
Title: A comprehensive system of control characters for Ancient Egyptian hieroglyphic text (preliminary
version)
From: Mark-Jan Nederhof & Vinodh Rajan & Johannes Lang (University of St Andrews, UK),
Stéphane Polis & Serge Rosmorduc (Ramses Project, Université de Liege, Belgium & CNAM, Paris),
Tonio Sebastian Richter & Ingelore Hafemann & Simon Schweitzer (Thesaurus Linguae Aegyptiae, Berlin-
Brandenburgische Akademie der Wissenschaften, Berlin)
To: UTC
Date: 2016-06-30

1 Previous Unicode documents

We will refer to:

L2/16-018R “Proposal to encode three control characters for Egyptian Hieroglyphs” by Richmond & Glass

L2/16-90 Three documents criticizing L2/16-018R, by Nederhof & Rajan, Richter & Hafemann &
Schweitzer, Polis & Rosmorduc

L2/16-104 “Observations about L2/16-90” by Richmond

L2/16-156 “Recommendations to UTC #147 May 2016 on Script Proposals”

2 Introduction

Few would disagree with the following observation:

An encoding scheme for a script only makes the least bit of sense if there is reason-
able hope one can encode a text not seen before.

Because of the peculiarities of Ancient Egyptian writing, it may not be obvious to non-specialists why this is
a problem. To explain, let us imagine an encoding scheme for English that would require a special provision,
either in the encoding scheme itself or in the font, for every individual compound noun, so for ‘ice-cream’,
for ‘ice-cream truck’, for ‘ice-cream truck driver’, etc. It would be foolish to assume we could simply make
a long list of all compound nouns, extracted from say 1000 English texts, and then hope that text number
1001 can be encoded as well. This is because it is almost certain any new text will have a compound noun
not seen before.

Ancient Egyptian hieroglyphic writing was highly variable, not only in the sign repertoire and in the
choices of hieroglyphs for writing words, but also in the spatial layout of hieroglyphs, which is inherently
2-dimensional. This means, among other things, that there is no such thing as ‘the’ graphical order, as at
first sight a group may be read top-to-bottom or left-to-right or even a mixture of the two (not to mention
transposition, where the reading order is inverted). One can only disambiguate using context and knowledge
of the writing system and language. Another implication is that it makes no sense whatsoever to try to
collect ‘the’ list of groups of hieroglyphs with particular layouts, just as it makes no sense to collect ‘the’
compound nouns of English. If one has created provisions for the spatial arrangements of groups in the first
1000 Egyptian texts, then this is certainly inadequate to handle text number 1001. One may do the same for
1,000,000 texts, but this is still inadequate to handle text number 1,000,001. The only reasonable solution of
course is to devise an encoding that includes primitives powerful enough to approximately describe spatial
layout of hieroglyphic text, which is what we will turn to starting in Section 4.

One may object that unfettered use of ideographic description characters for CJK ideographs has been
found to be problematic, as it allows formation of arbitrary nonsense characters and complicates data

1

rick@unicode.org
Text Box
L2/16-177

exchange and search. This concern is entirely irrelevant to Ancient Egyptian however. A typical CJK
text is unlikely to include unknown characters, while a typical Ancient Egyptian text is unlikely to have
spatial arrangements of signs that are exactly like in some other Ancient Egyptian text. Furthermore, any
esthetically pleasing spatial arrangement is in principle possible.

3 Background

Our document was written as a response to L2/16-018R, which proposed three control characters for Ancient
Egyptian hieroglyphic text. One of these was called LIGATURE JOINER. What is here referred to as a
‘ligature’ is a combination of signs (i.e. hieroglyphs) with a relative positioning that is not purely horizontal
or purely vertical.

By its very nature the LIGATURE JOINER cannot be defined within Unicode, but its purpose would be-
come clear through a vague notion described as “guidance [to be] evolved within the Egyptology community”
(L2/16-104, p. 2), assuming a near-exhaustive collection of “attested forms” (L2/16-018R, p. 2).

The fatal flaw of the approach is that existence of a near-exhaustive collection of ligatures is and will
remain a chimera. This is because formation of ligatures is highly productive. There is no reason to believe
any combination of two, three, four or five signs could not in principle occur together in a ligature in any
esthetically pleasing spatial arrangement. This is supported by empirical evidence that on average more
than 2 out of 3 ligatures that occur in the comprehensive corpus of the Ramses project [8] occur only once.
This means that it is almost certain that any new text to be encoded contains at least one hitherto unseen
ligature, and a rendering engine built on these principles would then be unable to handle this ligature until
it is appropriately reconfigured to do so. Such an encoding scheme would obviously be useless for any serious
application. See also L2/16-090 and L2/16-156.

L2/16-104 claims that the LIGATURE JOINER was not intended for ‘monograms’, i.e. superimposed
signs, and that monograms should be listed in a font. Yet there is an example of a monogram specified using
the LIGATURE JOINER in L2/16-018R, viz. no. 4 on p. 4. Such internal inconsistencies do not bode well
for the prospect that “guidance [to be] evolved within the Egyptology community” might spontaneously
lead to rigorous consistency in the use of the LIGATURE JOINER. Moreover, because monograms are also
productive to a large extent, compilation of an exhaustive list of monograms is as impossible as compilation
of an exhaustive list of ligatures.

The signatories of the present document include representatives from Thesaurus Linguae Aegyptiae
(TLA) and from the Ramses project. The TLA is with 1.4 million tokens the largest electronic corpus of
Egyptian full text data. The Ramses Project is working on a richly annotated corpus of Late Egyptian
texts, with 530,000 lemmatized tokens so far, annotated for parts of speech, inflection, and crucially in
this context, the hieroglyphic spelling (68,000 different spellings). These projects provide us with unique
experiences with encodings of hieroglyphic texts. These experiences lead us to unequivocally reject the
LIGATURE JOINER from L2/16-018R. Not only would an encoding based on such a control character be
useless for serious applications, but the LIGATURE JOINER would also create novel problems that did
not exist before, due to the absence of a proper definition, which will cause confusion, lead to mistakes,
and make it very hard if not impossible to use the encoding as input or output format for Egyptological
databases.

4 The new encoding

In this document we present a proposal very different from the above, on the basis of proven concepts taken
from various frameworks for encoding hieroglyphic text, most notably PLOTTEXT [11, 12] and RES [5, 6],
which shares some primitives with JSesh [9]. The first was used, among other things, to prepare a grammar

2

[3], the second was used, among other things, for the St Andrews corpus [7], and the third in the Ramses
Project [8].

Our starting points were:

• The encoding should rely on a small set of primitives, each of which can be precisely defined in a
self-contained manner, in terms of relatively simple geometric principles, without reference to external
databases of any kind, nor to any heuristics that might lead to unpredictable behaviour.

• It should be possible to implement the primitives, preferably using off-the-shelf rendering engines, to
give satisfactory visual realizations for typical encodings.

