
 Technical Reports

Proposed Update Unicode Technical Report #36

Editors Mark Davis (markdavis@google.com),
Michel Suignard (michel@suignard.com)

Date 2012-03-02
This Version http://www.unicode.org/reports/tr36/tr36-10.html
Previous
Version

http://www.unicode.org/reports/tr36/tr36-9.html

Latest
Version

http://www.unicode.org/reports/tr36/

Latest
Proposed
Update

http://www.unicode.org/reports/tr36/proposed.html

Revision 10

rick@unicode.org
Text Box
L2/12-155

1 Introduction
1.1 Structure

2 Visual Security Issues
2.1 Internationalized Domain Names
2.2 Mixed-Script Spoofing
2.3 Single-Script Spoofing
2.4 Inadequate Rendering Support
2.5 Bidirectional Text Spoofing
2.6 Syntax Spoofing
2.7 Numeric Spoofs
2.8 Techniques
2.9 Restriction Levels and Alerts
2.10 Recommendations

3 Non-Visual Security Issues
3.1 UTF-8 Exploits
3.2 Text Comparison
3.3 Buffer Overflows
3.4 Property and Character Stability
3.5 Deletion of Code Points
3.6 Secure Encoding Conversion
3.7 Enabling Lossless Conversion

Appendix A Script Icons
Appendix B Language-Based Security
Acknowledgements
References
Modifications

1 Introduction

The Unicode Standard represents a very significant advance over all previous
methods of encoding characters. For the first time, all of the world's characters
can be represented in a uniform manner, making it feasible for the vast

majority of programs to be built to handle any language in the
world.

In many ways, the use of Unicode makes programs much more robust and
secure. When systems used a hodge-podge of different charsets for
representing characters, there were security and corruption problems that
resulted from differences between those charsets, or from the way in which
programs converted to and from them.

However, because Unicode contains such a large number of characters, and
incorporates the varied writing systems of the world, incorrect usage can
expose programs or systems to possible security attacks. This document
describes some of the security considerations that programmers, system
analysts, standards developers, and users should take into account.

For example, consider visual spoofing, where a similarity in visual appearance
fools a user and causes him or her to take unsafe actions.

Suppose that the user gets an email notification about an apparent
problem in their Citibank account. Security-savvy users realize that it
might be a spoof; the HTML email might be presenting the URL
http://citibank.com/... visually, but might be hiding the URL. They
realize that even what shows up in the status bar might be a lie, because
clever Javascript or ActiveX can work around that. (And users may are
likely to have these turned on, unless they know to turn them off.) They
click on the link, and carefully examine the browser's address box to make
sure that it is actually going to http://citibank.com/.... They see that it is,
and use their password. However, what they saw was wrong—it is actually
going to a spoof site with a fake "citibank.com", using the Cyrillic letter
that looks precisely like a 'c'. They use the site without suspecting, and the
password ends up compromised.

This problem is not new to Unicode: it was possible to spoof even with ASCII
characters alone. For example, "inteI.com" uses a capital I instead of an L. The
infamous example here involves "paypaI.com":

... Not only was "Paypai.com" very convincing, but the scam artist even
goes one step further. He or she is apparently emailing PayPal customers,
saying they have a large payment waiting for them in their account.

The message then offers up a link, urging the recipient to claim the funds.
However, the URL that is displayed for the unwitting victim uses a capital
"i" (I), which looks just like a lowercase "L" (l), in many computer fonts.
...[Paypal].

While some browsers prevent this spoof by lowercasing domain names, others
do not.

Thus to a certain extent, the new forms of visual spoofing available with
Unicode are a matter of degree and not kind. However, because of the very
large number of Unicode characters (over 107,000 in the current version), the
number of opportunities for visual spoofing is significantly larger than with a
restricted character set such as ASCII.

1.1 Structure

This document is organized into two sections: visual security issues and
non-visual security issues. Each section presents background information on
the kinds of problems that can occur, and lists specific recommendations for
reducing the risk of such problems. For background information, see the
References and the Unicode FAQ on [FAQSec].

2 Visual Security Issues

Visual spoofs depend on the use of strings: two different
strings of Unicode characters whose appearance in common fonts in small sizes
at typical screen resolutions is sufficiently close that people easily mistake one
for the other.

There are no hard-and-fast rules for visual confusability: many characters look
like others when used with sufficiently small sizes. "Small sizes at screen
resolutions" means fonts whose ascent plus descent is from 9 to 12 pixels for
most scripts, and somewhat larger for scripts, such as Japanese, where the
users typically have larger sizes. Confusability also depends on the style of the
font: with a traditional Hebrew style, many characters are only distinguishable
by fine differences which may be lost at small sizes. In some cases sequences
of characters can be used to spoof: for example, "rn" ("r" followed by "n") is
visually confusable with "m" in many sans-serif fonts.

Where two different strings can always be represented by the same sequence of

glyphs, those strings are called . For example, "AB" in Latin and
"AB" in Greek are homographs. Spoofing is not dependent on just homographs;
if the visual appearance is close enough at small sizes or in the most common
fonts, that can be sufficient to cause problems. Some people use the term

 broadly, encompassing all visually confusable strings.

Two characters with similar or identical glyph shapes are not visually
confusable if the positioning of the respective shapes is sufficiently different.
For example, foo·com (using the hyphenation point instead of the period)
should be distinguishable from foo.com by the positioning of the dot.

It is important to be aware that identifiers are special-purpose strings used for
identification, strings that are deliberately limited to particular repertoires for
that purpose. Exclusion of characters from identifiers does not affect the
general use of those characters, such as within documents.

The remainder of this section is concerned with identifiers that can be confused
by ordinary users at typical sizes and screen resolutions. For examples of
visually confusable characters, see in

 [UTS39].

It is also important to recognize that the use of visually confusable characters
in spoofing is often overstated. Moreover, confusable characters account for a
small proportion of phishing problems: most are cases like "secure-
wellsfargo.com". For more information, see [Bortzmeyer].

2.1 Internationalized Domain Names

Visual spoofing is an especially important subject given the introduction in
2003 of Internationalized Domain Names (IDN) [IDNA2003]. There is a natural
desire for people to see domain names in their own languages and writing
systems; English speakers can understand this if they consider what it would be
like if they always had to type Web addresses with Japanese characters. IDNs
represent a very significant advance for most people in the world. However, the
larger repertoire of characters results in more opportunities for spoofing.
Proper implementation in browsers and other programs is required to minimize
security risks while still allowing for effective use of non-ASCII characters.

Internationalized Domain Names are, of course, not the only cases where visual
spoofing can occur. One example is a message offering to install software from

"IBM", authenticated with a certificate in which the "М" character happens to be
the Russian (Cyrillic) character that looks precisely like the English "M".
Wherever strings are used as identifiers, this kind of spoofing is possible.

IDNs provide a good starting point for a discussion of visual spoofing, and are
the focus of the next part of this section. In 2010, there was a update to
[IDNA2003] called [IDNA2008]. Because the concepts and recommendations
discussed here can be generalized to the use of other types of identifiers, both
[IDNA2003] and [IDNA2008] will be used in examples. For background
information on identifiers, see UAX #31: [UAX31].
For more information on how to handle international domain names in a
compatible fashion, see
[UTS46].

Fortunately the design of IDN prevents a huge number of spoofing attacks. All
conformant users of [IDNA2003] are required to process domain names to
convert what are called characters into a unique form
using a process called compatibility normalization (NFKC)—for more
information on this, see [UAX15]. This processing eliminates most possibilities
for visual spoofing by mapping away a large number of visually confusable
characters and sequences. For example, characters like the halfwidth Japanese

 character ｶ are converted to the regular character カ, and single
ligature characters like "fi" to the sequence of regular characters "fi". Unicode
contains the "ä" (a-umlaut) character, but also contains a free-standing umlaut
(" ̈") which can be used in combination with any character, including an "a". The
compatibility normalization will convert any sequence of "a" plus " ̈" into the
regular "ä". ([IDNA2008] disallows these compatibility characters as output, but
allows them to be mapped on input.)

Thus someone cannot spoof an with ; it simply results in
the same domain name. See the example in . The
String column shows the actual characters; the UTF-16 column shows the
underlying encoding and the Punycode column shows the internal format of the
domain name. This is the result of applying the ToASCII() operation [RFC3490]
to the original IDN, which is the way this IDN is stored and queried in the DNS
(Domain Name System).

Table 1. Safe Domain Names

 String UTF-16 Punycode Comments

1a ät.com 0061 0308 0074 002E
0063 006F 006D xn--t-

zfa.com
Uses the decomposed form, a plus umlaut

1b ät.com 00E4 0074 002E 0063
006F 006D xn--t-

zfa.com
The decomposed form ends up being identical to
the composed form, in IDNA

Similarly, for most scripts, two accents that do not interact typographically are
put into a determinate order when the text is normalized. Thus the sequence
<x, dot_above, dot_below> is reordered as <x, dot_below, dot_above>. This
ensures that the two sequences that look identical (ẋ̣ and ẋ̣̇) have the same
representation.

Note: The demo at [IDN-Demo] can be used to demonstrate the results of
processing different domain names. That demo was also used to get the
Punycode values shown in .

The [IDNA2003] and [UTS46] processing also removes case distinctions by
performing a to reduce characters to a lowercase form This is
helps avoid spoofing problems, because characters are generally more
distinctive in their lowercase forms. That means that implementers can focus
on just dealing with the lowercase characters. There are some cases where
people will want to see certain special differences preserved in display. For
more information, and information about characters allowed in IDN, see

 [UTS46].

Note: Users expect diacritical marks to distinguish domain names. For
example, the domain names "resume.com" and "résumé.com" are (and
should be) distinguished. In languages where the spelling may allow
certain words with and without diacritics, registrants would have to
register two or more domain names to cover user expectations (just as
one may register both "analyze.com" and "analyse.com" to cover variant
spellings). The registry can support this automatically by using a
technique known as "bundling".

