusables3.
X has any simple single-script confusables4.
X has any mixed-script confusable5.
X has any whole-script confusable6.

Alternatively, it shall declare that it uses a modification, and
provide a precise list of character mappings that are added to or
removed from the provided ones.

C3. An implementation claiming to detect mixed scripts must do so in
accordance with the specifications in Section 5. Mixed Script
Detection.

Alternatively, it shall declare that it uses a modification, and
provide a precise specification of the differences in behavior.

[Review Note: The conformance clauses will be renumbered.]

3. Identifier Characters

Identifiers are special-purpose strings used for identification — strings
that are deliberately limited to particular repertoires for that purpose.
Exclusion of characters from identifiers does not at all affect the general
use of those characters, such as within documents. UAX #31, Identifier
and Pattern Syntax [UAX31] provides a recommended method of
determining which strings should qualify as identifiers. The UAX #31
specification extends the common practice of defining identifiers in terms
of letters and numbers to the Unicode repertoire.

UAX #31 also permits other protocols to use that method as a base, and
to define a profile that adds or removes characters. For example,
identifiers for specific programming languages typically add some
characters like '$', and remove others like '-' (because of the use as

Page 4 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

minus), while IDNA removes '_' (among others). For more information, see
UAX #31, Identifier and Pattern Syntax [UAX31].

This document provides for additional identifier profiles for environments
where security is at issue. These are profiles of the extended identifiers
based on properties and specifications of the Unicode Standard [Unicode],
including:

The XID_Start and XID_Continue properties defined in the Unicode
Character Database (see [DCore])

•

The case folding operation defined in Chapter 3. Conformance of
[Unicode]

•

The NFKC and NFKD normalizations defined in [UAX15].•

The data files used in defining these profiles follow the UCD File Format,
which has a semicolon-delimited list of data fields associated with given
characters, with each field referenced by number. For more details, see
[UCDFormat].

3.1. General Security Profile for Identifiers

The file [idmod] provides data for a profile of identifiers in environments
where security is at issue. The file contains a set of characters
recommended to be restricted from use. It also contains a small set of
characters that are recommended as additions (to the list of characters
defined by the XID_Start and XID_Continue properties), because they may
be used in identifiers in a broader context than programming identifiers.

The restricted characters are characters not in common use, removed so
as to further reduce the possibilities for visual confusion. Initially, the
following are being excluded: characters not in modern use; characters
only used in specialized fields, such as liturgical characters, mathematical
letter-like symbols, and certain phonetic alphabetics; and ideographic
characters that are not part of a set of core CJK ideographs consisting of
the CJK Unified Ideographs block plus IICore (the set of characters
defined by the IRG as the minimal set of required ideographs for East
Asian use). A small number of such characters are allowed back in so that

Page 5 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

the profile includes all the characters in the country-specific restricted
IDN lists: see Appendix F. Country-Specific IDN Restrictions .

The principle has been to be more conservative initially, allowing for the
set to be modified in the future as requirements for characters are
refined. For information on handling that, see Section 2.9.1 Backwards
Compatibility of [UTR36].

In the file [idmod], Field 1 is the character in question, Field 2 is an action
(either restricted or allowed), and Field 3 (if present) is a reason. The
reasons are:

Action Reason Description
restricted default-ignorable Characters with the Unicode property

Default_Ignorable_Code_Point
restricted historic

Characters not in customary modern use;
includes [UAX31] Table 4. Candidate
Characters for Exclusion from Identifiers

restricted limited-use Characters whose status is uncertain, or that
are used in limited environments,
or those in [UAX31] Table 5. Recommended
Scripts: Limited Usage

restricted not-chars Unassigned characters, private use
characters, surrogates, most control
characters

restricted not-NFKC Characters that are not NFKC.
restricted not-xid

Other characters that don't qualify as
Unicode identifiers

restricted obsolete Technical characters that are no longer in
use; characters with the Unicode Property
Deprecated

Table 0. Identifier Modification Key

Page 6 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

restricted technical Technical characters
allowed inclusion [UAX31] Table 3. Candidate Characters for

Inclusion in Identifiers. See also the notes on
MidLetter in [UAX29].

allowed recommended [UAX31] Table 5. Recommended Scripts
(excluding restricted)

Restricted characters should be treated with caution in registration;
disallowed unless there is good reason to allow them in the enviroment
in question. In user interfaces for lookup of identifiers, warnings of some
kind may be appropriate. For more information, see [UTR36].