• The primitives should be expressive enough to be able to (approximately) reflect relative positions
of signs in a wide range of original hieroglyphic texts. Of secondary importance are reproductions of
existing type-set editions, as these suffer from limitations of partly outdated printing technology.

• The primitives do not specify exact distances between signs nor exact scaling factors.

• The functionality of the encoding should be extensible by formats outside the realm of Unicode, to
allow more precise specification of positioning and scaling. However, neither by Unicode nor by the
extended formats do we intend to achieve quasi-facsimiles of original texts.

A powerful encoding scheme not only relieves font developers of the permanent and unreasonable burden
of having to update fonts ad nauseum with new spatial arrangements of signs, it will also avoid proliferation
of the sign list by unnecessary composite signs, which would place a permanent and unreasonable burden on
Unicode itself to provide frequent updates, as well as a collective burden on the Egyptological community
to provide suggestions for such updates.

This proposal introduces the control characters in Table 1. They will be motivated step by step in the
following sections, where we will use abbreviated names for these characters.

It should be understood that Ancient Egyptian writing poses an exceptional challenge to computer
processing. It is therefore unrealistic to expect that any satisfactory encoding of hieroglyphic text in Unicode
would be simple.

5 Linear text

In the simplest case, hieroglyphic text can consist of a series of signs one after the other, in a horizontal row.
For this, no control characters are needed. The signs are separated by a default, font-defined, inter-sign
distance. An example is:

Appearance Unicode PLOTTEXT RES

 a R8 R8 R8 V30 G43 R8-R8-R8-V30-G43

aBM EA 584 [2, p. 122]

Note that the fourth sign from the left,

, is less high than the height of a line, and is therefore vertically
centered by default.

As we will see later, a sign may be scaled down when it is combined with other signs in a group. The
size of a sign before it is scaled down will be called its natural size. The natural size is measured in terms

of the height of the unscaled ‘sitting man’ sign , which is called the unit size. In the above example, the

3

Table 1: The proposed control characters.

default glyph code point short name character name

13440 HLR EGYPTIAN HIEROGLYPH HLR

13441 HRL EGYPTIAN HIEROGLYPH HRL

13442 VLR EGYPTIAN HIEROGLYPH VLR

13443 VRL EGYPTIAN HIEROGLYPH VRL

13444 JOIN EGYPTIAN HIEROGLYPH JOIN

13445 EMPTY EGYPTIAN HIEROGLYPH EMPTY

13446 HOR EGYPTIAN HIEROGLYPH HORIZONTAL

13447 VERT EGYPTIAN HIEROGLYPH VERTICAL

13448 CARTOUCHE EGYPTIAN HIEROGLYPH CARTOUCHE

13449 OVAL EGYPTIAN HIEROGLYPH OVAL

1344A SEREKH EGYPTIAN HIEROGLYPH SEREKH

1344B INB EGYPTIAN HIEROGLYPH INB

1344C RECTANGLE EGYPTIAN HIEROGLYPH RECTANGLE

1344D HWT EGYPTIAN HIEROGLYPH HWT

1344E END EGYPTIAN HIEROGLYPH END

1344F INSERT EGYPTIAN HIEROGLYPH INSERT

13450 INSERT T EGYPTIAN HIEROGLYPH INSERT TOP

13451 INSERT B EGYPTIAN HIEROGLYPH INSERT BOTTOM

13452 INSERT S EGYPTIAN HIEROGLYPH INSERT START

13453 INSERT E EGYPTIAN HIEROGLYPH INSERT END

13454 INSERT T S EGYPTIAN HIEROGLYPH INSERT TOP START

13455 INSERT T E EGYPTIAN HIEROGLYPH INSERT TOP END

13456 INSERT B S EGYPTIAN HIEROGLYPH INSERT BOTTOM START

13457 INSERT B E EGYPTIAN HIEROGLYPH INSERT BOTTOM END

13458 STACK EGYPTIAN HIEROGLYPH STACK

4

Table 2: Linear sequences of signs.

Appearance Unicode PLOTTEXT RES

 a %DHR R8/R8/R8/V30/G43 [hrl]R8-R8-R8-V30-G43

b %DVR N14/A30/Q1/D4/A40 [vrl]N14-A30-Q1-D4-A40

 c

%DVL N14/A30/F13/N31/X1 [vlr]N14-A30-F13-N31-X1

aBM EA 584 [2, p. 122]
bBM EA 101 [2, p. 58]
cBM EA 101 [2, p. 58]

natural height of is 1.0, while that of

may be closer to 0.4 (in our font). Often, but not always, the
height of a line is the same as the unit size.

In the example above, the text is written from left to right. Original hieroglyphic texts, however, are
often written from right to left. The signs then appear mirrored, with the hieroglyphs representing living
entities facing right. Text may also be written in vertical columns, either left-to-right or right-to-left. Even
if many rendering engines can only realize (hieroglyphic) text from left to right, a plausible encoding should
have the possibility to express the text direction, in terms of a control character at the beginning of a
sequence of hieroglyphic signs. Such a control character may be omitted however; in many situations we do
not know, or do not care about, the text direction in the original manuscript.

Examples are listed in Table 2. Note that in vertical text the signs are centered horizontally.
We foresee the UTC will raise objections against the control characters that indicate text direction, on

the basis that it is the application that should determine the actual printed text direction. We do not
disagree with this principle, which is in fact fully consistent with past and present practices in Egyptology.
For example, interlinear text showing a comparison of different versions of the same text is commonly
normalized to be horizontal from left to right, regardless of the text direction of the various manuscripts.
However, there are two important reasons why it is essential to be able to encode the text direction of the
original manuscript:

• Knowing the original text direction could explain the particular formation of groups of signs, and help
disambiguate the reading order.

• When the application chooses a different text direction from the original, in particular vertical versus
horizontal, the JOIN character between top-level groups should be ignored, and the rendering engine
should group individual signs together differently to improve the appearance. This will be discussed
in Section 10.4.

5

6 Groups and boxes

For encoding complex groups of signs, we need to be able to compose signs horizontally and vertically, at

the very least. This may require repeated composition. An example is the group

 , which is a vertical

arrangement of two groups, of which the bottom one, , is a horizontal arrangement of two groups, of

which the second,
, is a vertical arrangement of two signs.

Another reason why grouping is necessary is because of cartouches, which are an essential element in the

writing of kings’ names. A cartouche is a shape that encloses more signs, as for example # $%%%%. We will
use the general term box for a sign that encloses more signs. Next to cartouches, boxes also include serekhs,
fortress walls (‘inb’), and several more.

The above observations imply that for any plausible encoding of hieroglyphic text, we need, at the very
least, to be able to indicate:

• where a horizontal or vertical group begins, and where it ends, and

• where a box begins, and where it ends.