Although normalization and casefolding prevent many possible spoofing
attacks, visual spoofing can still occur with many IDNs. This poses the question

of which parts of the infrastructure using and supporting domain names are
best suited to minimize possible spoofing attacks.

Some of the problems of visual spoofing can be best handled on the registry
side, while others can be best handled on the side of the : browsers,
emailers, and other programs that display and process URLs. The registry has
the most data available about alternative registered names, and can process
that information the most efficiently at the time of registration, using policies
to reduce visual spoofing. For example, given the method described in

 in [UTS39], the
registry can easily determine if a proposed registration could be visually
confused with an existing one; that determination is much more difficult for
user agents because of the sheer number of combinations that they would have
to check.

However, there are certain issues much more easily addressed by the user
agent:

the user agent has more control over the display of characters, which is
crucial to spoofing
there are legitimate cases of visually confusable characters that one may
want to allow alerting the user, such as single-script confusables
discussed below
one cannot depend on all registries being responsive to security issues
due to the decentralized nature of DNS, a registry for a domain does not
control subdomains: thus the registry for a top-level domain (TLD) like
".com" may not control the labels accepted by a subdomain like
"blogspot.com".

Thus the problem of visual spoofing is most effectively addressed by a
combination of strategies involving user agents and registries.

2.2 Mixed-Script Spoofing

Visually confusable characters are not usually unified across scripts. Thus a
Greek is encoded as a different character from the Latin "o", even
though it is usually identical or nearly identical in appearance. There are good
reasons for this: often the characters were separate in legacy encodings, and
preservation of those distinctions was necessary for data to be converted to

Unicode and back without loss. Moreover, the characters generally have very
different behavior: two visually confusable characters may be different in casing
behavior, in category (letter versus number), or in numeric value. After all, ASCII
does not unify lowercase letter l and digit 1, even though those are visually
confusable. (Many fonts always distinguish them, but many others do not.)
Encoding the Cyrillic character б (corresponding to the letter "b") by using the
numeral 6, would clearly have been a mistake, even though they are visually
confusable.

However, the existence of visually confusable characters across scripts offers
numerous opportunities for spoofing. For example, a domain name can be
spoofed by using a Greek omicron instead of an 'o', as in example 1a in

.

Table 2. Mixed-Script Spoofing

 String UTF-16 Punycode Comments

1a tοp.com 0074 03BF 0070 002E 0063 006F
006D xn--tp-

jbc.com
Uses a Greek omicron in place of
the o

1b tοp.com 0074 006F 0070 002E 0063 006F
006D top.com

There are many legitimate uses of mixed scripts. For example, it is quite
common to mix English words (with Latin characters) in other languages,
including languages using non-Latin scripts. For example, one could have
XML-документы.com (which would be a site for "XML documents" in Russian).
Even in English, legitimate product or organization names may contain
non-Latin characters, such as Ωmega, Teχ, Toys-Я-Us, or HλLF-LIFE. The lack
of IDNs in the past has also led to the usage in some registries (such as the .ru
top-level domain) where Latin characters have been used to create pseudo-
Cyrillic names in the .ru (Russian) top-level domain. For example, see
http://caxap.ru/ (сахар means sugar in Russian).

For information on detecting mixed scripts, see
of

Cyrillic, Latin, and Greek represent special challenges, because the number of
common glyphs shared between them is so high, as can be seen from

in [UTS39]. It
may be possible to compose an entire domain name (except the top-level

domain) in Cyrillic using letters that will be essentially always identical in form
to Latin letters, such as "scope.com": with "scope" in Cyrillic looking just like
"scope" in Latin. Such spoofs are called and the strings
that cause the problem are correspondingly called

2.3 Single-Script Spoofing

Spoofing with characters entirely within one script, or using characters that are
common across scripts (such as numbers), is called , and
the strings that cause it are correspondingly called .
While compatibility normalization and mixed-script detection can handle the
majority of spoofing cases, they do not handle single-script confusables.
Especially at the smaller font sizes in the context of an address bar, any visual
confusables within a single script can be used in spoofing. Importantly, these
problems can be illustrated with common, widely available fonts on widely
available operating systems—the problems are not specific to any single
vendor.

Consider the examples in , all in the same script.
In each numbered case, the strings will look identical or nearly identical in most
browsers.

Table 3. Single-Script Spoofing

 String UTF-16 Punycode Comments

1a a‐b.com 0061 2010 0062 002E 0063
006F 006D xn--ab-

v1t.com
Uses a real hyphen, instead of the
ASCII hyphen-minus

1b a-b.com 0061 002D 0062 002E 0063
006F 006D a-b.com

2a so̷s.com 0073 006F 0337 0073 002E
0063 006F 006D xn--sos-

rjc.com
Uses o + combining slash

2b søs.com 0073 00F8 0073 002E 0063
006F 006D xn--ss-

lka.com

3a z̵o.com 007A 0335 006F 002E 0063
006F 006D xn--zo-

pyb.com
Uses z + combining bar

3b ƶo.com 01B6 006F 002E 0063 006F
006D xn--o-

zra.com

4a an͂o.com 0061 006E 0342 006F 002E
0063 006F 006D xn--ano-

0kc.com
Uses n + greek perispomeni

4b año.com 0061 00F1 006F 002E 0063
006F 006D xn--ao-

zja.com

5a ʣe.org 02A3 0065 002E 006F 0072
0067 xn--e-j5a.org Uses d-z digraph

5b dze.org 0064 007A 0065 002E 006F
0072 0067 dze.org

Examples exist in various scripts. For instance, 'rn' was already mentioned
above, and the sequence अ + ◌ा typically looks identical to आ.

In most cases two sequences of accents that have the same visual appearance
are put into a canonical order. This does not happen, however, for certain
scripts used in Southeast Asia, so reordering characters may be used for spoofs
in those cases. See

Table 4. Combining Mark Order Spoofing

 String UTF-16 Punycode Comments

1a လို.com 101C 102D 102F xn--gjd8ag.com Reorders two combining marks

1b လုိ.com 101C 102F 102D xn--gjd8af.com

2.4 Inadequate Rendering Support

An additional problem arises when a font or rendering engine has inadequate
support for characters or sequences of characters that should be visually
distinguishable, but do not appear that way. In

, examples 1a and 1b show the cases of lowercase L and digit one,
mentioned above. While this depends on the font, on the computer used to
write this document, roughly 30% of the fonts display glyphs that are essentially
identical. In example 2a, the is followed by another . The
Unicode Standard guidelines indicate that the second should be
'stacked' above the first, producing a distinct visual difference. However, as

example 2a shows, common fonts will simply superimpose the second ;
and if the positioning is close enough, the user will not see a difference
between 2a and 2b. Examples 3 a, b, and c show an even worse case. The

 character in 3a should appear under the 'l', but as rendered with many
fonts, it appears under the 'e'. It is thus visually confusable with 3b (where the

 is under the e) or the equivalent normalized form 3c.

Table 5. Inadequate Rendering Support

 String UTF-16 Punycode Comments

1a al.com 0061 006C 002E 0063 006F
006D al.com 1 and l may appear alike,

depending on font.

1b a1.com 0061 0031 002E 0063 006F
006D a1.com

2a ä ̈t.com 00E4 0308 0074 002E 0063
006F 006D xn--t-

zfa85n.com
a-umlaut + umlaut

2b ät.com 00E4 0074 002E 0063 006F
006D xn--t-zfa.com

3a eḷ.com 0065 006C 0323 002E 0063
006F 006D xn--e-zom.com Has a dot under the l; may appear

under the e

3b ẹl.com 0065 0323 006C 002E 0063
006F 006D xn--l-ewm.com

3c ẹl.com 1EB9 006C 002E 0063 006F
006D xn--l-ewm.com

Certain Unicode characters are invisible, although they may affect the rendering
of the characters around them. An example is the character, used to
request a cursive connection such as in Arabic. Such characters may often be in
positions where they have no visual distinction, and are thus discouraged for
use in identifiers except in specific contexts. For more information, see

 [UTS46].

A sequence of ideographic description characters may be displayed as if it were
a CJK character; thus they are also discouraged.

Font technologies such as TrueType/OpenType are extremely powerful. A glyph
in such a font actually may use a small programs to transform the shape

radically according to resolution, platform, or language. This is used to chose
an optimal shape for the character under different conditions. However, it can
also be used in a security attack, because it is powerful enough to change the
appearance of, say "$100.00" on the screen to "$200.00" when printed.

In addition Cascading Style Sheets (CSS) can change to a different font for
printing versus screen display, which can open up the use of more confusable
fonts.

These problems are not specific to Unicode. To reduce the risk of this kind of
exploit, programmers and users should only allow trusted fonts in such
circumstances.

2.5 Bidirectional Text Spoofing

Some characters, such as those used in the Arabic and Hebrew script, have an
inherent right-to-left writing direction. When these characters are mixed with
characters of other scripts or symbol sets which are displayed left-to-right, the
resulting text is called bidirectional (abbreviated as). The relationship
between the memory representation of the text (logical order) and the display
appearance (visual order) of bidi text is governed by

 [UAX9].

Because some characters have weak or neutral directionalities, as opposed to
strong left-to-right or right-to-left, the Unicode Bidirectional Algorithm uses a
precise set of rules to determine the final visual rendering. However, presented
with arbitrary sequences of text, this may lead to text sequences which may be
impossible to read intelligibly, or which may be visually confusable. To mitigate
these issues, the [IDNA2003] specification requires that:

each label of a host name must not use both right-to-left and
left-to-right characters,
a label using right-to-left character must start and end with right-to-left
characters.

The [IDNA2008] specification improves these rules, allowing some sequences
that are incorrectly forbidden by the above rules, and disallowing others that
can cause visual confusion.