Allowed characters may be further restricted by intersecting with the
characters allowed in the particular identifier syntax in question, or
where there is other information available in the environment in
question. In particular, the candidate characters for inclusion are
punctuation, and may fall outside of most identifer syntax.

The distinctions among the reasons is not strict; if there are multiple
reasons for restricting a character only one is given. The important
characteristic is the action: whether or not the character is restricted. As
more information is gathered about characters, this data may change in
successive versions. That can cause either the action or reason to change
for a particular character. Thus users of this data should be prepared for
changes in successive versions, such as by having a grandfathering policy
in place for registrations.

[Review Note: The Reasons have been simplified in this version so that
there are a small number of them.]

[Review Note: The terminology above is from the previous version. During
the editorial pass, some of these may change. In particular: "Action" is
not the best term, "identifier modification" could be improved; perhaps
"Identifier Restriction" for both? "Reason" might also read better as
"subcategory".]

This list is also used in deriving the IDN Identifiers list given below. It is,
however, designed to be applied to other environments, and is not

Page 7 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

limited to Unicode 3.2 (as IDNA is currently), so that it can be applied to a
future version of IDNA that includes the (large) repertoire of characters
that have been added since Unicode 3.2.

3.2. IDN Security Profiles for Identifiers

The previous version of this document defined operations and data that
apply to the version of IDNA defined in 2003, which has been
superseded. The identifer modification data can be applied to whichever
specification of IDNA is being used. For more information, see the [IDN
FAQ].

The file [idn-chars] provides a recommended profile that that further
restricts the characters allowed in for use in IDN, as described in the
recommendations above.

The data for this profile is presented as a series of tables organized by
the type, as given in Field 2 in the data file. The following table provides
a description of this data.

Type Description
output This type marks characters that are retained in this profile in

the output of IDN; that is, any characters outside of this set
are not allowed by this profile. This list was formed by
taking the characters allowed in IDNA [RFC3491], and
intersecting that with the characters in Section 3.1 General
Security Profile for Identifiers.

nonstarting This type marks characters that are disallowed at the start of
an identifier. (IDNA, unlike [UAX31] or most programming
languages, does not place restrictions on which characters
can start an identifier.)

Table 1. IDN Identifier Profile Types

Thus an IDN identifier that conforms to this profile is subject to all of the
other conditions imposed by IDNA [RFC3491], and has the additional
requirement that it have the following form:

Page 8 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

<strict-profile-identifier> := <SP-start> <SP-continue>*
<SP-start> := [[:Field2=output:] - [:Field2=nonstarting:]]
<SP-continue> := [:Field2=output:]

The focus of this profile is on the characters allowed in the output of
StringPrep, not on the input characters. Because of the additional
restrictions on the output form, implementations should consider
supplying additional input mappings to aid in keyboard entry. That is, in
circumstances where the user is typing in a URL into an address bar,
these additional mappings are recommended so as to allow people to
type characters that they may not otherwise easily be able to type.
However, this is not formally part of the identifier profile; simply a
recommendation for GUIs, given the constraints of the identifier profile.

0027 → 2019 ' → ʼ APOSTROPHE
→ MODIFIER LETTER APOSTROPHE

2018 → 02BB ‘ → ʻ LEFT SINGLE QUOTATION MARK
 → MODIFIER LETTER TURNED COMMA

2019 → 02BC ’ → ʼ RIGHT SINGLE QUOTATION MARK
→ MODIFIER LETTER APOSTROPHE

309B → 3099 ゛ → ゙ KATAKANA-HIRAGANA VOICED SOUND MARK
→ COMBINING KATAKANA-HIRAGANA VOICED
SOUND MARK

309C → 309A ゜ → ゚ KATAKANA-HIRAGANA SEMI-VOICED SOUND
MARK
→ COMBINING KATAKANA-HIRAGANA SEMI-
VOICED SOUND MARK

Table 2. Remapping Characters

4. Confusable Detection

The tables in the data file [confusables] provide a mechanism for
determining when two strings are visually confusable. The data in these
files may be refined and extended over time. For information on handling
that, see Section 2.9.1 Backwards Compatibility of [UTR36]. The data is
organized into four different tables, depending on the desired

Page 9 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

parameters. Each table provides a mapping from source characters to
target strings.

On the basis of this data, there are three main classes of confusable
strings:

X and Y are single-script confusables if they are confusable
according to the Single-Script table, and each of them is a single
script string according to Section 5. Mixed Script Detection.
Examples: "so ̷s" and "søs" in Latin.

X and Y are mixed-script confusables if they are confusable
according to the Mixed-Script table, and they are not single-script
confusables. Example: "paypal" in Latin and "paypal" with the 'a'
being in Cyrillic.