We use different markers for the beginning of a horizontal or vertical group, namely HOR and VERT with

default glyphs and , and for a box. For the end of a group or box, we use a common marker END,

with default glyph . Examples are listed in Table 3.
The simplest case of grouping is if we have a horizontal arrangement of signs in horizontal text, as in

 . The intended rendering of this is very similar to what we would get without grouping, except that
line breaks are disallowed within a group. The same holds for a vertical group in vertical text. Note that a
cartouche has a different orientation for vertical text.

It is convenient to have an EMPTY sign with zero width and height. Placing this sign above or
below another sign effectively pushes the latter sign down or up, respectively. Examples are listed in Table 4.

If the UTC advises us to do so, we can replace the proposed EMPTY by an existing empty character
in Unicode. Note however that our EMPTY has a particular behaviour as placeholder for a sign within a
group, with both zero width and zero height, while it preserves the default inter-sign distance between it
and neighbouring signs. If our EMPTY is replaced by an existing character from Unicode, then it should
have, or should be allowed to take these properties if used within groups of hieroglyphs.

7 Insertion

A fair number of signs have empty space on one of the sides or in one of the corners of their bounding
box. Often this empty space is used for placement of a smaller sign, especially, but not exclusively, if the
two signs are in a special relationship, for example, if the two signs together are the writing of (a part of)
a morpheme or a direct genitive. The empty space may also be occupied by several signs. Our encoding
includes a number of primitives for such a composition of signs.

First, we have the primitive INSERT, with default glyph . It is followed by two groups, the second is
to be inserted within the first. This only makes sense if there is empty space at the center of the first group.

Then, we have eight more primitives INSERT T , INSERT B , INSERT S , INSERT E

, INSERT T S , INSERT T E , INSERT B S , INSERT B E . Here T and B

6

Table 3: Groups and boxes.

Appearance Unicode PLOTTEXT RES

a M23/X1,R4/X8 M23-X1:R4-X8

 b ”R8 R8 R8” R8*R8*R8

 c

V30,U23 D58/
N26,O49

V30:U23*D58-N26:O49

 d

N35,V28 ”N29,D21” N35:V28*(N29:D21)

 e

%DVL M17 Y5,N35/
M17 M17/A50

[vlr]M17*(Y5:N35)-
M17*M17-A50

 # $%%%%f %Z1 N5 L1 D28 %Z2 cartouche(N5-L1-D28)

#

$

%%%%
g

 %DVR %Z1v N5 Y5

F9 ”X1 X1” %Z2v
[vrl]cartouche(N5-Y5-
F9-X1*X1)

&
(

%%%%

h

%DVL %Z3v E1/G17
”R19,X1” %O33

[vlr]serekh(E1-
G17*(R19:X1))

&0%%i %Z3 S12 %O6 Hwtcloseunder(S12)

aBM EA 571 [2, p. 77]
bBM EA 585 [2, p. 48]
cBM EA 587 [2, p. 46]
dBM EA 1783 [2, p. 74]
eBM EA 162 [2, p. 125]
fBM EA 586 [2, p. 25]
gBM EA 117 [2, p. 31]
hCairo Museum CG 34002 [10, p. 26]
i[10, p. 53]

stand for ‘top’ and ‘bottom’, and S and E stand for ‘start’ and ‘end’; we deliberately avoid using ‘left’ and
‘right’ because that would be confusing for right-to-left text, in which signs and groups are mirrored. In the
typical use of these nine primitives, the first group is an individual sign, while the second group can consist
of several signs.

Examples are listed in Table 5. In these cases, we assume that the smaller sign fits entirely within the
bounding box, possibly after scaling it down. There are cases however where the visual appearance is better
described by extending the bounding box with extra whitespace. That is realized by forming a horizontal or
vertical group with EMPTY. The amount of extra whitespace is then determined by the default inter-sign
distance. An example is:

7

Table 4: Empty signs.

Appearance Unicode PLOTTEXT RES

 a

M17/Aa28/”D46,”/G43/A1 M17-Aa28-D46:.-
G43-A1

 b

R4,”,X1” Q3 R4:(.:X1)*Q3

aBM EA 584 [2, p. 122]
bBM EA 581 [2, p. 59]

Table 5: Insertions.

Appearance Unicode PLOTTEXT RES

 a D60;/X1/; insert(D60,X1)

 b - insert[b](F20,Z1)

 c - insert[b](I10,S29)

 d
I10;D46/; insert[s](I10,D46)

 e
I10;X1,N17; insert[bs](I10,X1:N17)

 f G39;/N5; insert[te](G39,N5)

 g A17;//X1; insert[be](A17,X1)

G39;X1/;;/N21; insert[te](insert[s](G39,X1),N21)

aBM EA 143 [2, p. 110]
bBM EA 581 [2, p. 59]
cBM EA 1783 [2, p. 74]
dBM EA 581 [2, p. 59]
eBM EA 101 [2, p. 58]
fBM EA 117 [2, p. 31]
gP. Turin Cat. 2070

Appearance Unicode PLOTTEXT RES

G17;/%B4+D36; insert[te](G17*.,D36)

The inserted groups may be arbitrarily complex. For example in we have a vertical group within a
horizontal group within a vertical group, which is inserted in another sign.1

1Stela Cairo, JE 60539, l. 8

8

JSesh has two primitives for insertion, each corresponding to one of up to two rectangular zones per
sign. These primitives are used as GˆˆˆS and S&&&G, respectively, where S is a sign and G is a group. In
the first case, G is inserted in zone 1 of S and in the second case, G is inserted in zone 2 of S. The zones
can be defined in the font or can be computed automatically through heuristics. Typically, zone 1 is at the
bottom or in front of a sign and zone 2 is at the top of or behind a sign. The zones may extend beyond the
bounding box. Moreover, a zone of a sign is associated with a gravity, which indicates towards which of the
four sides of the rectangle the inserted group is to be flushed. If a sign has two zones, the two insertions
may be combined in the form of G1ˆˆˆS&&&G2.

The granularity of our choice of the nine insertion primitives, rather than say the two insertion primitives
of JSesh, is motivated by the following considerations:

• In all cases that we are aware of, the primitives are precise enough to ensure that the inserted, second
group is placed in a satisfactory position within the first group. Because of the 2-dimensional nature
of hieroglyphic writing, it would be highly problematic if, for example, a sign would be placed in the
right upper or left lower corner if it is supposed to be in the left upper corner. In some cases, this may
change the suggested reading.

• The primitives are precise enough to be characterized in procedural terms, allowing implementations
to render them automatically; see further Section 10.2.

Nonetheless, for some choices of signs, more than one insertion primitive may be used without changing

the meaning and without greatly affecting the appearance. For example, the appearances and ,

encoded using or respectively, could be confused without causing significant problems for typical
users. Moreover, if the inserted, second group has the same shape as the available space within the first

group, more than one insertion primitive may lead to the same appearance. For example, could best be

achieved by using , but and lead to a very similar result.
We foresee that the UTC may raise objections against existence of several ways to achieve the same

appearance. We see this however as an unavoidable consequence of the required granularity of insertion
primitives, which was motivated earlier. The scope of the issue could be reduced by enforcing that the most

appropriate primitive be used in case several are possible. For example, one could demand that be

encoded using rather than or .
We also foresee an objection may be raised against existence of invalid uses of insertions, which is another

unavoidable consequence of the required granularity. For example, the sequence
would make

little sense, as there is no space for the hand to the right of the cobra, that is, without the hand being
scaled down to virtually disappear. In practice there should be a bound on the scaling factor, and the used
software should notify encoders when they have used insertions in the wrong way.