In addition, the IRI specification extends those requirements to other

components of an IRI, not just the host name labels. Not respecting them would
result in insurmountable visual confusion. A large part of the confusability in
reading an IRI containing bidi characters is created by the weak or neutral
directionality property of many IRI/URI delimiters such as '/', '.', '?' which makes
them change directionality depending on their surrounding characters. This is
shown with the dots in , where they are colored the
same as the preceding label. Notice that the placement of that following
punctuation may vary.

Table 6. Bidi Examples

Samples

1

2

Adding the left-to-right label "a" between the two Arabic labels splits them up
and reverses their display order, as seen in example #2 in

. The IRI specification [RFC3987] provides more examples of valid and
invalid IRIs using various mixes of bidi text.

To minimize the opportunities for confusion, it is imperative that the
[IDNA2008] and IRI requirements concerning bidi processing be fully
implemented in the processing of host names containing bidi characters.
Nevertheless, even when these requirements are met, reading IRIs correctly is
not trivial. Because of this, mixing right-to-left and left-to-right characters
should be done with great care when creating bidi IRIs.

Recommendations:

Never allow bidi override characters.
As much as possible, avoid mixing right-to-left and left-to-right
characters in a single name.
When right-to-left characters are used, limit the usage of left-to-right
characters to well-known cases such as TLD names and URI/IRI scheme
names (such as http, ftp, mailto, and so on).
Minimize the use of digits in host names and other components of IRIs

containing right-to-left characters.
Keep IRIs containing bidi content simple to read.
Use reverse-bidi (visual order -> storage order) to detect possible bidi
spoofs. That is, one can apply bidi, then reverse bidi: if the result does not
match the original storage order, then the visual reading is ambiguous and
the string can be rejected. This is, however, subject to false positives, so
this should probably be presented to users for confirmation.

In complex scripts such as Arabic and South Asian scripts, characters may
change shape according to the surrounding characters, as shown in

. Note that this also occurs in higher-end typography
in English, as illustrated by the "fi" ligature. Two characters might be visually
distinct in a stand-alone form, but not be distinct in a particular context.

Table 7. Glyphs in Complex Scripts

1.Glyphs may change shape
depending on their
surroundings:

2.Multiple characters may

produce a single glyph:

3.A single character may

produce multiple glyphs:

Some complex scripts are encoded with a so-called where
non-private-use characters are misused as other characters or parts of
characters. These present special risks, because the encodings are not
identified, and the visual interpretation of the characters depends entirely on

the font, and is completely disconnected from the underlying characters.
Luckily such font-encodings are seldom used, and their use is decreasing
rapidly with the growth of Unicode.

2.6 Syntax Spoofing

Spoofing syntax characters can be even worse than regular characters, as
illustrated in . For example, U+2044 (⁄) FRACTION
SLASH can look like a regular ASCII '/' in many fonts—ideally the spacing and
angle are sufficiently different to distinguish these characters. However, this is
not always the case. When this character is allowed, the URL in line 1 may
appear to be in the domain macchiato.com, but is actually in a particular
subzone of the domain bad.com.

Table 8. Syntax Spoofing

 URL Subzone Domain
1 http://macchiato.com/x.bad.com macchiato.com/x bad.com
2 http://macchiato.com?x.bad.com macchiato.com?x bad.com
3 http://macchiato.com.x.bad.com macchiato.com.x bad.com
4 http://macchiato.com#x.bad.com macchiato.com#x bad.com

Where there are visual confusables other syntax characters can be similarly
spoofed, as in lines 2 through 4. Nameprep [RFC3491] and [UTS46] disallow
many such cases, such as such as U+2024 (·) ONE DOT LEADER. However, not
all syntax spoofs are disallowed.

Of course, these types of spoofs do not require IDNs. For example, in the
following the real domain name, bad.com, is also obscured for the casual user,
who may not realize that "--" does not terminate the domain name.

http://macchiato.com--long-and-obscure-list-of-
characters.bad.com?findid=12

In retrospect, it would have been much better if domain names were
customarily written with the most significant label first. The following
hypothetical display would be harder to spoof: it is easy to see that the top level
is "com.bad".

http://com.bad.org/x.example?findid=12
http://com.bad.org--long-and-obscure-list-of-
characters.example?findid=12

However, that would be an impossible change at this point. However, much the
same effect can be produced by always visually distinguishing the domain, for
example:

http://macchiato.com
http://bad.com
http://macchiato.com/x.bad.com
http://macchiato.com--long-and-obscure-list-of-
characters.bad.com?findid=12
http://220.135.25.171/amazon/index.html

Such visual distinction could be in different ways, such as highlighting in an
address box as above, or extracting and displaying the domain name in a
noticeable place.

User agents already have to deal with syntax issues. For example, Firefox gives
something like the following alert when given the URL
http://something@macchiato.com:

You are about to log into the site “macchiato.com”
with the username “something”, but the web site
does not require authentication. This may be an
attempt to trick you.

Is “macchiato.com” the site you want to visit?

Such a mechanism can be used to alert the user to cases of syntax spoofing.

It is very important not to show a missing glyph or character with a simple "?",
because every such character is visually confusable with a real question mark.

Instead, follow the Unicode guidelines for displaying missing glyphs using a
rounded-rectangle, as listed in and described in

 of [Unicode].

Private use characters must be avoided in identifiers, except in closed
environments. There is no predicting what either the visual display or the
programmatic interpretation will be on any given machine, so this can obviously
lead to security problems. This is not a problem for IDNs, because private use
characters are excluded in all specifications: [IDNA2003], [IDNA2008], and
[UTS46].

What is true for private use characters is doubly true of unassigned code points.
Secure systems will not use them: any future Unicode Standard could assign
those codepoints to any new character. This is especially important in the case
of certification.

2.7 Numeric Spoofs

Turning away from the focus on domain names for a moment, there is another
area where visual spoofs can be used. Many scripts have sets of decimal digits
that are different in shape from the typical European digits. For example,
Bengali has {০ ১ ২ ৩ ৪ ৫ ৬ ৭ ৮ ৯}, while Oriya has {୦ ୧ ୨ ୩ ୪ ୫ ୬ ୭ ୮ ୯}. Individual
digits may have the same shapes as digits from other scripts, even digits of
different values. For example, the Bengali string "৪୨" is visually confusable with
the European digits "89", but actually has the numeric value 42! If software
interprets the numeric value of a string of digits without detecting that the
digits are from different or inappropriate scripts, such spoofs can be used.

2.8 IDNA Ambiguity

IDNA2008, just approved in 2010, opens up new opportunities for spoofing. In
the 2003 version of international domain names, a correctly processed URL
containing Unicode characters always resolved to the same Punycode URL for
lookup. IDNA2008, in certain cases, will resolve to a different Punycode URL.
Thus the same URL, whether typed in by the user or present in data (such as in
an href) will resolve to two different locations, depending on whether the user
is using a browser on the pre-2010 international domain name specification or
the post-2010 specification. For more information on this topic, see

 [UTS46] and [IDN_FAQ].

2.8 Techniques

This section lists techniques for reducing the risks of visual spoofing. These
techniques are referenced by

Many opportunities for spoofing can be removed by using a format.
This format, defined by the Unicode Standard, produces a string that only
contains lowercase characters where possible.

However, four characters that require special handling in casefolding, where the
pure casefolded format of a string as defined by the Unicode Standard is not
desired. For example, the character U+03A3 "Σ" lowercases to
U+03C3 "σ" if it is followed by another letter, but lowercases to
U+03C2 "ς" if it is not. Because both σ and ς have a
case-insensitive match to Σ, and the casefolding algorithm needs to map both
of them together (so that transitivity is maintained), only one of them appears
in the casefolded form.

When σ comes after a cased letter, and not before a cased letter (where
certain ignorable characters can come in between), it should be
transformed into ς. For more details, see the test for Final_Sigma as
provided in Table 3-15 of [Unicode].

For more information, see
[UTS46]. For more information on case mapping and folding, see the following:

, ; and
 of [Unicode].

Mapping and prohibition are two useful techniques to reduce the risk of
spoofing that can be applied to identifiers. A number of characters are included
in Unicode for compatibility. (NFKC) can be used to
map these characters to the regular variants. For example, a halfwidth Japanese

 character ｶ is mapped to the regular character カ. Additional
mappings can be added beyond compatibility mappings, for example,
[IDNA2003] adds the following:

200D; ZERO WIDTH JOINER maps to nothing (that is, is removed)
0041; 0061; Case maps 'A' to 'a'
20A8; 0072 0073; Additional folding, mapping ₨ to "rs"

In addition, characters may be prohibited. For example, IDNA2003 prohibits
 and (U+00A0). Instead of removing a ZERO WIDTH

JOINER, or mapping ₨ to "rs", one could prohibit these characters. There are
pluses and minuses to both approaches. If compatibility characters are widely
used in practice in entering text, it is much more user-friendly to remap them.
This also extends to deletion; for example, the ZERO WIDTH JOINER is
commonly used to affect the presentation of characters in languages such as
Hindi or Arabic. In this case, text copied into the address box may often contain
the character.

Where this is not the case, however, it may be advisable to simply prohibit the
character. It is unlikely, for example, that ㋕ would be typed by a Japanese user,
nor that it would need to work in copied text.

Where both mapping and prohibition are used, the mapping should be done
before the prohibition, to ensure that characters do not "sneak past". For
example, the Greek character TONOS (΄) ends up being prohibited in
[IDNA2003], because it normalizes to , and itself is
prohibited.

Many languages have words whose correct spelling requires the use of certain
invisible characters, especially the Join_Control characters:

200C ZERO WIDTH NON-JOINER
200D ZERO WIDTH JOINER

For that reason, as of Version 5.1 of the Unicode Standard the
recommendations for identifiers were modified to allow these characters in
certain circumstances. (For more information, see

 [UAX31].) There are very stringent constraints on the use of
these characters, so that they are only allowed with certain scripts, and in
certain circumscribed contexts. In particular, in Indic scripts the ZWJ and ZWNJ
may only be used in combination with a character. This approach is
adopted in [IDNA2008] and [UTS46].

