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0 Introduction

The following describes general guidelines for extending regular expression engines (Regex) to handle Unicode. The following issues
are involved in such extensions.

Unicode is a large character set—regular expression engines that are only adapted to handle small character sets will not scale
well.
Unicode encompasses a wide variety of languages which can have very different characteristics than English or other western
European text.

There are three fundamental levels of Unicode support that can be offered by regular expression engines:

Level 1: Basic Unicode Support. At this level, the regular expression engine provides support for Unicode characters as basic
logical units. (This is independent of the actual serialization of Unicode as UTF-8, UTF-16BE, UTF-16LE, UTF-32BE, or UTF-
32LE.) This is a minimal level for useful Unicode support. It does not account for end-user expectations for character support,
but does satisfy most low-level programmer requirements. The results of regular expression matching at this level are
independent of country or language. At this level, the user of the regular expression engine would need to write more
complicated regular expressions to do full Unicode processing.
Level 2: Extended Unicode Support. At this level, the regular expression engine also accounts for extended grapheme
clusters (what the end-user generally thinks of as a character), better detection of word boundaries, and canonical equivalence.
This is still a default level—independent of country or language—but provides much better support for end-user expectations
than the raw level 1, without the regular-expression writer needing to know about some of the complications of Unicode
encoding structure.
Level 3: Tailored Support. At this level, the regular expression engine also provides for tailored treatment of characters,
including country- or language-specific behavior. For example, the characters ch can behave as a single character in Slovak or
traditional Spanish. The results of a particular regular expression reflect the end-users' expectations of what constitutes a
character in their language, and the order of the characters. However, there is a performance impact to support at this level.

In particular:

1. Level 1 is the minimally useful level of support for Unicode. All regex implementations dealing with Unicode should be at least
at Level 1.

2. Level 2 is recommended for implementations that need to handle additional Unicode features. This level is achievable without
too much effort. However, some of the subitems in Level 2 are more important than others: see Level 2.

3. Level 3 contains information about extensions only useful for specific applications. Features at this level may require further
investigation for effective implementation.

One of the most important requirements for a regular expression engine is to document clearly what Unicode features are and are
not supported. Even if higher-level support is not currently offered, provision should be made for the syntax to be extended in the
future to encompass those features.

Note: The Unicode Standard is constantly evolving: new characters will be added in the future. This means that a regular
expression that tests for currency symbols, for example, has different results in Unicode 2.0 than in Unicode 2.1, which added
the euro sign currency symbol.

At any level, efficiently handling properties or conditions based on a large character set can take a lot of memory. A common
mechanism for reducing the memory requirements—while still maintaining performance—is the two-stage table, discussed in
Chapter 5 of The Unicode Standard [Unicode]. For example, the Unicode character properties required in RL1.2 Properties can be
stored in memory in a two-stage table with only 7 or 8 Kbytes. Accessing those properties only takes a small amount of bit-twiddling
and two array accesses.

Note: For ease of reference, the section ordering for this document is intended to be as stable as possible over successive
versions. That may lead, in some cases, to the ordering of the sections being less than optimal.

0.1 Notation
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In order to describe regular expression syntax, an extended BNF form is used:

Syntax Meaning

x y the sequence consisting of x then y

x* zero or more occurrences of x

x? zero or one occurrence of x

x | y either x or y

( x ) for grouping

"XYZ" terminal character(s)

Character Ranges

The following syntax for character ranges is used in successive examples.

LIST := "[" NEGATION? ITEM (SEP? ITEM)* "]" 
 
ITEM := CODE_POINT2 
     := CODE_POINT2 "-" CODE_POINT2 // range 
 
CODE_POINT2 := ESCAPE CODE_POINT 
            := CODE_POINT 
 
NEGATION := "^" 
 
SEP := ""   // no separator = union 
    := "||" // union (where desired for clarity) 
 
ESCAPE := "\"

CODE_POINT refers to any Unicode code point from U+0000 to U+10FFFF. Whitespace is allowed between any elements, but to
simplify the presentation the many occurrences of sequences of spaces (" "*) are omitted.

For the purpose of regular expressions, in this document the terms “character” and “code point” are used interchangeably. Similarly,
the terms “string” and “sequence of code points” are used interchangeably. Typically the code points of interest will be those
representing characters. A character range is also referred to as the set of all characters specified by that range.

Code points that are syntax characters or whitespace are typically escaped. For more information see [UAX31]. In examples, the
syntax "\s" is sometimes used to indicate whitespace. See also Annex C: Compatibility Properties.