8 Stacking

Sometimes two signs or groups are superimposed. Table 6 presents examples. The first two happen to also
exist as individual Unicode characters, while the third is not part of any established sign list as far as we

know. There are also many examples of whole groups being stacked, such as
 , which is the stacking

of horizontal group and vertical group
. In JSesh, stacking of two signs is expressed using binary

operator ##.

9

Table 6: Stacking.

Appearance Unicode PLOTTEXT RES

 a P6=D36 stack(P6,D36)

 b U34=I9 stack(U34,I9)

 c P6=V12 stack(P6,V12)

aBM EA 581 [2, p. 59]
bBM EA 584 [2, p. 122]
c[10, p. 758]

It cannot be emphasized enough that stacking is part of how the Ancient Egyptian writing system works.
Much like horizontal and vertical grouping and insertion, it was one of the mechanisms the ancient scribes
had to their disposal to position signs relative to one another. In other words, stacking is to a large extent
productive. The fact that some frameworks in the past (most notably the Manuel de Codage [1]) resorted
to introducing separate codepoints for stacked sign combinations, even for those that are hapax, may be
blamed on shortcomings of the used technology more than anything else.

Another selection from the many thousands of known stacked signs is given in Figure 7. Some have
attested non-stacked alternatives, while for others we cannot immediately verify whether non-stacked al-
ternatives might have existed. In the overwhelming majority of cases, the meaning of the stacked signs is
completely compositional. For example, a stacked sign may represent a sequence of phonemes, each of which
corresponds to one of the constituent signs.

One may naively object that stacked signs are not entirely compositional, because they not only represent
the constituent signs themselves, but also the order in whether these are to be read. This objection is
weakened, if not invalidated altogether, by the many known cases where in fact all conceivable orders are

valid, as long as an existing word is written. For example, may be used both in words starting with cb,

where the non-stacked alternative
 may be used, and in words starting with bc, where the non-stacked

alternative may be used.2

We foresee that the UTC will raise objections against generic stacking, as some existing signs among the
1071 hieroglyphic signs currently in Unicode are stacked combinations of constituent signs, and some may
argue that there is an issue with compatibility. Our rebuttal is three-fold:

• Mistakes from the past should not dictate that more mistakes ought to be made in the future.

• We reiterate the principle stated in Section 2 that we need to be able to encode a text not seen before.
Unless we are willing to sacrifice this principle, and thereby the practical value of the encoding as a
whole, then generic stacking is a necessity.

• We understand there is a set procedure within the Unicode framework to deal with such compatibility
issues, namely by describing existing characters in terms of a combining character plus constituent
characters. In the case of stacking, this is clearly the only viable way forward.

2See WB I p. 173-178 and p. 446-450, respectively.

10

Table 7: Stacking as compositional operation.

Stacking Attested alternatives Transliteration

 a h. c

 b h. cc

 c h. c

 d e cbb

 f g bcbc

 h bs̆

 i ,

 j bt

¯
aWB III p. 40
bDendera VII, 148.4
cStacked form and non-stacked alternative: WB III p. 40
dASAE 43, p. 254
eWB I p. 178
fBIFAO 43, p. 118 and WB I p. 447
gWB I p. 446
hStacked form and non-stacked alternative: WB I p. 477
iMIFAO 16, p. 49
jBoth non-stacked alternatives: WB I p. 485

9 Joining

A natural consequence of the tendency to make efficient and esthetically pleasing use of available space was to
squeeze groups together. It would be highly undesirable to have a rendering engine do this indiscriminately

for all groups. Therefore, we introduce JOIN, with default glyph , which can be put between two groups
to indicate that they may, but need not, move towards each other, to have their bounding boxes overlap.
The signs should preferably not touch each other however.

Table 8 presents examples.

10 Rendering

Here we discuss the ideal scaling and positioning of signs within groups. Practical implementations may
deviate from this ideal due to technical limitations; see Appendix C.

10.1 Horizontal and vertical groups

What is described here is consistent with both JSesh and RES. Formatting of groups is done in two steps.
First, we determine how much signs need to be scaled down (signs are never scaled up) to fit two main
constraints. Second, we insert additional whitespace to center and align signs and groups.

For the first step, that of scaling down, we consider inner-most groups before considering enclosing
groups. A first constraint is that a vertical or horizontal subgroup within an enclosing group, together with

11

Table 8: Joining.

Appearance Unicode RES

 a G17-[fit]N1:X1:Z1

b
G17-[fit]D21:.

 c G43-[fit]D46:.*O49

 d U23*N26*[fit]D58

aBM EA 581 [2, p. 59]
bBM EA 584 [2, p. 122]
cBM EA 585 [2, p. 48]
dBM EA 143 [2, p. 110]

the default inter-sign distance, should not be higher or wider, respectively, than 1 (in terms of the unit size).
We illustrate this using Figure 1. Here, the natural size of the signs B and C plus the default inter-sign
distance add up to a height smaller than 1. Therefore B and C by themselves need not be scaled down.
However, they form a horizontal group with A (which is enclosed in another vertical group), of which the
natural width exceeds 1. Therefore, A, B and C are all scaled down uniformly, to make that width exactly 1.
Similarly, D, E and F need to be scaled down to make their added width exactly 1. A second constraint is
that a group within a line of horizontal text does not exceed the height of that line, which is normally 1.
This may require further uniform scaling down of all signs and their inter-sign distances.

If we have a group with a similar structure but with signs of different sizes, the following would happen,
with w for the natural width, h for the natural height, and sep for the default inter-sign distance.

• If h(B) + sep + h(C) > 1, then determine scaling f1 such that f1 · (h(B) + sep + h(C)) = 1; otherwise
let f1 = 1.

• If w(A) + sep + max(f1 ·w(B), f1 ·w(C)) > 1, then determine f2 such that f2 · (w(A) + sep + max(f1 ·
w(B), f1 · w(C))) = 1; otherwise let f2 = 1.

• If w(D) + sep +w(E) + sep +w(F) > 1, then determine scaling f3 such that f3 · (w(D) + sep +w(E) +
sep + w(F)) = 1; otherwise let f3 = 1.

• If the text is written horizontally in rows, with line height 1, then in the same vein we compute f4 to
make the whole group fit within the line.

For the second step, we distribute ‘excess whitespace’ equally over subgroups. We need to distinguish
between two cases, namely subgroups consisting of a single sign, and subgroups consisting of several recursive
subgroups. In the first case the single sign is centered within the available space, and in the second case,
the excess whitespace is divided equally between the subgroups. This is illustrated in Figure 2.