Even when the join controls are constrained to being next to a , in some

contexts they may not result in a different visual appearance. For example, in
roughly half of the possible pairs of Malayalam consonants linked by a ,
the ZWNJ makes a visual difference; in the remaining cases, the appearance is
the same as if only the virama were present, without a ZWNJ. Implementations
or standards may thus place further restrictions on invisible characters. For join
controls in Indic scripts, such restrictions would typically consist of providing a
table per script, containing pairs of consonants which allow intervening .

The Unicode property [NFKC_Casefold] can be used to get a combined
casefolding, normalization, and removal of default-ignorable code points. It is
the basis for the mapping of international domain names in

[UTS46]. For more information, also see
 [UTS39].

2.9 Restriction Levels and Alerts

[]. To help avoid problems with
mixtures of scripts, [UTS39] defines

. An appropriate alert should be generated if an identifier fails
to satisfy the Restriction Level chosen by the user or set in the browser.
Depending on the circumstances and the level difference, the form of such
alerts could be minimal, such as special coloring or icons (perhaps with a
tool-tip for more information); or more obvious, such as an alert dialog
describing the issue and requiring user confirmation before continuing; or even
more stringent, such as disallowing the use of the identifier. Where icons are
used to indicate the presence of characters from scripts, the glyphs in

 can be used.

The UI for giving users choice among restriction levels may vary considerably.
In the case of domain names, only the middle three levels are interesting. Level
1 turns IDNs completely off, while Level 5 is not recommended for IDNs.

Note that the examples in Level 4 are chosen for their familiarity to English
speakers. For most languages that customarily use the Latin script, there is
probably little need to mix in other scripts. That is not necessarily the case for
languages that customarily use a non-Latin script. Because of the widespread
commercial use of English and other Latin-based languages, it is quite common
to have Latin-script characters (especially ASCII) in text that principally consists
of other scripts, such as "خدمة RSS".

 in
[UTS39] provides for two profiles of identifiers that could be used in Restriction
Levels 1 through 4. The strict profile is recommended. If the lenient profile is
used, the user should have some way to choose the strict profile.

At all Restriction Levels, an appropriate alert should be generated if the domain
name contains a syntax character that might be used in a spoof, as described in

. For example:

You are about to go to the site “bad.com”, but
part of the address contains a character which
may have led you to think you were going to
“macchiato.com”. This may be an attempt to trick
you.

Is “bad.com” the site you want to visit?

 Remember my answer for future addresses with
“bad.com”

This alert does not need to be presented in a dialog window; there are a variety
of ways to alert users, such as in an information bar.

User agents should remember when the user has accepted an alert, for say
, and permit future access without bothering the user again. This

essentially builds up a whitelist of allowed values. This whitelist should contain
the "nameprepped" form of each string. When used for visually confusable
detection, each element in the whitelist should also have an associated
transformed string as described in [UTS39]. If a
system allows uppercase and lowercase forms, then both transforms should be
available. The program should allow access to editing this whitelist directly, in
case the user wants to correct the values. The whitelist may also include items
known by the user agent to be 'safe'.

The set of characters in the identifier profile and the results of the confusable

mappings may be refined over time, so implementations should recognize and
allow for that. Characters suitable for identifiers are periodically added to the
Unicode Standard, and thus the data for
[UTS39] is also periodically updated.

There may also be cases where characters are no longer recommended for
inclusion in identifiers as more information becomes available about them.
Thus some characters may be removed from the identifier profile in the future.
Of course, once identifiers are registered they cannot be withdrawn, but new
proposed identifiers that contain such characters can be denied.

2.10 Recommendations

The Unicode Consortium recommends a somewhat conservative approach at
this point, because is always easier to widen restrictions than narrow them.

Some have proposed restricting domain names according to language, to
prevent spoofing. In practice, that is very problematic: it is very difficult to
determine the intended language of many terms, especially product or company
names, which are often constructed to be neutral regarding language.
Moreover, languages tend to be quite fluid; foreign words are continually being
adopted. Except for registries with very special policies (such as the blocking
used by some East Asian registries as described in [RFC3743]), the language
association does not make too much sense. For more information, see

.

Instead, the Consortium recommends processing strings to remove basic
equivalences, promoting adequate rendering support, and putting restrictions
in place according to script, and restricting by confusable characters. While the
ICANN guidelines say "top-level domain registries will [...] associate each
registered internationalized domain name with one language or set of
languages" [ICANN], that guidance is better interpreted as limiting to
rather than .

Also see the security discussions in IRI [RFC3987], URI [RFC3986], and
Nameprep [RFC3491].

Use browsers, mail clients, and other software that have put user-agentA.

guidelines into place to detect spoofing.
If registering domain names, verify that the registry follows appropriate
guidelines for preventing spoofing.

B.

If the desired domain name can have any whole-script or single-script
confusables (such as "scope" in Latin and Cyrillic), register those as well, if
"bundling" is not automatically provided by the registry.

C.

Where there are alternative domain names, choose those that are less
spoofable.

D.

When using bidi IRIs, follow the recommendations in
.

E.

Be aware that fonts can be used in spoofing, as discussed in
. With documents having embedded fonts (web fonts),

be aware that the content on a printed form can be different than is on the
screen.

F.

When parsing numbers, detect digits of mixed scripts and unexpected
scripts and alert the user.

A.

When defining identifiers in programming languages, protocols, and other
environments:

Use the general security profile for identifiers from
 in

[UTS39]

1.

For equivalence of identifiers, preprocess both strings by applying
NFKC and case folding. Display all such identifiers to users in their
processed form. (There may be two displays: one in the original and
one in the processed form.) An example of this methodology is
Nameprep [RFC3491]. Although Nameprep is currently limited to
Unicode 3.2, the same methodology can be applied by
implementations that need to support more up-to-date versions of
Unicode.

2.

B.

In choosing or deploying fonts:
If there is no available glyph for a character, show a simple "?"
or omit the character.

1.

Use distinctive fonts, where possible.2.

C.

Use a size that makes it easier to see the differences in characters.
Disallow the use of font sizes that are so small as to cause even more
characters to be visually confusable. Use larger sizes for East/South
/South East Asian scripts, such as for Japanese and Thai.

3.

Watch for clipping, vertically and horizontally. That is, make sure that
the visible area extends outside of the text width and height, to the
character bounding box: the maximum extent of the shape of the
glyph.

4.

Assess the font support of the OS/platform according to
recommendations D1-D3 below (see also the W3C [CharMod]). If it is
inadequate, work with the OS/platform vendor to address those
problems, or implement special handling of problematic cases.

5.

In developing rendering systems or fonts:
Verify that accents do not appear to apply to the wrong characters.1.
Follow UTN #2: in providing layout of
nonspacing marks that would otherwise collide. If this is not done,
follow the "Show Hidden" option of

 of [Unicode] for the display of nonspacing marks.

2.

Follow the Unicode guidelines for displaying missing glyphs using a
rounded-rectangle, as described in

 of [Unicode]. The recommended glyphs according
to scripts are shown in .

3.

D.

The following recommendations are for user agents in handling domain names.
The term "user agent" is interpreted broadly to mean any program that displays
Internationalized Domain Names to a user, including browsers and emailers.

For information on the confusable tests mentioned below, see
in [UTS39] If the

user can see the casefolded form, use the lowercase-only confusable
mappings; otherwise use the broader mappings.

Follow .A.
Display

Either always show the domain name in nameprepped form1.
B.

[RFC3491], or make it very easy for the user to see it (see
). For example, this could be a tooltip

interface, or a separate box.
Always display the domain name with a visually highlighted domain
name, to prevent syntax spoofs (see).

2.

Always display IRIs with bidi content according to the IRI specification
[RFC3987].

3.

Preferences
In preferences, allow the user to select the desired Restriction Level
to apply to domain names. Set the default to Restriction Level 2.

1.

In preferences, allow the user to select among additional scripts that
can be used without alerting. The default can be based on the user's
locale.

2.

In preferences, allow the user to choose a backward compatibility
setting; see .

3.

C.

Alerts
If the user agent maintains a domain whitelist for the user, and the
domain name is in the whitelist, allow it and skip the remaining items
in this section. (The domain whitelist can take into account the
documented policies of the registry as per

.)

1.

If the visual appearance of a link does not match the end location,
alert the user.

2.

If the domain name does not satisfy the requirements of the user
preferences (such as the Restriction Level), alert the user.

3.

If the domain name contains any letters confusable with syntax
characters, alert the user.

4.

If there is a whitelist, and the domain name is visually confusable
with a whitelist domain name, but not identical to it (after nameprep),
alert the user.

5.

If any label in the domain name is a whole-script or a mixed-script
confusable, alert the user.

6.

D.

The following recommendations are for registries in dealing with identifiers

such as domain names. The term "Registry" is to be interpreted broadly, as any
agency that sets the policy for which identifiers are accepted.

Thus the .com operator can impose restrictions on the 2nd level domain label,
but if someone registers , then it is up to them to decide what will be
allowed at the 3rd level (for example,). So for that purpose, the
owner of is treated as the "Registry" for the 3rd level (the).
Similarly, the owner of a domain name is acting as an internal registry in terms
of the policies for the non-domain name portions of a URL, such as in

Thus the following recommendations still apply.

For information on the confusable tests mentioned below, see
 in [UTS39].

Publicly document the Restriction Level being enforced. For IDN, the
Restriction Level is not to be higher than Level 4: that is, no characters can
be outside of the in

 in [UTS39].

A.

Publicly document the enforcement policy on confusables: whether two
domain names are allowed to be single-script or mixed script confusables.

B.

If there are any pre-existing exceptions to A or B, then document them
also.

C.

Define an IDN registration in terms of both its Nameprep-Normalized
Unicode representation (the) and its Punycode
representation.

D.

The following recommendations are for registrars in dealing with domain
names. The term "Registrar" is to be interpreted broadly, as any agency that
presents a UI for registering domain names, and allows users to see whether a
name is registered. The same entity may be both a Registrar and Registry.

