L2/16-192
Re: Other properties in segmentation rules
From: Mark Davis
Date: 2016-07-18
Draft: https://goo.gl/MxceSH

Proposal

In the segmentation UAXs (#29, #14) add the following text.

Segmentation rules may use other sets of characters based on Unicode properties in addition to the associated
segmentation property values. When that is done, the regular property set syntax is used, such as:

Numeric x \p{script=Arab}

This is especially important for customizations of rules, such as in CLDR, but also allows for future use in the UAX
rules.

Background

We have followed the practice in the UAXs that the segmentation rules only use segmentation properties. We
instituted this very early on, when the rules were simpler. There is, however, no hard requirement that a Unicode
algorithm use only a single property; normalization, for example, uses several.

As the rules have gotten more complicated, however, at this point the practice makes the rules more difficult to follow
and to implement. The segmentation properties are enumerated and single-valued, thus forming a partition. That is
not very flexible, since any time we would like to test against a new set of items, we end up splitting every property
value whose range intersects with that set. We’ve attempted to make the rules a bit shorter by introducing “macros”,
but everything is more complicated than it should be. We are often forced to fall short of the ideal implementation
solely because the rules would just get too complicated.

Examples of splits:

e (ALetter | Hebrew_Letter)
(MidNumLet | Single_Quote)
(STerm | ATerm)
(Glue_After Zwj | EBG)
(Extend | ZWJ)

(AL | HL)

Most recently, we didn’t set Glue_After_Zwj on all the characters we wanted, because it would cause us to split more
sets than we wanted. We introduced rules like:

ZWJ x (Glue_After_Zwj | EBG)
When what we really wanted to do (for future-proofing) was something like:
ZIWJ x \p{Emoji}
We were forced to push a more thorough approach into CLDR (“Some changes to rules and data are needed for best
segmentation behavior of additional emoji zwj sequences [UTR51], prior to the eventual publication of Unicode 10.0.

Such changes are planned for inclusion in CLDR Version 30 [CLDR].”)

Indicating that other property-based sets can be used in the rules not only normalizes their use in CLDR (and by any
other customizations), but also allows us to avoid jumping through hoops in the future in the UAXes.

https://goo.gl/MxceSH
http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr14/

Testing Implications

The segmentation test files use a set of test characters, one from each of the segmentation property value sets. Where
we use a set based on a property X, the set of test characters would need to be expanded. (This is both in the UAX rules
and for customizations such as in CLDR.) The expansion would only occur when there is overlap: a segmentation
property value set has some characters included in X and some not included in X. In cases of overlap, there would be
two test characters instead of one.

This is a straightforward modification. Below is sample code for where the LineBreak rules also use [:script=Hebr:].

for (Line_Break_Values lineBreakValue : Line_Break_Values.values()) {
UnicodeSet lineBreakPropertyValueSet = lineBreakProperty.getSet(lineBreakValue);
String lbvName = lineBreakValue.getShortName();

UnicodeSet difference = new UnicodeSet(lineBreakPropertyValueSet).removeAll(hebrewScript);
UnicodeSet intersection = new UnicodeSet(lineBreakPropertyValueSet).retainAll(hebrewScript);
if (difference.isEmpty() || intersection.isEmpty()) {
addFirstCharacter(lbvName + "\t " + otherPropName, lineBreakPropertyValueSet, testCharacters);
} else {
addFirstCharacter(lbvName + "\t-" + otherPropName, difference, testCharacters);
addFirstCharacter(lbvName + "\t+" + otherPropName, intersection, testCharacters);

And the results would be the following (with +/- and underline where an additional test character is generated).

AL -Hebr 0023 NUMBER SIGN

AL +Hebr 05C0 HEBREW PUNCTUATION PASEQ
B2 Hebr 2014 EM DASH

BA -Hebr 0009 <control-0009>

BA +Hebr 05BE HEBREW PUNCTUATION MAQAF
BB Hebr 00B4 ACUTE ACCENT

BK Hebr 000B <control-000B>

CB Hebr FFFC OBJECT REPLACEMENT CHARACTER
cJ Hebr 3041 HIRAGANA LETTER SMALL A

CL Hebr 007D RIGHT CURLY BRACKET

M -Hebr 0000 <control-0000>

cM +Hebr 0591 HEBREW ACCENT ETNAHTA

cP Hebr 0029 RIGHT PARENTHESIS

CR Hebr 000D <control-000D>

EB Hebr 261D WHITE UP POINTING INDEX

EM Hebr 1F3FB EMOJI MODIFIER FITZPATRICK TYPE-1-2
EX -Hebr 0021 EXCLAMATION MARK

EX +Hebr 05C6 HEBREW PUNCTUATION NUN HAFUKHA
GL Hebr 00AO NO-BREAK SPACE

H2 Hebr ACO0 HANGUL SYLLABLE GA

H3 Hebr ACO1 HANGUL SYLLABLE GAG

HL Hebr 05D0 HEBREW LETTER ALEF

HY Hebr 002D HYPHEN-MINUS

ID Hebr 231A WATCH

IN Hebr 2024 ONE DOT LEADER

IS Hebr 002C COMMA

JL Hebr 1100 HANGUL CHOSEONG KIYEOK

JT Hebr 11A8 HANGUL JONGSEONG KIYEOK
Jv Hebr 1160 HANGUL JUNGSEONG FILLER

LF Hebr 000A <control-000A>

NL Hebr 0085 <control-0085>

NS Hebr 17D6 KHMER SIGN CAMNUC PII KUUH
NU Hebr 0030 DIGIT ZERO

oP Hebr 0028 LEFT PARENTHESIS

PO Hebr 0025 PERCENT SIGN

PR Hebr 0024 DOLLAR SIGN

QU Hebr 0022 QUOTATION MARK

RI Hebr 1F1E6 REGIONAL INDICATOR SYMBOL LETTER A
SA Hebr 0EO1 THAI CHARACTER KO KAI

SG Hebr D800 <surrogate-D800>

SP Hebr 0020 SPACE

SY Hebr 002F SOLIDUS

WJ Hebr 2060 WORD JOINER

XX Hebr 0378 <reserved-0378>

ZW Hebr 200B ZERO WIDTH SPACE

ZWJ Hebr 200D ZERO WIDTH JOINER