10.2 Insertion

For the ideal rendering of say INSERT followed by two groups, both groups are first recursively scaled as
in the previous section. Then the second group is inserted in the center of the first group, but if necessary is
scaled down, and/or shifted, to leave a minimum distance between any two curves in the two groups. One

12

A
B

C

D

E

F

1 unit

1 unit

A

B

C

D E F

1 unit

1 unit

Figure 1: A nested group, before scaling and positioning (left) and after (right).

1 unit

Figure 2: In this horizontal group, there is excess whitespace in all three vertical subgroups. In the rightmost
subgroup, there is only a single sign, which is centered. In the leftmost two subgroups, the excess whitespace
is divided equally between the (recursive) subgroups (which here happen to be three and two single signs,
respectively; they could have been nested horizontal groups as well).

should strive to have as little scaling down as possible. That is, if the second group can be rendered bigger
after shifting it up/down or left/right, then it should be shifted.

The other insertion operations are similar, but there is no shifting of the position of the second group in
the case of INSERT T S, INSERT T E, INSERT B S, and INSERT B E; the second group is flushed
against two sides, in one of the four corners. For INSERT T and INSERT B only horizontal shifting
is allowed and for INSERT S and INSERT E only vertical shifting of the second group is allowed. See
further Appendix C.1.

13

Figure 3: The rectangle that can be designated for the second group after an occurrence of INSERT T E,
if the first group is the duck.

For example, in the case of , the sun sign is placed in the upper right corner of the bounding
box of the duck, with the top-most and right-most points of the sun flushed against the bounding box. The
sun is ideally as large as possible (but not bigger than the natural size), while keeping some distance (ideally
the default inter-sign distance) away from the duck.

A less ideal, but still acceptable, rendering results if we precompile tables indicating for each sign where
inserted groups are to be placed. For example, the table might indicate the rectangle as in Figure 3, to
define how the duck is to be combined with another group if we use INSERT T E. This is similar to how
insertions in JSesh are implemented. Note that this does not place any restrictions on the groups that can
be inserted.

10.3 Stacking

The rendering of STACK followed by two groups lets (roughly) the centers of the two groups coincide. The
rendering is simply the addition of the curves of the two constituent groups.

For some sign combinations, a more satisfactory realization may result if not the exact centers of the

groups, but points a little distance away from the centers are chosen to coincide. For example, in the

center of coincides with a point a little to the right of the center of . This can be realized by letting a
font assign an anchor to a sign, which defines a ‘conceptual’ center, different from the center of the bounding
box. It may also be realized in the font through substitutions of entire stacked groups by optimized glyphs.

10.4 Changes in text direction

In the simplest case, hieroglyphic text consists of a sequence of signs that are reasonably wide and high. The
signs can then be placed next to one another for horizontal text directions and underneath one another for
vertical text directions. However, two tall narrow signs would typically be put next to one another and two
wide thin signs would typically be put above one another. Note however that top-level horizontal groups
are strictly speaking redundant in our encoding of horizontal text, and so are top-level vertical groups in
vertical text, and as a result we may miss appropriate groupings if we convert between text directions.

These problems are partially avoided in PLOTTEXT by allowing the user to omit groupings of signs,
leaving it to the application to find suitable groupings based on the dimensions of the individual signs. In
this proposal, we have assumed that we do need to specify groupings in the encoding, relieving the font
and rendering engines from this difficult task. However, we wish to keep open the possibility that adequate
rearrangements of groups are made automatically by the application in case it imposes a change of text
direction relative to the original manuscript. This however requires that the original text direction is or can
be encoded; we referred to this before in Section 5. The phenomena that we need to deal with here are
particular to Ancient Egyptian.

14

Table 9: Change of text direction from vertical to horizontal imposed by the application (all examples from
BM EA 101 [2, p. 58])

Original text Allowable rendering Better rendering

Some examples are given in Table 9. In the first, the vertical text is best changed to horizontal text by
simply stringing signs together horizontally. In the second example however, a more pleasing appearance
is achieved by introducing some vertical groups. In the third example, there is a JOIN between the two
signs that was meant to apply to the vertical direction only, but there is no reason to believe the JOIN
would be appropriate for horizontal direction as well so there it should be ignored. In the fourth example,
the group is exceptionally high for horizontal text, and becomes quite small if scaled down to fit within a
row of height 1, and a thorough restructuring would be desirable.

11 Outside Unicode

Because Unicode has its limitations, extended formats with additional functionality are needed for advanced
purposes. It is highly desirable that Unicode and the extended formats can be converted seamlessly one
to the other. In particular, converting Unicode to extended formats should be a matter of converting
syntax only, and converting extended formats to Unicode should be a matter of systematically removing
functionality that is unavailable in Unicode, while retaining an acceptable rendering. We mention RES in
particular as a format whose functionality has the proposed Unicode system as a strict subset. We also
address absolute positioning and scaling in JSesh.

11.1 Scaling

RES allows tweaking of the natural size of a sign, before the processing of group structure. This can be
helpful to improve the rendering, but it is not essential to obtain an exceptable rendering.

Scaling in RES may also be applied on only the height or only the width of a sign. For example, a

sign such as may be manually flattened to become , which gives a more satisfactory result if it
occurs in a vertical group together with more signs, and a similar distortion of the shape may be witnessed

15

in original inscriptions. The two shapes shown here in fact exist as separate codepoints in Unicode, which
should definitely be avoided for future extensions of the sign list. A font may well include flattened graphical
variants, which it may prefer over the original shape depending on context, but there should be only one
codepoint per sign.

The EMPTY of this proposal is a special case, with zero width and height, of the ‘empty’ symbol
in RES, which can be parameterized with arbitrary width and height. It is a useful auxiliary symbol to
influence placement of neighboring signs.

11.2 Rotation

Some rotation of signs has semantic significance. For example, is a logogram for the object depicted,

namely a mace, while the tilted form, suggesting a mace being applied, is a determinative in words such
as “smite”. These two signs have two distinct codepoints in the existing Unicode set, and this is entirely
justifiable.

There are other cases however, such as , , , , that are pure graphical variants. The choice
between any particular inclination and orientation was probably made by a scribe on a whim, partially
depending on how well it would fit within the graphical context of other signs. The same holds for a number

of thin signs that are used in lying or upright form, such as

and .
The fact that all these are currently separate codepoints in Unicode is difficult to justify other than by

pragmatic considerations: rotation is difficult to realize using off-the-shelf font technology. For this reason
we abstain from proposing generic rotation in Unicode at this time. We would make a note however that once
font technology has evolved further, introduction of rotation as a primitive in the encoding of hieroglyphic
text should definitely be considered.

Of course, RES and JSesh possess primitives for rotation by arbitrary angles.

11.3 Mirroring

Some mirroring of signs has semantic significance. For example, the sign depicting forward walking legs

 is used as determinative in words involving (forward) movement, while the mirrored sign is used
as determinative in words involving backward movement. Having separate codepoints for a sign and its
mirrored counterpart is fully justifiable in such cases.