X and Y are whole-script confusables if they are mixed-script
confusables, and each of them is a single script string. Example:
"scope" in Latin and "scope" in Cyrillic.

To see whether two strings X and Y are confusable according to a given
table (abbreviated as X ≅ Y), an implementation uses a transform of X
called a skeleton(X) defined by:

Converting X to NFKD NFD format, as described in [UAX15].1.
Successively mapping each source character in X to the target string
according to the specified data table.

2.

Reapplying NFKD NFD.3.

The resulting strings skeleton(X) and skeleton(Y) are then compared. If
they are identical (codepoint-for-codepoint), then X ≅ Y according to the
table.

Note: the strings skeleton(X) and skeleton(Y) are not intended for
display, storage or transmission. They should be thought of instead
as an intermediate processing form, similar to a hashcode. The
characters in skeleton(X) and skeleton(Y) are not guaranteed to be
identifier characters.

Page 10 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

Implementations do not have to recursively apply the mappings, because
the transforms are idempotent. That is,

skeleton(skeleton(X)) = skeleton(X).

This mechanism does impose transitivity on the data, so if X ≅ Y and Y ≅
Z, then X ≅ Z. It would be possible to provide a more sophisticated
confusable detection, by providing a metric between given characters,
indicating their 'closeness'. However, that is computationally much more
expensive, and requires more sophisticated data, so at this point in time
the simpler mechanism has been chosen. That means that in some cases
the test may be overly inclusive. However the frequency of such cases in
real data should be small.

The data files are in the following format: for each line in the data file,
Field 1 is the source, Field 2 is the target, and Field 3 is a type identifying
the table.

Example:

309C ; 030A ; SL #* (゜ → ̊) KATAKANA-HIRAGANA SEMI-VOICED
SOUND MARK → COMBINING RING ABOVE # →ﾟ→→→゚

The types are explained in the table below. The comments provide the
character names. If the data was derived via transitivity, then there is an
extra comment at the end. For instance, in the above example the
derivation was:

U+309A (゚) COMBINING KATAKANA-HIRAGANA SEMI-VOICED
SOUND MARK →

•

U+FF9F (ﾟ) HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK →•
U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK →•
U+030A (̊) COMBINING RING ABOVE •

To reduce security risks, it is advised that identifiers use case-folded
forms, thus eliminating uppercase variants where possible. Character
with the script values COMMON or INHERITED are ignored when testing
for differences in script.

Page 11 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

Type Name Description
SL Single-

Script,
Lowercase

This table is used to test cases of single-script
confusables, where both the source character and the
target string are case folded. For example:

(ø → o ̷) LATIN SMALL LETTER O WITH STROKE → LATIN
SMALL LETTER O, COMBINING SHORT SOLIDUS OVERLAY

SA Single-
Script, Any-
Case

This table is used to test cases of single-script
confusables, where the output allows for mixed case
(which may be later folded away). For example, this
table contains the following entry not found in SL:

(O → 0) LATIN CAPITAL LETTER O → DIGIT ZERO

ML Mixed-
Script,
Lowercase

This table is used to test cases of mixed-script and
whole-script confusables, where both the source
character and the target string are case folded. For
example, this table contains the following entry not
found in SL or SA:

(ν → v) GREEK SMALL LETTER NU → LATIN SMALL
LETTER V

MA Mixed-
Script, Any-
Case

This table is used to test cases of mixed-script and
whole-script confusables, where the output allows for
mixed case (which may be later folded away). For
example, this table contains the following entry not
found in SL, SA, or ML:

(Ι → l) GREEK CAPITAL LETTER IOTA → LATIN SMALL
LETTER L

Table 3. Confusable Data Table Types

Page 12 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

4.1 Whole-Script Confusables

Data is also provided for testing a string to see if a string X has any whole
-script confusable, using the file [confusablesWS]. This file consists of a
list of lines of the form:

<range>; <sourceScript>; <targetScript>; <type> #comment

The types are either L for lowercase-only, or A for any-case, where the
any-case ranges are broader (including uppercase and lowercase
characters). If the string is only lowercase, use the lowercase-only table.
Otherwise, first test according to the any-case table, then case-fold the
string and test according to the lowercase-only table.