When a user's name is (or would be) rejected by the registry for security
reasons, show the user the reason for rejection (such as the existence of
an already-registered confusable).

A.

3 Non-Visual Security Issues

There are a number of exploits based on misuse of character encodings. Some

of these are fairly well-known, such as buffer overflows in conversion, while
others are not. Many are involved in the common practice of having a
'gatekeeper' for a system. That gatekeeper checks incoming data to ensure that
it is safe, and passes only safe data through. Once in the system, the other
components assume that the data is safe. A problem arises when a component
treats two pieces of text as identical—typically by canonicalizing them to the
same form—but the gatekeeper only detected that one of them was unsafe.

For example, suppose that strings containing the letters "delete" are sensitive
internally, and that therefore a gatekeeper checks for them. If some process
casefolds "DELETE" the gatekeeper has checked, then the sensitive string
can sneak through. While many programmers are aware of this, they may not be
aware that the same thing can happen with other transformations, such as an
NFKC transformation of "Ⓓⓔⓛⓔⓣⓔ" into "delete".

These gatekeeper problems can also happen with charset converters. Where a
character in a source string cannot be expressed in a target string, it is quite
common for charset converters to have a "fallback conversion", picking the next
best conversion. For example, when converting from Unicode to Latin-1, the
character "ⓔ" cannot be expressed exactly, and the converter may fall back to
"e". This can be used for the same kind of exploit. Unfortunately, some charset
converter APIs, such as in Java, do not allow such fallbacks to be turned off.
This is not only a problem for security, but also for other kinds of processing.
For example, when converting an XML or HTML page, a character such as "ⓔ"
missing from the target charset must be represented by an NCR such as
ⓔ instead of using a lossy converter. Where possible, using Unicode
instead of other charsets avoids many of these kinds of problems.

3.1 UTF-8 Exploits

There are three equivalent encoding forms for Unicode: UTF-8, UTF-16, and
UTF-32. UTF-8 is commonly used in XML and HTML; UTF-16 is the most
common in program APIs; and UTF-32 is the best for representing single
characters. While these forms are all equivalent in terms of the ability to
express Unicode, the original usage of UTF-8 was open to a canonicalization
exploit.

Originally, Unicode forbade the of "non-shortest form" UTF-8, but
not the of "non-shortest form" UTF-8. This was fixed in Unicode

3.0, because security issues can arise when software does interpret the
non-shortest forms. For example:

Process performs security checks, but does not check for non-shortest
forms.
Process accepts the byte sequence from process , and transforms it
into UTF-16 while interpreting non-shortest forms.
The UTF-16 text may then contain characters that should have been
filtered out by process .

For example, the backslash character "\" can often be a dangerous character to
let through a gatekeeper, because it can be used to access different directories.
Thus a gatekeeper might specifically prevent it from getting through. The
backslash is represented in UTF-8 as the byte sequence <5C>. However, as a
non-shortest form, backslash could also be represented as the byte
sequence<C1 9C>. When a gatekeeper does not check for non-shortest form,
this situation can lead to a severe security breach. For more information, see
[Related Material].

To address this issue, the Unicode Technical Committee modified the definition
of UTF-8 in Unicode 3.1 to forbid conformant implementations from
interpreting non-shortest forms for BMP characters, and clarified some of the
conformance clauses.

Suppose that a UTF-8 converter is iterating through input UTF-8 bytes,
converting to an output character encoding. If the converter encounters an
ill-formed UTF-8 sequence it can treat it as an error in a number of different
ways, including substituting a character like U+FFFD, SUB, "?", or SPACE.
However, it consume any valid successor bytes. For example, suppose
we have the following sequence:

X = <... 41 C2 3E 42 ... >

This sequence overall is ill-formed, because it contains an ill-formed substring,
the <C2>. That is, there is no substring of X containing the <C2> byte which
matches the specification for UTF-8 in Table 3-7 of Unicode 5.2 [Unicode]. The
UTF-8 converter can stop at the C2 byte, or substitute a character or sequence

like U+FFFD and continue. However, it must not consume the 3E byte if it
continues. That is, it is acceptable to convert X to ...A >B..., but not acceptable
to convert X to ...A B... (that is, deleting the >).

Consuming any subsequent byte is not only non-conformant; it can lead to
security breaches. For example, suppose that a web page is constructed with
user input. The user input is filtered to catch problem attributes such as
onMouseOver. However, incorrect conversion can defeat that filtering by
removing important syntax characters like > in HTML attribute values. Take the
following string, where " " indicates a bare C2 byte:

 onMouseOver=doBadStuff()...

When this is converted with a bad UTF-8 converter, the C2 would cause the >
character to be consumed, and the HTML served up would be of the following
form, allowing for a cross-site scripting attack:

<span style=width:100% onMouseOver=doBadStuff()...

For more information on how to handle ill-formed subsequences, see
"Constraints on Conversion Processes" in
in Unicode 5.2 [Unicode].

If characters to be substituted for ill-formed subsequences, it is important
that those characters be relatively safe.

Deletion (substituting the empty string) can be quite nasty, because it
joins characters that would have been separate (such as on MouseOver).
Substituting characters that are valid syntax for constructs such as file
names has similar problems. For example, the '.' can be very problematic.

U+FFFD is usually unproblematic, because it is designed expressly
for this kind of purpose. That is, because it does not have syntactic
meaning in programming languages or structured data, it will
typically just cause a failure in parsing. Where the output character
set is not Unicode, though, this character may not be available.
Where U+FFFD is not available, a common alternative is "?". While this
character may occur syntactically, it appears to be less subject to
attack than most others.

UTF-16 converters that do not handle isolated surrogates correctly are subject
to the same type of attack, although historically UTF-16 converters have
generally handled these well.

3.2 Text Comparison (Sorting, Searching, Matching)

The UTF-8 exploit is a special case of a general problem. Security problems
may arise where a user and a system (or two systems) compare text differently.
For example, this happens where text does not compare as users expect. See
the discussions in [UTS10], especially
Section 1.

A system is particularly vulnerable when two different implementations of the
same protocol use different mechanisms for text comparison, such as the
comparison as to whether two identifiers are equivalent or not.

Assume a system consists of two modules: a user registry and the access
control. Suppose that the user registry does not use NamePrep, while the
access control module does. Two situations can arise:

The user with valid access rights to a certain resource actually cannot
access it, because the binary representation of user ID used for the user
registry differs from the one specified in the access control list. This
situation is not a major security concern—because the person in this
situation cannot access the protected resource.

1.

The opposite case creates a security hole: a new user whose ID is
NamePrep-equivalent to another user's in the directory system can get the
access right to a protected resource.

2.

For example, a fundamental standard, [LDAP], used to be subject to this
problem; thus steps were taken to remedy this in later versions.

There are some other areas to watch for. Where these are overlooked, it may
leave a system open to the text comparison security problems.

Normalization is context dependent; do not assume NFC(x + y) = NFC(x)
+ NFC(y).

1.

There are binary Unicode orders: code point/UTF-8/UTF-32 and
UTF16 order. In the latter, U+10000 < U+E000 (because U+10000 =

2.

D800 DC00).
Avoid using non-Unicode charsets where possible. IANA / MIME charset
names are ill-defined: vendors often convert the same charset different
ways. For example, in Shift-JIS the value 0x5C converts to U+005C

 U+00A5 depending on the vendor, resulting in different, unrelated
characters with unrelated glyphs. See:

http://www.w3.org/TR/japanese-xml/
http://icu.sourceforge.net/charts/charset/

3.

When converting charsets, simply omit characters that cannot be
converted; at least substitute U+FFFD (when converting to Unicode) or
0x1A (when converting to bytes) to reduce security problems. See also
[UTS22].

4.

Regular expression engines use character properties in matching. They
may vary in how they match, depending on the interpretation of those
properties. Where regex matching is important to security, ensure that the
regular expression engine conforms to the requirements of [UTS18], and
uses an up-to-date version of the Unicode Standard for its properties.

5.

3.3 Buffer Overflows

Some programmers may rely on limitations that are true of ASCII or Latin-1, but
fail with general Unicode text. These can cause failures such as buffer overruns
if the length of text grows. In particular:

Strings may expand in casing: Fluß → FLUSS → fluss. The expansion factor
may change depending on the UTF as well.

1.

Programmers assume that NFC always composes, and thus is the same or
shorter length than the original source. However, some characters

 in NFC. The expansion factor may change depending on the
UTF as well.

2.

 illustrates the expansions for case
operations and normalization. These factors are for a particular version of
Unicode: they should be recomputed for the particular version of Unicode
being used.

The very large factors in the case of NFKC and NFKD are due to some
extremely rare characters. Thus algorithms can use much smaller
expansion factors for the typical cases as long as they have a fallback

3.

process that accounts for the possibility of these characters in data.
As of Unicode 5.0, a was added to

. This format allows protocols
to limit the number of characters that they need to buffer in handling
normalization.

When performing character conversion, text may grow or shrink,
sometimes substantially. Always account for that possibility in processing.

4.

Table 9.
Maximum Expansion Factors

Operation UTF Factor Sample

Lower
8 1.5X U+023A

16, 32 1X U+0041

Upper/Title/Fold 8, 16, 32 3X U+0390

Operation UTF Factor Sample

NFC
8 3X U+1D160

16, 32 3X U+FB2C

NFD
8 3X U+0390

16, 32 4X U+1F82

NFKC/NFKD
8 11X

U+FDFA
16, 32 18X

3.4 Property and Character Stability

The Unicode Consortium Stability Policies [Stability] limit the ways in which the
standards developed by the Unicode Consortium can change. These policies are
intended to ensure that text encoded in one version of the Unicode Standard
remains valid and unchanged in later versions. In many cases, the constraints
imposed by these stability policies allow implementers to simplify support for
particular features of Unicode, with the assurance that their implementations
will not be invalidated by a later update to Unicode.