However, some occurrences of mirroring were motivated by other considerations, as for example, symme-
try of signs within groups. In such cases, a mirrored sign should be seen as a different graphical realization
of the same sign, and does not deserve a separate codepoint. Moreover, such mirroring is not very com-
mon and for many applications the mirroring can be ignored. We therefore will not argue at this time in
favour of including generic mirroring in Unicode. Extended formats, such as RES, do include a primitive
for mirroring.

11.4 Groups

Rendering of groups can be fine-tuned in several ways. For example, one may override the default inter-sign

distance to obtain rather than . In RES this is done by R8-[sep=0]R8-[sep=0]R8. It is definitely
not justifiable to have a separate code point for a combination of signs with particular inter-sign distances,
even when that distance is 0.

As explained in Section 10.1, the width of a horizontal subgroup is reduced to 1 and the height of a
vertical subgroup is reduced to 1, before the scaling of the enclosing group is considered. In some cases,

16

this is undesirable. For example, in

 , the top-most two signs should appear with the same scaling as the

bottom sign. This is achieved in RES by changing the above value 1 to something else, or by avoiding prior
scaling down of the horizontal group altogether, by using inf in D28*D28:[size=inf]D28.

In some later periods of Ancient Egyptian history, lines tended to be much higher than 1 unit, and this
greatly affects layout of signs, due to the interaction between the natural sizes of signs and the line height.
In RES, the line height (and the column width) can be adjusted.

None of the above seem essential for Unicode and will not be proposed at this time.

11.5 Insertion

RES allows fine-tuning of the x and y positions of a group that is inserted into another, as well as fine-tuning
of the minimum distance between the two groups. If the distance is chosen to be 0, then the second group
may touch the first.

11.6 Stacking

In RES, the stacking primitive can be extended with functionality to let one group erase the un-

derlying curves of the other group. For example, we may obtain stack[x=0.4](S12, D58) ,

stack[x=0.4,under](S12, D58) , or stack[x=0.4,on](S12, D58) . We know of no examples
where this difference in appearance has semantic significance, and would therefore not consider any corre-
sponding primitive for inclusion in Unicode.

As also illustrated by the above examples, RES allows fine-tuning of the relative positions of stacked
signs. For Unicode, we rely on the font to choose suitable positioning, as explained in Section 10.3.

11.7 Modify

RES includes a primitive that replaces the physical bounding box by a virtual bounding box. This is a
powerful operation that can in rare cases be useful to give complex groups a more pleasing realization than
would otherwise be possible. It can also be used to let a part of a sign be rendered outside a line of text.
Additionally, one may erase parts of a sign. For many applications however the intricacies of the modify
primitive do not outweigh its benefits, and consequently we are not considering adoption of an analogue for
Unicode.

11.8 Absolute positioning and scaling

There is a strong demand from the Egyptological community for rendering exact appearances from original
texts, mainly for publication purposes. JSesh therefore allows expression of absolute positioning and scal-
ing. For example, S34\R30{{0,357,51}}**G5{{194,0,97}} expresses that sign S34 is to be rotated by 30
degrees, scaled by factor 0.51, and placed at (x, y) coordinate (0.0, 0.357), while G5 is scaled by factor 0.97
and placed at coordinate (0.194, 0.0); coordinates refer to the top-left corners of bounding boxes of signs. In
this syntax, ** connects a number of signs together that are formatted by absolute scaling and positioning
relative to the same reference point (0.0, 0.0). If the triple is absent, it defaults to {{0,0,100}}.

The disadvantage of absolute scaling and positioning is that it makes the encoding dependent on the
exact shapes and natural sizes of signs, in other words on the font, which complicates exchange of encodings
between tools. Absolute scaling and positioning is therefore best avoided, unless it is essential to the
application.

17

12 Conclusions

The Ancient Egyptian writing system is not simple by any stretch of the imagination. A satisfactory
encoding will therefore necessarily involve a few non-trivial elements. Moreover, Ancient Egyptian writing
is very different from other writing systems, which makes implementation of the encoding using existing
rendering engines difficult.

One may be tempted to cut corners and opt for a solution that looks impressive to a lay audience, while
having no practical value whatsoever for those who were supposed to be the users, namely Egyptologists
working with real hieroglyphic texts. As representative such users, we kindly request the UTC to give
Ancient Egyptian the consideration that it deserves, and to work with us to find a better solution than
those that were proposed in the recent past.

References

[1] J. Buurman, N. Grimal, M. Hainsworth, J. Hallof, and D. van der Plas. Inventaire des signes
hiéroglyphiques en vue de leur saisie informatique. Institut de France, Paris, 1988.

[2] M. Collier and B. Manley. How to read Egyptian hieroglyphs: A step-by-step guide to teach yourself.
British Museum Press, 1998.

[3] E. Graefe. Mittelägyptische Grammatik für Anfänger. Harrassowitz Verlag, Wiesbaden, 1994.

[4] N. Grimal, J. Hallof, and D. van der Plas. Hieroglyphica. Publications Interuniversitaires de Recherches
Égyptologiques Informatisées, Utrecht, Paris, 1993.

[5] M.-J. Nederhof. A revised encoding scheme for hieroglyphic. In Proceedings of the 14th Table Ronde
Informatique et Égyptologie, July 2002. On CD-ROM.

[6] M.-J. Nederhof. The Manuel de Codage encoding of hieroglyphs impedes development of corpora.
In S. Polis and J. Winand, editors, Texts, Languages & Information Technology in Egyptology, pages
103–110. Presses Universitaires de Liège, 2013.

[7] M.-J. Nederhof. ORC of handwritten transcriptions of Ancient Egyptian hieroglyphic text. In Alter-
tumswissenschaften in a Digital Age: Egyptology, Papyrology and beyond, Leipzig, 2015.

[8] S. Polis, A.-C. Honnay, and J. Winand. Building an annotated corpus of Late Egyptian. In S. Polis and
J. Winand, editors, Texts, Languages & Information Technology in Egyptology, pages 25–44. Presses
Universitaires de Liège, 2013.

[9] S. Rosmorduc. JSesh Hieroglyphic Editor. http://jseshdoc.qenherkhopeshef.org, 2016.

[10] K. Sethe. Urkunden der 18. Dynastie, Volume I. Hinrichs, Leipzig, 1927.

[11] N. Stief. Hieroglyphen, Koptisch, Umschrift, u.a. – ein Textausgabesystem. Göttinger Miszellen, 86:37–
44, 1985.

[12] N. Stief. PLOTTEXT. https://www.hrz.uni-bonn.de/rechner-und-software/pc-anwendungen/

textverarbeitung/plottext-1, 2003.