In using the data, all of the lines having the same sourceScript and
targetScript are collected together to form a set of Unicode characters.
Logically, the file is thus a set of tuples of the form <sourceScript,
unicodeSet, targetScript>. For example, the following lines are present
for Latin to Cyrillic:

0061 ; Latn; Cyrl; L # (a) LATIN SMALL LETTER A
0063..0065 ; Latn; Cyrl; L # [3] (c..e) LATIN SMALL LETTER C..LATIN SMALL LETT
...
0292 ; Latn; Cyrl; L # (ʒ) LATIN SMALL LETTER EZH

They logically form a tuple <Latin, [a c-e ... \u0292], Cyrillic>, which
indicates that a Latin string containing characters only from that Unicode
set can have a whole-script confusable in Cyrillic (lowercase-only).

To test to see if a single-script string givenString has a whole-script
confusable in targetScript, the following process is used.

Convert the givenString to NFKD NFD format, as specified in
[UAX15]

1.

Let givenSet be the set of all characters in givenString2.
Remove all [:script=common:] and [:script=inherited:] characters
from givenSet

3.

Let givenScript be the script of the characters in givenSet4.
(if there is more than one script, fail with error).◦

See if there is a tuple <sourceScript, unicodeSet, targetScript>
where

5.

Page 13 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

sourceScript = givenScript◦
unicodeSet ⊇ givenSet◦

If so, then there is a whole-script confusable in targetScript6.

The test is actually slightly broader than simply a whole-script
confusable; what it tests is whether the given string has a whole-script
confusable string in another script, possibly with the addition or removal
of common/inherited characters such as numbers and combining marks
characters to both strings. In practice, however, this broadening has no
significant impact.

Implementations would normally read the data into appropriate data
structures in memory for processing. A quick additional optimization is
to keep, for each script, a fastReject set, containing characters in the
script contained in none of the unicodeSet values.

The following is a Java sample of how this code can work (using the Java
version of [ICU]):

/*
 * For this routine, we don't care what the target scripts are,
 * just whether there is at least one whole-script confusable.
 */
boolean hasWholeScriptConfusable(String s) {
 int givenScript = getSingleScript(s);
 if (givenScript == UScript.INVALID_CODE) {
 throw new IllegalArgumentException("Not single script string")
 }
 UnicodeSet givenSet = new UnicodeSet()
 .addAll(s)
 .removeAll(commonAndInherited);
 if (fastReject[givenScript].containsSome(givenSet)) return false;
 UnicodeSet[] possibles = scriptToUnicodeSets[givenScript];
 for (int i = 0; i < possibles.length; ++i) {
 if (possibles[i].containsAll(givenSet)) return true;
 }
 return false;
}

The data in [confusablesWS] is built using the data in [confusables], and
subject to the same caveat: The data in these files may be refined and
extended over time. For information on handling that, see Section 2.9.1
Backwards Compatibility of [UTR36].

Page 14 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

4.2 Mixed-Script Confusables

To test for mixed-script confusables, use the following process.

Convert the given string to NFKD NFD format, as specified in
[UAX15].

1.

For each script found in the given string, see if all the characters in
the string outside of that script have whole-script confusables for
that script (according to Section 4.1 Whole-Script Confusables).

2.

Example 1: 'pаypаl', with Cyrillic 'а's.

There are two scripts, Latin and Cyrillic. The set of Cyrillic characters
{a} has a whole-script confusable in Latin. Thus the string is a
mixed-script confusable.

Example 2: 'toys-я-us', with one Cyrillic character 'я'.

The set of Cyrillic characters {я} does not have a whole-script
confusable in Latin (there is no Latin character that looks like 'я', nor
does the set of Latin characters {o s t u y} have a whole-script
confusable in Cyrillic (there is no Cyrillic character that looks like 't'
or 'u'). Thus this string is not a mixed-script confusable.

Example 3: '1iνе', with a Greek 'ν' and Cyrillic 'е'.

There are three scripts, Latin, Greek, and Cyrillic. The set of Cyrillic
characters {е} and the set of Greek characters {ν} each have a whole-
script confusable in Latin. Thus the string is a mixed-script
confusable.

5. Mixed Script Detection

The Unicode Standard supplies information that can be used for
determining the script of characters and detecting mixed-script text. The
determination of script is according to the Unicode Standard [UAX24],
using data from the Unicode Character Database [UCD].

Page 15 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

In determining mixed script, Common and Inherited script characters are
ignored. For example, "abc-def" counts as a single script: the script of "-"
is ignored.