Implementations should not make assumptions beyond what is documented in
the Stability Policies. For example, some implementations assumed that no new

decomposable characters would be added to Unicode. The actual restriction is
slightly looser: that decomposable characters will not be added if their
decompositions were already in Unicode. It is therefore possible to add a
decomposable character one of the characters in its decomposition is also
new in that version of Unicode. For example, decomposable Balinese characters
were added to the standard in Version 5.0, which caused some
implementations to break.

Similarly, some applications assumed that all Chinese characters were three
bytes in UTF-8. Thus once a string was known to be all Chinese, iteration
through the string could take the form of simply advancing an offset or pointer
by three bytes. This assumption proved incorrect and caused implementations
to break when Chinese characters were added on Plane 2, requiring 4-byte
representations in UTF-8.

Making such unwarranted assumptions can lead to security problems. For
example, advancing uniformly by three bytes for Chinese will corrupt the
interpretation of text, leading to problems like those mentioned in

. Implementers should thus be careful to only
depend on the documented stability policies.

An implementation may need to make certain assumptions for performance
—assumptions that are not guaranteed by the policies. In such a case, it is
recommended to at least have unit tests that detect whether those assumptions
have become invalid when the implementation is upgraded to a new version of
Unicode. That allows the problem to be detected and code to be revised if the
assumption is invalidated.

3.5 Deletion of Code Points

In some versions prior to Unicode 5.2, conformance clause C7 allowed the
deletion of noncharacter code points:

C7. When a process purports not to modify the interpretation of a valid
coded character sequence, it shall make no change to that coded character
sequence other than the possible replacement of character sequences by
their canonical-equivalent sequences

.

Whenever a character is invisibly deleted (instead of replaced), such as in this

older version of C7, it may cause a security problem. The issue is the following:
A gateway might be checking for a sensitive sequence of characters, say
"delete". If what is passed in is "deXlete", where X is a noncharacter, the
gateway lets it through: the sequence "deXlete" may be in and of itself
harmless. However, suppose that later on, past the gateway, an internal process
invisibly deletes the X. In that case, the sensitive sequence of characters is
formed, and can lead to a security breach.

The following is an example of how this can be used for malicious purposes.

3.6 Secure Encoding Conversion

In addition to handling Unicode text safely, character encoding conversion also
needs to be designed and implemented carefully in order to avoid security
issues.

When converting from a multi-byte encoding, a byte value may not be a valid
trailing byte, in a context where it follows a particular leading byte. For
example, when converting UTF-8 input, the byte sequence E3 80 22 is
malformed because 0x22 is not a valid second trailing byte following the
leading byte 0xE3. Some conversion code may report the three-byte sequence
E3 80 22 as one illegal sequence and continue converting the rest, while other
conversion code may report only the two-byte sequence E3 80 as an illegal
sequence and continue converting with the 0x22 byte which is a syntax
character in HTML and XML (U+0022 double quote). Implementations that
report the 0x22 byte as part of the illegal sequence can be exploited for cross-
site-scripting (XSS) attacks.

Therefore, an illegal byte sequence must not include bytes that encode valid
characters or are leading bytes for valid characters.

The following are safe error handling strategies for conversion code dealing
with illegal multi-byte sequences. (An illegal single/leading byte does not pose
this problem.)

Stop with an error. Do not continue converting the rest of the text.1.

In a reported illegal byte sequence, do not include any non-initial byte
that encodes a valid character or is a leading byte for a valid sequence.

2.

Report the first byte of the illegal sequence as an error and continue with
the second byte.

3.

Strategy 1 is the simplest, but in many cases it is desirable to convert as much
of the text as possible. For example, a web browser will usually replace a small
number of illegal byte sequences with U+FFFD each and display the page as
best it can. Strategy 3 is the next simplest but can lead to multiple U+FFFD or
other error handling artifacts for what is a single-byte error.

Strategy 2 is the most natural and fits well with an assumption that most errors
are not due to physical transmission corruption but due to truncated multi-byte
sequences from improper string handling. It also avoids going back to an
earlier byte stream position in most cases.

Converters for single-byte encodings are unaffected by any of these issues. Nor
are converters for the Character Encoding Schemes UTF-16 and UTF-32 and
their variants affected, because they are not really byte-based encodings: they
are often "converted" via memcpy(), at most with a byte swap, so a converter
needs to always deliver pairs or quads of bytes.

Character encoding conversion must also not simply skip an illegal input byte
sequence. Instead, it must stop with an error or substitute a replacement
character (such as U+FFFD (�) REPLACEMENT CHARACTER) or an escape
sequence in the output. (See also .) It is
important to do this not only for byte sequences that encode characters, but
also for unrecognized or "empty" state-change sequences. For example:

An illegal or unrecognized ISO-2022 designation or escape sequence.
Pairs of SI/SO without text characters between them.
ISO-2022 shift sequences without text characters before the next shift
sequence. The formal syntaxes for HZ and most CJK ISO-2022 variants
require at least one character in a text segment between shift sequences.
Security software written to the formal specification may not detect
malicious text (for example, "delete" with a shift-to-double-byte then an
immediate shift-to-ASCII in the middle).

3.7 Enabling Lossless Conversion

There is a known problem with file systems that use a legacy charset. When a
Unicode API is used to find the files in a directory, the return value is a list
Unicode file names. Those names are used to access the files through some
other API. There are two possible problems:

One of the file names is invalid according to the legacy charset converter.
For example, it is an SJIS string consisting of bytes <E0 30>.
Two of the file names are mapped to the same Unicode string by the
legacy charset converter.

These problems come up in other situations besides file systems as well. One
common source of the problem is a byte string valid in one charset that is
converted according to a different charset. For example, the byte string <E0
30> is invalid in SJIS, but is perfectly meaningful in Latin-1, representing "à0".

One possible solution is to enable all charset converters to losslessly
(reversibly) convert to Unicode. That is, any sequence of bytes can be converted
by each charset converter to a Unicode string, and that Unicode string would be
converted back to exactly that original sequence of bytes by the converter. This
precludes, for example, the charset converter's mapping two different
unmappable byte sequences to U+FFFD (�) REPLACEMENT CHARACTER,
because the original bytes could not be recovered. It also precludes having
"fallbacks" (see http://unicode.org/reports/tr22/): cases where two different
byte sequences map to the same Unicode sequence.

PEP 383 takes this approach. It enables lossless conversion to Unicode by
converting all "unmappable" sequences to a sequence of one or more isolated
high surrogate code points. That is, each unmappable byte's value is a code
point whose value is 0xD800 plus byte value. With this mechanism, every
maximal subsequence of bytes that can be reversibly mapped to Unicode by the
charset converter is so mapped; any intervening subsequences are converted to
a sequence of high surrogates. The result is a Unicode String, but not a
well-formed UTF sequence.

For example, suppose that the byte 81 is illegal in charset . When converted to
Unicode, PEP 383 represents this as U+D881. When mapped back to bytes for

charset , it turns back into the byte 81. This allows the source byte sequence
to be reversibly represented in a Unicode String, no matter what the contents. If
this mechanism is applied to a charset converter that has no fallbacks from
bytes to Unicode, then the charset converter becomes reversible (from bytes to
Unicode to bytes).

This only works when the Unicode String is converted back with the very same
charset converter that was used to convert from bytes. For more information on
PEP 383, see http://python.org/dev/peps/pep-0383/.

The following notation is used in the rest of this section:

B2Un is the bytes-to-Unicode converter for charset n
U2Bn is the Unicode-to-bytes converter for charset n
An byte is one that would be mapped by a PEP to a high surrogate,
because it is part of a sequence that is not reversibly mappable. The
context of the byte is important: for example, the byte 81 alone might be
unmappable, while an 81 followed by a 40 is valid.

Unicode implementations have been subject to a number of security exploits
centered around ill-formed encoding, such as http://blogs.technet.com
/srd/archive/2009/05/18/more-information-about-the-iis-authentication-
bypass.aspx. Systems making incorrect use of a PEP 383-style mechanism are
subject to such an attack.

Suppose that the source byte stream is <A B X D>, and that according to the
charset converter being used (n), X is an invalid byte. B2Un transforms the byte
stream into Unicode as <G Y H>, where Y is an isolated surrogate. U2Bn maps
back to the correct original <A B X D>. This is the intended usage of PEP 383.

The problem comes when that Unicode sequence is converted back to bytes by
a different charset converter . Suppose that U2Bm maps Y into a valid byte
representing "/", or any one of a number of other security-sensitive characters.
That means that converting <G Y H> via U2Bm to bytes, and back to Unicode
results in the string "G/Y", where the "/" did not exist in the original.

This violates one of the cardinal security rules for transformations of Unicode
strings: creating a character where no valid character previously existed. This
was at the heart of the "non-shortest form" security exploits. A gatekeeper
watches for suspicious characters. It does not see Y as one of them, but past
the gatekeeper, a conversion of U2Bm followed by B2Um results in a suspicious
character where none previously existed.

There is a suggested solution for this. A converter would map an isolated
surrogate Y onto a byte stream only when the resulting byte would be an
byte. If not, then an exception would be thrown, or a replacement byte or byte
sequence must be used instead (such as the SUB character). For details, see

. This replacement would be similar to
what is used when trying to convert a Unicode character that cannot be
represented in the target encoding. This strategy preserves the ability to
round-trip when the same encoding is used, but prevents security attacks.

When used as intended in Python, PEP 383 appears unlikely to present security
problems. According to information from the author:

PEP 383 is only intended for use with ASCII-based charsets.
Only bytes >= 128 will be transformed to D8xx or back.
The combination of these factors means that no ASCII-repertoire
characters (which represent the most serious problems for security) would
ever be generated.
The primary use of PEP 383 is in file systems, where the Unicode String
resulting from PEP 383 is only converted back to bytes on the same
system, using the same charset converter.

However, if PEP 383 is used more generally by applications, or similar systems
are used more generally, security exploits are possible.

