
Comments on L2/18-337 - Broaden the scope of what Unicode calls
“properties”

Michael Saboff
msaboff@apple.com
January 14, 2019

As L2/18-337 - Broaden the scope of what Unicode calls “properties” is currently written,
it has as its goal unifying the treatment of sequences with that of properties. It seeks
such a clarification from the Unicode TC in order to unblock an ECMA TC-39 proposal.

I serve on ECMA TC-39 and although I support adding the ability to search for Unicode
sequences via regular expressions, I oppose reusing property matching syntax for
sequences. I believe that such a move would confuse developers and users of the
resulting ECMAScript language and imply capabilities that won’t exist. I support using
new and distinct syntax for sequences.

Furthermore, I believe that what is proposed in L2/18-337 is incomplete, and it will be
detrimental to Unicode and its uses in other ways. I make the following claims in
regards to L2/18-337.

1. L2/18-337 does nothing to unify how characters / code-points, and strings are
tested for a properties or a sequence. Such testing will still require determining first
if what is being tested is a single entity, aka property, or a string, aka sequence,
before proceeding. Certainly the current checking for a property could evolve to
looping over the elements of a sequence property, but such a looping algorithm
would obfuscates and complicates the direct table, multistage table or range lookup
needed for most current properties.

2. In most current cases, sequences are boolean, either a string matches or it doesn’t
Properties on the other hand can have many possible values. Even the canonical-
equivalent sequences are still boolean mappings.

3. In general, sequences are used to describe strings that have meanings distinct from
their individual code points. L2/18-337 is focused primarily on five Emoji
sequences. These sequences are lists of strings (or list of sequences) that define a
boolean group membership. While L2/18-337 does provide for future lists of
sequences, it doesn’t address the myriad of current Unicode sequences, e.g.
LATIN CAPITAL LETTER A WITH OGONEK AND ACUTE. L2/18-337 proposes
adding _Sequence to the one Emoji sequence that doesn’t have that suffix, but
does nothing to address all of the existing non-Emoji sequences that don’t end in
_Sequence. Given the Unicode name stability guarantee, these other sequences
would require secondary names or aliases with an added _Sequence suffix.

4. L2/18-337 is written to support the overloaded use of \p{<sequence-name>} in
regular expression processing. The TC-39 proposal that would immediately take

Rick
Text Box
L2/19-056

advantage of L2/18-337 limits the overloaded use depending on context. The \p
escape when used for a sequence wold only be used to direct matching of said
sequence. The negative \P{<sequence-name>} is disallowed and results in an
early syntax error. Although \p{<property-name>} can be used to build larger
character classes (called character ranges in UTS #18), the use of \P{<sequence-
name>} in a character class would also result in an early syntax error, since
character classes are s set of code points to match. Both L2/18-337 and the
related TC-39 proposal are built upon the developer understanding that a suffix of
_Sequence connotes different usage and match processing. It is my contention
that given the differing acceptable uses of sequence matching from that of property
matching, these differences are best handled with different syntax. The escape
syntax of \q{<sequence-name>} has been proposed, discussed and is the current
alternative to using \p. Note that \s is already in common use for regular
expression syntax to search for whitespace, and therefore the alternate \q has
suggested. The distinct use of \p / \P for properties, and \q for sequences conveys
the difference acceptable usage within regular expressions for each, instead of
relying on the entity names for the contained constructs.

5. L2/18-337 doesn’t address the related issues in UTS #18 Unicode Regular
Expressions. Certainly the use of \p{<sequence-name>} outside of a character
class would work as expected, but exclusions to using \P with sequences should be
added to UTS 18 as well as the prohibition of \p with sequences inside a range
construct. Lastly, establishing a general precedent of overloading \p for sequences
is best communicated by Unicode instead of a dependent programming language.

6. Finally, by reusing syntax, we will likely introduce incompatibilities in deployed code.
Consider existing code that accepts regular expression components as strings,
including properties, where a property name is inserted in a \p{…} or \P{…}
construct. Those computed property escapes could run into the syntax issues
described above without the associated error handling. Such error handling would
likely not be anticipated since it wasn’t needed for properties. The only error
checking required today is validating if existence of a property, and not its
acceptable usage within a regular expression.

I am in favor of adding regular expression support of Unicode Sequences, but through
the use of new syntax that clearly communicate the capability and its limitations. Adding
sequence support in such a manner scales to the myriad of existing sequences without
requiring any sequence renaming or aliasing. I object to blurring the lines between
properties and sequences for the aforementioned stated reasons.