The following is a Java sample of how this process works (using the Java
version of [ICU]):

/**
 * Returns the script of the input text. Script values of COMMON and INHERITED
 * @param source Input text.
 * @return Script value found in the text.
 * If more than one script values are found, then UScript.INVALID_CODE is retu
 * If no script value is found (other than COMMON or INHERITED), then UScript.
 */
public static int getSingleScript(String source) {
 if (source.length() == 0) return UScript.COMMON;
 int lastScript = UScript.COMMON; // temporary value
 int cp;
 for (int i = 0; i < source.length(); i += UTF16.getCharCount(cp)) {
 cp = UTF16.charAt(source, i);
 int script = UScript.getScript(cp);
 if (script == UScript.COMMON || script == UScript.INHERITED) {
 continue;
 }
 if (lastScript == UScript.COMMON) {
 lastScript = script;
 } else if (script != lastScript) {
 return UScript.INVALID_CODE;
 }
 }
 return lastScript;
}

Using the Unihan data in the Unicode Character Database [UCD] it is
possible to extend this mechanism, to qualify strings as 'mixed script'
where they contain both simplified-only and traditional-only Chinese
characters.

6. Development Process

As discussed in [UTR36], confusability among characters cannot be an
exact science. There are many factors that make confusability among
character a matter of degree:

Shapes of characters vary greatly among fonts used to represent
them. The Unicode standard represents them in the chart section
with representative glyphs, but font designers are free to create
their own glyphs. Because fonts can easily be created representing

•

Page 16 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

any Unicode code position using an arbitrary glyph, character
confusability with arbitrary fonts can never be avoided. For example,
one could design a font where the ‘a’ looks like a ‘b’ , ‘c’ like a ‘d’,
and so on.
Writing systems using contextual shaping (such as Arabic, many
south-Asian systems) introduce even more variation in text
rendering. Characters don’t really have an abstract shape in isolation
and are only rendered as part of cluster of characters making words,
expressions, and sentences. It is in fact a fairly common occurrence
to find the same visual text representation corresponding to very
different logical words that can only be recognized by context, if at
all.

•

Font style variant may introduce a confusability which does not exist
in another style (for example: normal versus italic). For example, in
the Cyrillic script, the small letter TE (U+0442) looks like a small
caps Latin ‘T’ in normal style while it looks like a small Latin ‘m’ in
italic style.

•

The confusability tables were created by collecting a number of
prospective confusables, examining those confusables according to a set
of fonts, and processing the result for transitive closure.

The prospective confusables were gathered from a number of sources.
Volunteers from within IBM and Microsoft, with native speakers for
languages with different writing systems, gathered initial lists. The
compatibility mappings were also used as a source, as were the
mappings from the draft UTR #30 "Character Foldings" (since withdrawn).
Erik van der Poel also contributed a list derived from running a program
over a large number of OpenType fonts to catch characters that shared
identical glyphs within a font. More recently, engineers at Google
examined font data on Windows and Macintosh to generate additional
confusables.

The process of gathering visual confusables is ongoing: the Unicode
Consortium welcomes submission of additional mappings. The complex
scripts of South / South East Asia also need special attention.

Page 17 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

Please submit suggestions for additional confusables, or suggested
corrections to the given ones, with the online reporting form
[Feedback]. Additions must be listed in a plain-text file in the
standard format, such as:

#comment
2500 ; 4E00 # comment
002E ; 0702 # comment
...

[Review Note: For review of the data and suggesting changes:

The most useful view of the confusables data is the
confusablesSummary file.

•

This file groups all the confusables together. Note that
the results may vary depending on the font used. Also,
some "unnatural" confusables are added by transitivity
(between characters, or between NFKC_Casefold
equivalents).

◦

The most useful view of the identifier restrictions is the
xidmodifications file.

•

You can suggest changes with the form at security-
mechanisms.]

•

The initial focus is on characters that can be in the recommended profile
for identifiers, because they are of most concern. For mixed-script
confusability, the initial focus is on confusable characters between the
Latin script and other scripts, because this is currently perceived as the
most important threat. Other combinations of scripts should be more
extensively reviewed in the future.

In-script confusability is extremely user-dependent. For example, in the
Latin script, characters with accents or appendices may look similar to
the unadorned characters for some users, especially if they are not
familiar with their meaning in a particular language. However, most users
in position to trust identifiers will have at least a minimum understanding
of the range of characters in their own script, and there are separate
mechanisms available to deal with other scripts, as discussed in [UTR36].