Using isolated surrogates (D8xx) as the way to represent the unconvertible
bytes appears harmless at first glance. However, it presents certain
interoperability and security issues. Such isolated surrogates are not
well-formed. Although they can be represented in a Unicode String, they are

not supported by conformant UTF-8, UTF-16, or UTF-32 converters or
implementations. This may cause interoperability problems, because many
systems replace incoming ill-formed Unicode sequences by replacement
characters. It may also cause security problems. Although strongly discouraged
for security reasons, some implementations may delete the isolated surrogates,
which can cause a security problem when two separated substrings become
adjacent.

There are different alternatives:

Use 256 private-use code points, somewhere in the ranges F0000..FFFFD
or 100000..10FFFD. This would probably cause the fewest security and
interoperability problems. There is, however, some possibility of collision
with other uses of private-use characters.

1.

Use pairs of noncharacter code points in the range FDD0..FDEF. These are
"super" private-use characters, and are discouraged for general
interchange. The transformation would take each nibble of a byte Y, and
add to FDD0 and FDE0, respectively. However, noncharacter code points
may be replaced by U+FFFD (�) REPLACEMENT CHARACTER by some
implementations, especially when they use them internally.

2.

The following describes how to safely convert a Unicode buffer U1 to a byte
buffer B1 when the D8xx convention is used.

Convert from Unicode buffer U1 to byte buffer B1.
If there were any D8XX's in U1

Convert back to Unicode buffer U2 (according to the same Charset
C1)
If U1 != U2, throw an exception.

This approach is simple, and sufficient for the vast majority of implementations
because the frequency of D8xx's will be extremely low. Where necessary, there
are a number of different optimizations that can be used to increase
performance.

Appendix A Script Icons

 shows sample icons that can be used to represent
scripts in user interfaces. They are derived from from the ,
which is available on the Unicode site [LastResort]. While the Last Resort Font is
organized by Unicode block instead of by script, the glyphs from that font can
also be used to represent scripts. This is done by picking one of the possible
glyphs whenever a script spans multiple blocks.

Table 10. Sample Script Icons

 Arabic Armenian Bengali

 Bopomofo Braille Buginese

 Buhid Canadian Aboriginal Cherokee

 Coptic Cypriot Cyrillic

 Deseret Devanagari Ethiopic

 Georgian Glagolitic Gothic

 Greek Gujarati Gurmukhi

 Hangul Han Hanunoo

 Hebrew Hiragana Latin

 Lao Limbu Linear B

 Kannada Katakana Kharoshthi

 Khmer Mongolian Myanmar

 Malayalam Ogham Old Italic

 Old Persian Oriya Osmanya

 New Tai Lue Runic Shavian

 Sinhala Syloti Nagri Syriac

 Tagalog Tagbanwa Tai Le

 Tamil Telugu Thaana

 Thai Tibetan Tifinagh

 Ugaritic Yi

Special cases

 Common Inherited

Appendix B Language-Based Security

It is very hard to determine exactly which characters are used by a language.
For example, English is commonly thought of as having letters A-Z, but in
customary practice many other letters appear as well. For examples, consider
proper names such as "Zoë", words from the Oxford English Dictionary such as
"coöperate", and many foreign words in common use: "René", ‘naïve’, ‘déjà vu’,
‘résumé’, and so on.Thus the problem with restricting identifiers by language is
the difficulty in defining exactly what that implies. See the following definitions:

Language: Communication of thoughts and feelings through a system of
arbitrary signals, such as voice sounds, gestures, or written symbols. Such
a system including its rules for combining its components, such as words.
Such a system as used by a nation, people, or other distinct community;
often contrasted with dialect.

Language: The systematic, conventional use of sounds, signs, or written
symbols in a human society for communication and self-expression.
Within this broad definition, it is possible to distinguish several uses,
operating at different levels of abstraction. In particular, linguists
distinguish between language viewed as an act of speaking, writing, or
signing, in a given situation […], the linguistic system underlying an
individual’s use of speech, writing, or sign […], and the abstract system
underlying the spoken, written, or signed behaviour of a whole
community.

Language is a finite system of arbitrary symbols combined according to
rules of grammar for the purpose of communication. Individual languages
use sounds, gestures, and other symbols to represent objects, concepts,
emotions, ideas, and thoughts…

Making a principled distinction between one language and another is
usually impossible. For example, the boundaries between named language
groups are in effect arbitrary due to blending between populations (the

dialect continuum). For instance, there are dialects of German very similar
to Dutch which are not mutually intelligible with other dialects of (what
Germans call) German.

Some like to make parallels with biology, where it is not always possible to
make a well-defined distinction between one species and the next. In
either case, the ultimate difficulty may stem from the interactions between
languages and populations.

The Unicode Common Locale Data Repository (CLDR) supplies a set of exemplar
characters per language, the characters used to write that language. Originally,
there was a single set per language. However, it became clear that a single set
per language was far too restrictive, and the structure was revised to provide
auxiliary characters, other characters that are in more or less common use in
newspapers, product and company names, and so on. For example, auxiliary
set provided for English is: [áà éè íì óò úù âêîôû æœ äëïöüÿ āēīōū ăĕĭŏŭ åø çñß].
As this set makes clear, the frequency of occurrence of a given character may
depend greatly on the domain of discourse, and it is difficult to draw a precise
line; instead there is a trailing off of frequency of occurrence.

In contrast, the definitions of writing systems and scripts are much simpler:

Writing system: A determined collection of characters or signs together
with an associated conventional spelling of texts, and the principle
therefore.

Script: A collection of symbols used to represent textual information in
one or more writing systems.

Writing systems and scripts only relate to the written form of the language and
do not require judgment calls concerning language boundaries. Therefore
security considerations that relate to written form of languages are often better
served by using the concept of writing system and/or script.

Note: A writing system uses one or more scripts, plus additional symbols
such as punctuation. For example, the Japanese writing system uses the
scripts Hiragana, Katakana, Kanji (Han ideographs), and sometimes Latin.

Nevertheless, language identifiers are extremely useful in other contexts. They

allow cultural tailoring for all sorts of processing such as sorting, line breaking,
and text formatting.

Note: As mentioned below, language identifiers (called language tags),
may contain information about the writing system and can help to
determine an appropriate script.

As explained in the Section 6.1, of [Unicode], scripts can be
classified in various groups: Alphabets, Abjads, Abugidas, Logosyllabaries,
Simple or Featural Syllabaries. Those classifications, in addition to historic
evidence, makes it reasonably easy to arrange encoded characters into script
classes.

The set of characters sharing the same script value determines a script set. The
script value can be easily determined by using the information available in

. No such concept exists for languages. It is
generally not possible to attach a single language property value to a given
character. Similarly, it is not possible to determine the exact repertoire of
characters used for the written expression of most common languages.

Creating "safe character sets" is an important goal in a security context, and it
would appear that the characters used in a language is an obvious choice.
However, because of the indeterminate set of characters used for a language, it
is typically more effective to move to the higher level, the script, which can be
more easily specified and tested.

Customarily, languages are written in a small number of scripts. This is
reflected in the structure of language tags, as defined by BCP47 "Tags for the
Identification of Languages", which are the industry standard for the
identification of languages. Languages that require more than one script are
given separate language tags. See http://www.iana.org/assignments/language-
subtag-registry.

The CLDR also provides a mapping from languages to scripts which is being
extended over time to more languages. The following table below provides
examples of the association between language tags and scripts.

Table 11. CLDR Script Mappings

Language Script(s) Comment

tag

en Latin Content in ‘en’ is presumed to be in
Latin script, unless where explicitly
marked

az- Cyrl-AZ Cyrillic Azeri in Cyrillic script used in
Azerbaijan

az-Latn-AZ Latin Azeri in Latin script used in Azerbaijan

az Latin, Cyrillic Azeri as used generically, can be Latin
or Cyrillic

ja or ja-JP Han,
Hiragana,
Katakana

Japanese as used in Japan or elsewhere

The strategy of using scripts works extremely well for most of the encoded
scripts because users are either familiar with the entirety of the script content,
or the outlying characters are not very confusable. There are however a few
important exceptions, such as the Latin and Han scripts. In those cases, it is
recommended to exclude certain technical and historic characters except where
there is a clear requirement for them in a language.

Lastly, text confusability is an inherent attribute of many writing systems.
However, if the character collection is restricted to the set familiar to a culture,
it is expected by the user, and he or she can therefore weigh the accuracy of
the written or displayed text. The key is to (normally) restrict identifiers to a
single script, thus vastly reducing the problems with confusability. For example,
in Devanagari, the letter : आ can be confused with the sequence consisting of
the letter a अ followed by the vowel sign aa ◌ा. However, this is a confusability a
Hindi speaking user may be familiar with, as it relates to the structure of the
Devanagari script.

In contrast, text confusability that crosses script boundary is completely

unexpected by users within a culture, and unless some mitigation is in place, it
will create significant security risk. For example, the Cyrillic small letter п ("pe")
is undistinguishable from the Greek letter π in at least some fonts, and the
confusion is likely to be unknown to users in cultural context using either
script. Restricting the identifier to either wholy Greek or wholy Cyrillic will
usually avoid this issue.

Acknowledgements

Mark Davis and Michel Suignard authored the bulk of the text, under the
direction of the Unicode Technical Committee. Steven Loomis and other people
on the ICU team were very helpful in developing the original proposal for this
technical report. Thanks also to the following people for their feedback or
contributions to this document or earlier versions of it: Julie Allen, Stéphane
Bortzmeyer, Douglas Davidson, Martin Dürst, Peter Edberg, Asmus Freytag,
Deborah Goldsmith, Paul Hoffman, Patrick L. Jones, Peter Karlsson, Gervase
Markham, Eric Muller, Erik van der Poel, Michael van Riper, Marcos Sanz,
Alexander Savenkov, Markus Scherer, Dominikus Scherkl, Kenneth Whistler, and
Yoshito Umaoka.