18

A Structure of hieroglyphic encoding

For a sequence of signs and control characters to have their intended meanings, it should comply with the
following (Backus-Naur) specification. Lower-case non-bold names are classes. Bold-face names represent
characters, with upper-case boldface names representing particular characters, and sign representing any
hieroglyph. The pipe symbol | separates alternatives. Square brackets [] indicate optional elements, round
brackets followed by an asterisk ()∗ indicate repetition zero or more times, and round brackets followed by
a plus symbol ()+ indicate repetition one or more times

The following states that groups may, but need not, be preceded by a specification of the text direction.

fragment ::= [direction] [groups]
direction ::= HLR | HRL | VLR | VRL

The following states that two consecutive groups may, but need not, be connected by a joiner. A basic group
may be an individual sign, an empty character, a box, an insertion, or a stacking. The two remaining kinds
of groups are horizontal and vertical groups.

groups ::= group ([JOIN] group)∗

group ::= basic group | horizontal group | vertical group
basic group ::= sign | EMPTY | box | insert | stack

The following states that horizontal and vertical groups have a left marker HOR or VERT, respectively,
and a right marker END. These enclose two or more subgroups. A subgroup of a horizontal group may not
be another horizontal group and a subgroup of a vertical group may not be another vertical group.

horizontal group ::= HOR hor subgroup ([JOIN] hor subgroup)+ END
hor subgroup ::= basic group | vertical group
vertical group ::= VERT vert subgroup ([JOIN] vert subgroup)+ END
vert subgroup ::= basic group | horizontal group

The following states that a box, such as a cartouche, contains zero or more groups.

box ::= box type [groups] END
box type ::= CARTOUCHE | OVAL | SEREKH | INB | RECTANGLE | HWT

The following concerns an insertion of two groups, the second to be inserted into the first, at a location
specified by the type. The second group is scaled down as required to fit in the specified location without
touching the first group.

insert ::= insert type group group
insert type ::= INSERT |

INSERT T | INSERT B |
INSERT S | INSERT E |
INSERT T S | INSERT T E |
INSERT B S | INSERT B E

The following concerns stacking of two groups.

stack ::= STACK group group

19

B The characters

The following defines the individual characters used in the above description of the structure.

HLR, HRL, VLR, VRL: “indications of horizontal (rows) or vertical (colums) text, from left
to right or from right to left”

JOIN: “control character put between two groups to indicate their bounding boxes may
overlap”

EMPTY: “a zero-width and zero-height (empty) character”

HOR: “marker of the beginning of a horizontal group”

VERT: “marker of the beginning of a vertical group”

CARTOUCHE, . . . : “markers of the beginning of some type of box”

END: “marker of the end of a horizontal or vertical group or box”

INSERT, . . . : “insertion of a group into the bounding box of another, at the indicated
position”

STACK: “stacking of two groups”

C Implementation

C.1 RES

The encoding that this document proposes is a functional subset of RES, which has been implemented in
C, Java and JavaScript, with the ideal formatting described in Section 10. There is a graphical editor at:

https://mjn.host.cs.st-andrews.ac.uk/egyptian/res/js/edit.html

which allows experimentation with the JavaScript implementation. The existence of these implementa-
tions shows that the functionality of the proposed encoding can be realized. The differences in syntax are
inessential.

Omitting some optimizations, a concrete procedure to implement INSERT S G1 G2 is roughly as in
Algorithm 1. For the various insert operations and for JOIN, we need to check whether there is sufficient
distance, say sep, between two groups. This can be realized in one of two ways:

• One may draw a circle of radius sep around each black pixel of the second group and test whether any
of the drawn pixels coincide with a pixel of the first group. If so, the two groups are too close.

• One may draw the second group several times, say 8 times, a distance of sep away from its proposed
position, in 8 different directions 45° apart. Analytical methods can then be used to test whether any
of the resulting curves intersect with any of the curves of the first group.

The first method is used in the mentioned implementations of RES. We experimented with the second
method for the JavaScript implementation using SVG, but found the computational costs were prohibitive

20

Algorithm 1 Simplified implementation of the equivalent of INSERT S G1 G2 in RES

1: ybest ← 0.5 . Start in middle y-coordinate of G1

2: while true do . Iterate until convergence
3: yup ← ybest + 0.05 . Consider going up
4: ydown ← ybest − 0.05 . Consider going down
5: fbest ← max scaling(ybest) . Biggest scaling with current y-coordinate
6: fup ← max scaling(yup) . Biggest scaling if we go up
7: fdown ← max scaling(ydown) . Biggest scaling if we go down
8: if fdown ≤ fbest and fup ≤ fbest then . Scaling is not getting bigger
9: render with ybest and fbest and halt . So do rendering and we’re done

10: else if fup < fdown then . Best improvement by going down
11: ybest ← ydown . Go down
12: else
13: ybest ← yup . Go up

14: function max scaling(y) . Determine biggest possible scaling at given y-coordinate
15: fbest ← 0.05 . Start with smallest scaling
16: while fbest < 1 do . We cannot scale up beyond natural size
17: f ← fbest + 0.05 . Consider larger scaling
18: if can render(y,f) then . Is larger scaling ok?
19: fbest ← f . Continue with larger scaling
20: else return fbest . We’ve gone too far, so stop now

21: return fbest . Return maximum scaling possible for y

22: function can render(y,f)
23: render G2 with scaling f , with its middle at y-coordinate y of G1,

and its left edge at x-coordinate 0 of G1

24: return G2 falls within the bounding box of G1 and
there is sufficient distance between G1 and G2

for fast rendering of web pages; this may change with future browsers, faster hardware, and/or better support
for SVG operations.

C.2 Realization in OpenType

The functionality of our horizontal and vertical grouping roughly corresponds to the horizontal joiner and the
vertical joiner from L2/16-018R. That document further claims that “All of the samples can be implemented
in OpenType using glyphs substitutions” (p. 4), but it stops short of explaining how this was done. One
would hope that at least the horizontal joiner and the vertical joiner were, or could be, implemented in
a reasonably general way. However the phrase “focus on attested forms [...] rather than [...] arbitrary
quadrats” (p. 2) reveals they were not.

Even if one would abstract away from particular signs and implement grouping for particular choices
of sign dimensions, it is clear we are running into severe problems. Recall the algorithm for rendering of
horizontal and vertical groups in Section 10.1. In principle, the width and height of any sign within a group
can influence the scaling and positioning of any other sign within the same group. Concretely, this means a
rendering engine that scales and positions a sign after analyzing its context should simultaneously look at
many aspects of that context.

Suppose we divide signs into classes, depending on their rough dimensions. We might distinguish between
4 different heights and 4 different widths, which gives us 16 classes of signs. If a group may contain up to 7

21

signs (this seems already fairly restrictive), then we would have to distinguish at least 167 ≈ 268 million
kinds of groups. How many of these would be “attested” ? Probably a small portion of the 268 million, but
every text would contain a few we have not seen before. We would reiterate a now familiar point, which is
that an encoding scheme has no value unless we can encode a text we have not seen before, which makes
reliance on “attested forms” a fatal flaw.