Page 18 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

The fonts used to assess the confusables included those used by the
major operating systems in user interfaces. In addition, the representative
glyphs used in the Unicode Standard were also considered. Fonts used for
the user interface in operating systems are an important source, because
they are the ones that will usually be seen by users in circumstances
where confusability is important, such such as when using IRIS
(Internationalized Resource Identifiers) and their sub-elements (e.g.
domain names). These fonts have a number of other relevant
characteristics. They rarely changed by OS and applications; changes
brought by system upgrades tend to be gradual to avoid usability
disruption. Because user interface elements need to be legible at low
screen resolution (implying a small number of pixel per EM units), fonts
used in these contexts tend to be designed in sans-serif style, which has
the tendency to increase the possibility of confusables. (There are,
however, some locales locales where a serif style is in common use, for
example, Chinese.) Furthermore, strict bounding box requirements create
even more constraints for scripts which use relatively large ascenders and
descenders. This also limits space allocated for accent or tone marks, and
can also create more opportunities for confusability.

Pairs of prospective confusables were removed if they were always
visually distinct at common sizes, both within and across fonts.

This data was then closed under transitivity, so that if X≅Y and Y≅Z, then
X≅Z. In addition, the data is closed under substring operations, so that if
X≅Y then AXB≅AYB. It was then processed to produce the in-script and
cross-script tables. This is so that a single table can be used to map an
input string to a resulting skeleton.

The files contain some internal information in comments, indicating how
the transitive closure was done. For example:

2500 ; 4E00 ; MA # (─ ↔ 一) BOX DRAWINGS LIGHT HORIZONTAL ↔ CJK UNIF
 # {source:1192} ― {source:961} — {source:1785}

The second comment mark (#), here on a separate line, indicates
intermediate steps in the transitive closure, with {..} indicating the reason
(the original source mapping between the characters). In this case, the
mappings are:

Page 19 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

U+2500 (─) ↔ U+2015 (―) ↔ U+2014 (—) ↔ U+4E00 (一)

A skeleton is intended only for internal use for testing confusability of
strings; the resulting text is not at all suitable for display to users, since it
will appear to be a hodgepodge of different scripts. In particular, the
result of mapping an identifier will not necessary be an identifier. Thus
the confusability mappings can be used to test whether two identifiers
are confusable (if their skeletons are the same), but should definitely not
be used as a "normalization" of identifiers.

As described elsewhere, there are cases where the data may be different
than expected. Sometimes this is because two characters (or sequences)
may only be confusable in some fonts. In other cases, it is because of
transitivity. For example, the dotless and dotted I are considered
equivalent (ı ↔ i), because they look the same when accents such as an
acute are applied to each. However, for practical implementation usage,
transitivity is sufficiently important that some oddities are accepted.

The data may be enhanced in future versions of this specification. For
information on handling this, see Section 2.9.1 Backwards Compatibility
of [UTR36].

Note allowing mixtures of upper and lowercase text would complicate the
process, and produce a large number of false positives. For example,
mixing cases in Latin and Greek may make the Latin letters pairs {Y, U}
and {N, V} confusable. That is because Y is confusable with the Greek
capital Upsilon, and the lowercase upsilon is confusable with the
lowercase Latin u.

[Review Note: We will point to the security FAQ here.]

7 Data Files

The following files provide data used to implement the recommendations
in this document. The data may be refined in future versions of this
specification. For information on handling this, see Section 2.9.1
Backwards Compatibility of [UTR36].

Page 20 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

[Review Note: the following revises the directory structure for the data to
put the data in http://www.unicode.org/Public. Note that the headers in
the data files will also be revised.]

The files are in http://www.unicode.org/Public/security/. The directories
there contain data files associated with a given version, with names such
as:

http://www.unicode.org/Public/security/revision-02

The data files for the latest approved version are also in the directory:

http://www.unicode.org/Public/security/latest

[Review Note: The following files are for the draft version, found in

http://www.unicode.org/Public/security/revision-03

There are some known glitches in the data that will be corrected,
including improper expansions of characters like �/�.]

[data2.0]
uts39-data-xx.zip

[Review Note: the zip file for
revision 03 will only be
created for the released
version.]

A zipped version of all
the data files.

[idnchars] idnchars.txt
IDN Characters:
Provides a profile of
identifiers from UAX
#31, Identifier and
Pattern Syntax [UAX31]
as a recommended
restriction of IDN

Page 21 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

identifiers for security
purposes.

[idmod] xidmodifications.txt Identifier Modifications:
Provides the list of
additions and
restrictions
recommended for
building a profile of
identifiers for
environments where
security is at issue.

[confusables] confusables.txt Visually Confusable
Characters: Provides a
mapping for visual
confusables for use in
further restricting
identifiers for security.
The usage of the file is
described in Section 4.
Confusable Detection.

[summary] confusablesSummary.txt Summary of the
confusables: with
transitive closure.

