
L2/17-050Georgian: Comments on Database Stability

Author: Steven R. Loomis @srl295 srloomis@us.ibm.com

URL to this document: https://gist.github.com/srl295/05ff5730bcc40a66bb0a9a4b1af6d843

Introduction

Relevant to the response to point 2 in L2/17–045 (Razmadze), here are a few comments on how addition of

codepoints can cause database instability when different implementations are used.

Background

1. If a new set of capital letters were added now, it would be very destabilizing and lead to serious

representation and interoperability issues. Names in databases, for example, would be

destabilized if capitalization was introduced. Searching and comparison operations would no

longer give expected results, which would be significant when analyzing the large corpus of

existing documentation.

We have had consults with local specialists and based on their conclusions, names in databases will not

be causing destabilization. There wonʼt be any problems with searching, either, since Mtavruli and

Mkhedruli letters will be linked through the case pairing function and Mtavruli letter results will also be

represented in Mkhedruli letter searches, just like in Latin letter search for the word “GEORGIA” we will

receive the lowercase result – “georgia” as well.

Step One: Today

Suppose database table d#1 (perhaps a list of singers) has a constraint on it, which only allows Georgian text.

As of now, Mkhedruli and Mtavruli are unified. So certain codepoints are allowed:

 U+10D0 ა GEORGIAN LETTER AN

 U+10D1 ბ GEORGIAN LETTER BAN

…

To compare the example above to Latin, it would be as if the database allowed only the letters a…z such as

 georgian .

https://srl295.github.io/
https://gist.github.com/srl295/05ff5730bcc40a66bb0a9a4b1af6d843
http://www.unicode.org/L2/L2017/17045-georgian-resp.pdf

Another database table d#2 (perhaps a list of songs) could refer to d#1 , and have the same constraint.

Also, note that UPPER('georgian') would produce georgian .

A real example from mysql today illustrates this: (imagine it is d#2)

 UPPER('მადლობა')
 მადლობა
 UPPER('суп')
 СУП

and sqlite:

 sqlite> select UPPER('მადლობა');
 მადლობა

So today UPPER('მადლობა') just produces მადლობა .

Step Two: Some, but not all, implementations support disunified
Mkhedruli/Mtavruli

If d#1 were to allow disunified Mtavruli characters as proposed, its constraint might be changed to allow

these, such as GEORGIAN . Also, select UPPER('georgian') would evaluate to GEORGIAN .

If d#2 , however, did not support the disunified Mtavruli characters, as it was still stuck on Unicode 10.0, then

an entry such as GEORGIAN in d#1 could not match the corresponding entry in d#2 . select
UPPER('georgian') would NOT evaluate to GEORGIAN . It would evaluate to georgian . Searching for GEORGIAN
from d#1 would not match anything in d#2

 d#2 and d#1 would produce different results when calling UPPER('georgian') . A SELECT statement using

both of these tables would not match until/unless d#2 was updated.