In this section, we aim to investigate to what extent OpenType is able to handle horizontal and vertical
groups without cheating, that is, without storing an exceedingly large (while still wholly inadequate) table
of “attested forms”. While OpenType is clearly not intended for hieroglyphic text, and any solution will be
clumsy to the extreme, we feel forced to address this issue, because of the importance that is given, justly
or unjustly, to OpenType and the Universal Shaping Engine.

We have prepared a small font with a handful of hieroglyphs, by adding OpenType substitution rules,
divided over a large number of ‘lookups’ of the ‘liga’ feature, to format a few sample groups of hieroglyphs,
attempting to approximate the ideal rendering discussed in Section 10. As it soon became clear to us that
writing these substitution rules by hand would be close to impossible, we wrote a Python script to generate
these rules.

Our architecture uses three passes. In a first pass, substitution rules insert ‘records’ between signs and
control characters. Each record consists of a sequence of auxiliary symbols, which are empty glyphs with
zero width. The auxiliary symbols serve to help analyze a group. Most auxiliary symbols initially represent
‘null’ values, indicating that various counts, widths, and heights, etc., have not yet been determined. In
the second and third passes, contextual substitution rules are then repeatedly applied to fill in the missing
values, copied from neighbouring records to the left or to the right, possibly in combination with operations
such as addition and maximization (which have to be realized in terms of precompiled substitution rules for
finite sets of values).

More precisely, in the second pass, which is right-to-left, the natural width, natural height and number
of subgroups in each group are computed. In the third pass, which is left-to-right, appropriate scaling
factors and positions are propagated, and signs are scaled and positioned appropriately. Scaling is realized
by having scaled versions of each sign in the font (again for a finite number of values).

Figure 4 depicts the records involved in the analysis of the group
, which has a horizontal group within

a vertical group. We assume here that the natural width/height of, and are

1.0/0.7, 0.5/0.6 and

1.0/0.4, respectively. In this example, and are eventually replaced by scaled-down versions, which
gives them dimensions 0.6/0.5 and 0.3/0.4. Note that we inevitably need to round off, as only a finite
number of values can be manipulated. Here we pragmatically round off to multiples of 0.1 times the unit
size.

The right-to-left analysis of the outer, vertical group starts in record (12), where the maximum width (w),
sum of heights (h) and number of subgroups (n) are all initially 0. Record (10) updates that information by

considering the natural width and height of

. This information is copied unchanged through the bottom
halves of (8), (6) and (4). In the inner, horizontal group, a similar analysis is done starting with w (now
the sum of widths), h (now the maximum height), and n all being 0 in the top half of (8). In (3), the width
(w) is truncated to 1.0, as the natural width 1.6 exceeds 1.0, and here it is found that the horizontal group
needs to be scaled down by factor 0.7 at least.

The left-to-right analysis starts in (1), with the height of the line being 1.0, but without constraints on
the width of the group. As the total height of the vertical group is exactly 1.0, no further scaling down is
necessary. The four values rx, ry, rw and rh represent the position of the upper left corner of the rectangle
in which the group needs to be rendered and its width and height. The values are passed on and updated
from left to right. Once more, the values in the bottom halves in (4), (6) and (8) are copied unchanged, so
they are available again in (10).

22

VERT

w: -

h:1.0

n:2

sc:1.0

rx:0.0

ry:1.0

rw: -

rh:1.0

(1)

w:1.0

h:1.0

n:2

sc:1.0

rx:0.0

ry:1.0

rw:1.0

rh:1.0

(2)

HOR

w:1.0

h:0.5

n:2

sc:0.7

rx:0.0

ry:1.0

rw:1.0

rh:0.5

(3)

w:1.6

h:0.7

n:2

sc:0.7

rx:0.0

ry:1.0

rw:1.0

rh:0.5

w:1.0

h:0.4

n:1

sc:1.0

rx:0.0

ry:0.6

rw:1.0

rh:0.4

(4)

rx:0.0

ry:1.0

rw:0.6

rh:0.5

(5)

w:0.5

h:0.6

n:1

sc:0.7

rx:0.7

ry:1.0

rw:0.3

rh:0.5

w:1.0

h:0.4

n:1

sc:1.0

rx:0.0

ry:0.6

rw:1.0

rh:0.4

(6)

rx:0.7

ry:1.0

rw:0.3

rh:0.4

(7)

w:0.0

h:0.0

n:0

sc:0.7

rx:1.0

ry:1.0

rw:0.0

rh:0.5

w:1.0

h:0.4

n:1

sc:1.0

rx:0.0

ry:0.6

rw:1.0

rh:0.4

(8)

END

(9)

w:1.0

h:0.4

n:1

sc:1.0

rx:0.0

ry:0.6

rw:1.0

rh:0.4

(10)

rx:0.0

ry:0.6

rw:1.0

rh:0.4

(11)

w:0.0

h:0.0

n:0

sc:1.0

rx:0.0

ry:0.0

rw:1.0

rh:0.0

(12)

END

(13)

Figure 4: Record keeping in our partial OpenType implementation of formatting of groups.

This partial OpenType implementation is extremely inelegant and moreover we run into the problem
that many tools do not support lookup offsets exceeding 2 bytes, which stands in the way of scaling this up
to a full implementation for the full sign list. Nonetheless, we can draw a few tentative conclusions:

• A general OpenType implementation seems in principle possible.

• There is no particular reason to exclude the possibility of, e.g., vertical groups within horizontal groups
within vertical groups (as L2/16-018R did without giving adequate motivation; see also L2/16-90).

• Connected to the previous point, our syntax with start and end markers is more convenient than the
syntax of L2/16-018R, which relied on inadequately motivated operator precedence.

• We can extend this architecture to insertions (cf. the running text relevant to Figure 3 above), by
assigning different values for rx, ry, rw and rh at the beginning of an inserted group.

C.3 The fall-back option

Some may argue that the primitives of this proposal are too powerful to be included in Unicode, in the light
of inadequacies of OpenType technology. We would contend however that our primitives are not per se more
powerful than those from proposal L2/16-018R. The central difference is that the behaviour of, for example,
our insertion primitives can be precisely defined, whereas the LIGATURE JOINER from L2/16-018R is
and would remain inherently undefined, which is unacceptable from the perspective of reliable exchange of
textual data between different parties.

If no suitable implementations of our primitives can be achieved in OpenType that would work for
any combination of signs, then the obvious fall-back option is to make the same assumption as was made

23

by L2/16-018R, namely that only a fixed collection of special groups would be implemented, each by one
dedicated substitution rule in the font. The crucial advantage of our proposal over the LIGATURE JOINER
is however that we can then still unambiguously encode new groups not yet implemented in the font, even if
these cannot be immediately rendered as such. One font may implement more special groups than another,
but two fonts correctly implementing the primitives cannot render the same encoding in two essentially
different ways, due to the primitives being well-defined.

Hence, if the UTC was of the opinion that the control characters in L2/16-018R were technically feasible,
then we see no reason why evaluation of the present proposal would have a different outcome.

24