[confusablesWS] confusablesWholeScript.txt Whole Script
Confusables. Data for
testing for the possible
existence of whole-
script and mixed-script
confusables. See
Appendix B. Confusable
Detection

[intentional] intentional.txt Intentional Confusable
Mappings. The class of
characters whose glyphs

Page 22 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

in any particular
typeface would probably
be designed to be
identical in shape, by
intention, at least when
using a harmonized
typeface design

[source] source/ Source Data Files. These
are the source data files
used to build the above
files.

[Review Note: For review of the data and suggesting changes:

The data can perhaps be most usefully viewed interactively, at •
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=\p
{any}-\p{nfkdqc%3Dn}-\p{cn}-\p{cs}-\p{co}&g=sc+idr

◦

This is a full listing; for a particular script, change the
"any" to "sc=Latin" or other script name.

◦

The most useful static view of the confusables data is the
confusablesSummary file.

•

This file groups all the confusables together. Note that
the results may vary depending on the font used. Also,
some "unnatural" confusables are added by transitivity
(between characters, or between NFKC_Casefold
equivalents).

◦

The most useful view of the identifier restrictions is the
xidmodifications file.]

•

[Review Note: add a section for submitting suggested data for a future
update; make the form a page on the Unicode site, roughly like security-
mechanisms. Structure it like the [Feedback] link, and add to the
references.]

Page 23 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

Acknowledgements

Steven Loomis and other people on the ICU team were very helpful in
developing the original proposal for this technical report. Thanks also to
the following people for their feedback or contributions to this document
or earlier versions of it: Douglas Davidson, Martin Dürst, Asmus Freytag,
Deborah Goldsmith, Paul Hoffman, Peter Karlsson, Gervase Markham, Eric
Muller, Erik van der Poel, Michael van Riper, Marcos Sanz, Alexander
Savenkov, Dominikus Scherkl, and Kenneth Whistler. Thanks to Peter
Peng for his assistance with font confusables.

References

Warning: all internet-drafts and news links have unstable links; you may
have to adjust the URL to get to the latest document.

References not listed here may be found in
http://www.unicode.org/reports/tr41/#UAX41.

[CharMod] Character Model for the World Wide Web 1.0: Fundamentals
http://www.w3.org/TR/charmod/

[Charts] Unicode Charts (with Last Resort Glyphs)
http://www.unicode.org/charts/lastresort.html

See also:
http://developer.apple.com/fonts/LastResortFont/
http://developer.apple.com/fonts/LastResortFont/LastResortT

[DCore] Derived Core Properties
http://www.unicode.org/Public/UNIDATA/DerivedCorePropert

[Display] Display Problems?
http://www.unicode.org/help/display_problems.html

[DemoConf] http://unicode.org/cldr/utility/confusables.jsp

[DemoIDN] http://unicode.org/cldr/utility/idna.jsp

[DemoIDNChars] http://unicode.org/cldr/utility/list-unicodeset.jsp?a=\p{age%
{cn}-\p{cs}-\p{co}&abb=on&g=uts46+idna+idna2008

Page 24 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

[DNS-Case] Donald E. Eastlake 3rd. "Domain Name System (DNS) Case Inse
Clarification". Internet Draft, January 2005
http://www.ietf.org/internet-drafts/draft-ietf-dnsext-insensi
06.txt

[FAQSec] Unicode FAQ on Security Issues
http://www.unicode.org/faq/security.html

[ICANN] Guidelines for the Implementation of Internationalized Domain
http://www.icann.org/general/idn-guidelines-20jun03.htm

[ICU] International Components for Unicode
http://site.icu-project.org/

[IDNReg] Registry for IDN Language Tables
http://www.iana.org/assignments/idn/
Tables are found at:
http://www.iana.org/assignments/idn/registered.htm

[IDN-Demo] ICU (International Components for Unicode) IDN Demo
http://ibm.com/software/globalization/icu/demo/domain/

[IDN-FAQ] http://www.unicode.org/faq/idn.html

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[Museum] Internationalized Domain Names (IDN) in .museum - Supporte
Languages
http://about.museum/idn/language.html

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for tec
reports, and for a list of technical reports.