References

[Bortzmeyer] http://www.bortzmeyer.org/idn-et-phishing.html (machine
translated at http://translate.google.com/translate?u=http
%3A%2F%2Fwww.bortzmeyer.org%2Fidn-et-phishing.html)

[CharMod] Character Model for the World Wide Web 1.0: Fundamentals
http://www.w3.org/TR/charmod/

[DCore] Derived Core Properties
http://www.unicode.org/Public/UNIDATA
/DerivedCoreProperties.txt

[DemoConf] http://unicode.org/cldr/utility/confusables.jsp

[DemoIDN] http://unicode.org/cldr/utility/idna.jsp

[DemoIDNChars] http://unicode.org/cldr/utility/list-
unicodeset.jsp?a=\p{age%3D3.2}-\p{cn}-\p{cs}-\p{co}&
abb=on&g=uts46+idna+idna2008

[Display] Display Problems?

http://www.unicode.org/help/display_problems.html

[DNS-Case] Donald E. Eastlake 3rd. "Domain Name System (DNS) Case
Insensitivity Clarification". Internet Draft, January 2005
http://www.ietf.org/internet-drafts/draft-ietf-dnsext-
insensitive-06.txt

[FAQSec] Unicode FAQ on Security Issues
http://www.unicode.org/faq/security.html

[ICANN] ICANN Documents:

Internationalized Domain Names
http://www.icann.org/en/topics/idn/

The IDN Variant Issues Project
http://www.icann.org/en/topics/new-gtlds/idn-vip-
integrated-issues-23dec11-en.pdf

[IDNA2003] The IDNA2003 specification is defined by a cluster of IETF
RFCs:

IDNA [RFC3490]
Nameprep [RFC3491]
Punycode [RFC3492]
Stringprep [RFC3454].

[IDNA2008] The draft IDNA2008 specification is defined by a cluster of
IETF RFCs:

Internationalized Domain Names for Applications
(IDNA): Definitions and Document Framework
http://tools.ietf.org/html/rfc5890
Internationalized Domain Names in Applications (IDNA)
Protocol
http://tools.ietf.org/html/rfc5891
The Unicode Code Points and Internationalized Domain
Names for Applications (IDNA)
http://tools.ietf.org/html/rfc5892
Right-to-Left Scripts for Internationalized Domain

Names for Applications (IDNA)
http://tools.ietf.org/html/rfc5893

There are also informative documents:

Internationalized Domain Names for Applications
(IDNA): Background, Explanation, and Rationale
http://tools.ietf.org/html/rfc5894
The Unicode Code Points and Internationalized Domain
Names for Applications (IDNA) - Unicode 6.0
http://tools.ietf.org/html/rfc6452

[IDN-Demo] http://unicode.org/cldr/utility/idna.jsp

[IDN-FAQ] http://www.unicode.org/faq/idn.html

[IDN-Demo] ICU (International Components for Unicode) IDN Demo
http://demo.icu-project.org/icu-bin/icudemos

[Feedback] Reporting Form
http://www.unicode.org/reporting.html

[LastResort] Last Resort Font
http://unicode.org/policies/lastresortfont_eula.html
(See also http://www.unicode.org/charts/lastresort.html)

[LDAP] Lightweight Directory Access Protocol (LDAP):
Internationalized String Preparation
http://www.rfc-editor.org/rfc/rfc4518.txt

[NFKC_Casefold] The Unicode property specified in [UAX44], and defined by
the data in DerivedNormalizationProps.txt (search for
"NFKC_Casefold").

[Paypal] Beware the 'PaypaI' scam
http://news.zdnet.co.uk/internet/security
/0,39020375,2080344,00.htm

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/

[RFC1034] P. Mockapetris. "DOMAIN NAMES - CONCEPTS AND
FACILITIES", RFC 1034, November 1987.
http://ietf.org/rfc/rfc1034.txt

[RFC1035] P. Mockapetris. "DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION", RFC 1034, November 1987.
http://ietf.org/rfc/rfc1035.txt

[RFC1535] E. Gavron. "A Security Problem and Proposed Correction With
Widely Deployed DNS Software", RFC 1535, October 1993
http://ietf.org/rfc/rfc1535.txt

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of Internationalized
Strings ("stringprep")", RFC 3454, December 2002.
http://ietf.org/rfc/rfc3454.txt

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello, "Internationalizing
Domain Names in Applications (IDNA)", RFC 3490, March
2003.
http://ietf.org/rfc/rfc3490.txt

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile
for Internationalized Domain Names (IDN)", RFC 3491, March
2003.
http://ietf.org/rfc/rfc3491.txt

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA)", RFC
3492, March 2003.
http://ietf.org/rfc/rfc3492.txt

[RFC3743] Konishi, K., Huang, K., Qian, H. and Y. Ko, "Joint Engineering
Team (JET) Guidelines for Internationalized Domain Names
(IDN) Registration and Administration for Chinese, Japanese,
and Korean", RFC 3743, April 2004.
http://ietf.org/rfc/rfc3743.txt

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter. "Uniform Resource
Identifier (URI): Generic Syntax", RFC 3986, January 2005.
http://ietf.org/rfc/rfc3986.txt

[RFC3987] M. Duerst, M. Suignard. "Internationalized Resource
Identifiers (IRIs)", RFC 3987, January 2005.

http://ietf.org/rfc/rfc3987.txt

[Stability] Unicode Character Encoding Stability Policy
http://www.unicode.org/standard/stability_policy.html

[UCD] Unicode Character Database.
http://www.unicode.org/ucd/

[UCDFormat] UCD File Format
http://www.unicode.org/reports/tr44/#Format_Conventions

[UAX9] UAX #9: The Bidirectional Algorithm
http://www.unicode.org/reports/tr9/

[UAX15] UAX #15: Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[UAX24] UAX #24: Unicode Script Property
http://www.unicode.org/reports/tr24/

[UAX31] UAX #31, Identifier and Pattern Syntax
http://www.unicode.org/reports/tr31/

[Unicode] The Unicode Standard

http://www.unicode.org/versions/latest/

http://www.unicode.org/versions/Unicode6.1.0/

[UTS10] UTS #10: Unicode Collation Algorithm
http://www.unicode.org/reports/tr10/

[UTS18] UTS #18: Unicode Regular Expressions
http://www.unicode.org/reports/tr18/

[UTS22] UTS #22: Character Mapping Markup Language (CharMapML)
http://www.unicode.org/reports/tr22/

[UTS39] UTS #39: Unicode Security Mechanisms
http://www.unicode.org/reports/tr39/

[UTS46] Unicode IDNA Compatibility Processing
http://www.unicode.org/reports/tr46/

[Versions] Versions of the Unicode Standard
http://www.unicode.org/standard/versions/

Modifications

The following summarizes modifications from the previous revisions of this
document.

Revision 10

Proposed update.
Fixed reported typos, and updated references.
Restriction levels

Updated Highly Restrictive to allow non-ASCII Latin in the
combinations with CJK scripts.
Updated Minimally Restrictive to focus on Recommended and
Aspirational scripts, since we have little information about other
scripts. Limited-Use and Exclusion scripts are still permitted at the
Highly Restrictive level (depending on the identifier profile), but not
in combination with Latin.
Moved definition to UTS#39

Revision 9

Added table numbers and explicit references to tables in the text.
Expanded the introduction to Section 3 somewhat.
Removed Appendices A, B, D, E, and F, and renumbered the other
Appendices.
Moved external references to the FAQ
Cleaned up references to UTS39 and UTS46
Removed former Appendix F.
Added Section 3.6, Secure Encoding Conversion.
Added Section 3.7, Enabling Lossless Conversion.
Removed old Section 3.6, Recommendations

Clarified
Miscellaneous other editorial changes.

Revision 8 being a proposed update, only changes between revisions 7 and 9
are noted here.

Revision 7

Added explanation of UTF-8 over-consumption attack in 3.1 UTF-8
Exploits
Added subsection of 2.8.2 Mapping and Prohibition describing the
Unicode 5.1 changes in identifiers.
Added 3.4 Property and Character Stability
Updated Unicode reference.
Broke 3.1.1 into two sections, adding header 3.1.2: Substituting for
Ill-Formed Subsequences, with some small wording changes around it. In
particular, pointed to
in Unicode 5.1.
Added 3.5 Deletion of Noncharacters
Added before Sample Country Registries: "These are only for illustration:
the exact sets may change over time, so the particular authorities should
be consulted rather than relying on these contents. Some registrars now
also offer machine-readable formats."
Minor editing

Revision 6 being a proposed update, only changes between revisions 4 and 7
are noted here.

Revision 4

Moved the contents of ,
, and to the new

[UTS39]. The appendices remain (to avoid renumbering), but simply point
to the new locations. Changed references to point to the new sections in
[UTS39].
Alphabetized
Added
Changed the "highlighting" of the core domain name to the whole domain

name in Section 2.6, Syntax Spoofing.
Replaced based on the UTC
decisions.
Removed the contents of , incorporating
material to address the issues in

, and a few other places in the document.
Minor editing

Revision 3

Cleaned up references
Added Related Material section
Add section on Casefolded Format
Refined recommendations on single-script confusables
Reorganized introduction, and reversed the order of the main sections.
Retitled the main sections
Restructured the recommendations for Visual Security
Added more examples
Incorporated changes for user feedback
Major restructuring, especially appendices. Moved data files and other
references into the references, added section on confusables, scripts,
future topics, revised the identifiers section to point at the newer data file.
Incorporated changes for all the editorial notes: shifted some sections.
Added sections on bidi, appendix F.
Revised data files

Revision 2

Moved recommendations to separate section.
Added new descriptions, recommendations.
Pointed to draft data files.

Revision 1

Initial version, following proposal to UTC.
Incorporated comments, restructured, added To Do items.

Copyright © 2004-2012 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed
or implied warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed
for incidental and consequential damages in connection with or arising out of the use of the information
or programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