[RFC1034] P. Mockapetris. "DOMAIN NAMES - CONCEPTS AND FACILITIES
1034, November 1987.
http://ietf.org/rfc/rfc1034.txt

[RFC1035] P. Mockapetris. "DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION", RFC 1034, November 1987.
http://ietf.org/rfc/rfc1035.txt

Page 25 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

[RFC1535] E. Gavron. "A Security Problem and Proposed Correction With W
Deployed DNS Software", RFC 1535, October 1993
http://ietf.org/rfc/rfc1535.txt

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of Internationalized Stri
("stringprep")", RFC 3454, December 2002.
http://ietf.org/rfc/rfc3454.txt

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello, "Internationalizing
Names in Applications (IDNA)", RFC 3490, March 2003.
http://ietf.org/rfc/rfc3490.txt

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile
Internationalized Domain Names (IDN)", RFC 3491, March 200
http://ietf.org/rfc/rfc3491.txt

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA)", RFC
March 2003.
http://ietf.org/rfc/rfc3492.txt

[RFC3743] Konishi, K., Huang, K., Qian, H. and Y. Ko, "Joint Engineering T
Guidelines for Internationalized Domain Names (IDN) Registrat
Administration for Chinese, Japanese, and Korean", RFC 3743,
2004.
http://ietf.org/rfc/rfc3743.txt

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter. "Uniform Resource Ide
(URI): Generic Syntax", RFC 3986, January 2005.
http://ietf.org/rfc/rfc3986.txt

[RFC3987] M. Duerst, M. Suignard. "Internationalized Resource Identifiers
RFC 3987, January 2005.
http://ietf.org/rfc/rfc3987.txt

[UCD] Unicode Character Database.
http://www.unicode.org/ucd/
For an overview of the Unicode Character Database and a list o
associated files.

[UCDFormat] UCD File Format
http://www.unicode.org/reports/tr44/#Format_Conventions

Page 26 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

[UAX9] UAX #9: The Bidirectional Algorithm
http://www.unicode.org/reports/tr9/

[UAX15]
UAX #15: Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[UAX24] UAX #24: Script Names
http://www.unicode.org/reports/tr24/

[UAX31] UAX #31, Identifier and Pattern Syntax
http://www.unicode.org/reports/tr31/

[UTR36] UTR #36: Unicode Security Considerations
http://www.unicode.org/reports/tr36/

[UTR30] UTR #39: Character Foldings
http://unicode.org/reports/tr30/

[UTS18] UTS #18: Unicode Regular Expressions
http://www.unicode.org/reports/tr18/

[Unicode] The Unicode Consortium. The Unicode Standard, Version 5.2.0
by: The Unicode Standard, Version 5.2 (Mountain View, CA: Th
Consortium, 2009. ISBN 978-1-936213-00-9)

[Versions] Versions of the Unicode Standard
http://www.unicode.org/standard/versions/
For information on version numbering, and citing and referenc
Unicode Standard, the Unicode Character Database, and Unico
Technical Reports.

Modifications

The following summarizes modifications from the previous revision of
this document.

Revision 3:

Draft 3•
Made modifications resulting from UTC discussion.•

Page 27 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

Section 3.2 IDN Security Profiles for Identifiers, conformance clause
C1, and the idnchars.txt data file have been removed.

•

The subsection Data Files is now Section 7.•
Draft 2•
Added Table 0. Identifier_Modification_Key and text following,
explaining the identifer restrictions. Especially see the caveat about
use of the data.

•

Added pointer for interactive review.•
Added more review notes asking for feedback.•
Changed to NFD instead of NFKD, with relevant mappings moved
into the data file.

•

Draft 1•
Proposed update of the document.•
Revised the confusable data to add data extracted from a
comparison of font data from windows and mac.

•

Data was generated for characters sharing the same outline in
some font on that system.

◦

Those were then reviewed to remove errors due to bad font
mappings.

◦

Additional mappings were also added, such as "rn"≅"m".◦

The recommended characters in identifiers were updated based on
UAX 31, with the following labels:

•

UAX31 Table 4 Candidate Exclusions◦
UAX31 Table 5 Limited Use ◦
Note: more work needs to be done to update the
recommended characters.

◦

The IICore information was removed, since it is not a good guide to
usage.

•

Revision 2:

Removed the "input" and "lenient" tables•
Minor editing and clarifications•

Page 28 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

Revision 1:

Created from Appendix A, B, and D from [UTR36].•
Created Section 6. Development Process based on document L2/06-
055.

•

Removed DITTO Mark, added intentional mappings•
Added 5.0 scripts to removals: Balinese, Cuneiform, Phoenician,
Phags_Pa

•

Revised table formats•
Added the intentional mappings, plus a pointer to source data•

Copyright © 2004-2009 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no
expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No
liability is assumed for incidental and consequential damages in connection with or arising out of
the use of the information or programs contained or accompanying this technical report. The
Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

Page 29 of 29UTR# 39: Unicode Security Mechanisms

2/4/2010file://C:\L2-Doc\Incoming\10023-tr39-draft.html