Note: This is only a sample syntax for the purposes of examples in this document. Regular expression syntax varies widely:
the issues discussed here would need to be adapted to the syntax of the particular implementation. However, it is important to
have a concrete syntax to correctly illustrate the different issues. In general, the syntax here is similar to that of Perl Regular
Expressions [Perl].) In some cases, this gives multiple syntactic constructs that provide for the same functionality.

The following table gives examples of character ranges:

Range Matches

[a-z || A-Z || 0-9]

ASCII alphanumerics[a-z A-Z 0-9]

[a-zA-Z0-9]

[^a-z A-Z 0-9] anything but ASCII alphanumerics

[\] \- \ ] the literal characters ], -, <space>

Where string offsets are used in examples, they are from zero to n (the length of the string), and indicate positions between
characters. Thus in "abcde", the substring from 2 to 4 includes the two characters "cd".

The following additional notation is defined for use here and in other Unicode specifications:

Syntax Meaning Note

\n As used within regular expressions, expands to the
text matching the nth parenthesized group in the
regular expression. (à la Perl)

Note that most engines limit n to be [1-9]; thus \456
would be the reference to the 4th group followed by the
literal "56".

$n As used within replacement strings for regular The value of $0 is the entire expression.

http://www.perl.com/pub/q/documentation


10/7/2019 UTS #18: Unicode Regular Expressions

https://www.unicode.org/reports/tr18/tr18-20.html 4/32

expressions, expands to the text matching the nth

parenthesized group in a corresponding regular
expression. (à la Perl)

$xyz As used within regular expressions or replacement
strings, expands to an assigned variable value.

The "xyz" is of the form of an identifier. For example,
given $greek_lower = [[:greek:]&&[:lowercase:]], the regular
expression pattern "ab$greek_lower" is equivalent to
"ab[[:greek:]&&[:lowercase:]]".

Because any character could occur as a literal in a regular expression, when regular expression syntax is embedded within other
syntax it can be difficult to determine where the end of the regex expression is. Common practice is to allow the user to choose a
delimiter like '/' in /ab(c)*/. The user can then simply choose a delimiter that is not in the particular regular expression.

0.2 Conformance

The following section describes the possible ways that an implementation can claim conformance to this Unicode Technical
Standard.

All syntax and API presented in this document is only for the purpose of illustration; there is absolutely no requirement to follow such
syntax or API. Regular expression syntax varies widely: the features discussed here would need to be adapted to the syntax of the
particular implementation. In general, the syntax in examples is similar to that of Perl Regular Expressions [Perl], but it may not be
exactly the same. While the API examples generally follow Java style, it is again only for illustration.

C0. An implementation claiming conformance to this specification at any Level shall identify the version of this

specification and the version of the Unicode Standard.

 

C1. An implementation claiming conformance to Level 1 of this specification shall meet the requirements described in

the following sections:

RL1.1 Hex Notation
RL1.2 Properties
RL1.2a Compatibility Properties
RL1.3 Subtraction and Intersection
RL1.4 Simple Word Boundaries
RL1.5 Simple Loose Matches
RL1.6 Line Boundaries
RL1.7 Supplementary Code Points

C2. An implementation claiming conformance to Level 2 of this specification shall satisfy C1, and meet the

requirements described in the following sections:

RL2.1 Canonical Equivalents
RL2.2 Extended Grapheme Clusters
RL2.3 Default Word Boundaries
RL2.4 Default Case Conversion
RL2.5 Name Properties
RL2.6 Wildcards in Property Values
RL2.7 Full Properties

C3. An implementation claiming conformance to Level 3 of this specification shall satisfy C1 and C2, and meet the

requirements described in the following sections:

RL3.1 Tailored Punctuation
RL3.2 Tailored Grapheme Clusters
RL3.3 Tailored Word Boundaries
RL3.6 Context Matching
RL3.7 Incremental Matches
RL3.9 Possible Match Sets
RL3.11 Submatchers

 

C4. An implementation claiming partial conformance to this specification shall clearly indicate which levels are

completely supported (C1-C3), plus any additional supported features from higher levels.

For example, an implementation may claim conformance to Level 1, plus Context Matching, and Incremental Matches. Another
implementation may claim conformance to Level 1, except for Subtraction and Intersection.

http://www.perl.com/pub/q/documentation
http://download.oracle.com/javase/6/docs/api/java/util/regex/package-summary.html
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A regular expression engine may be operating in the context of a larger system. In that case some of the requirements may be met
by the overall system. For example, the requirements of Section 2.1 Canonical Equivalents might be best met by making
normalization available as a part of the larger system, and requiring users of the system to normalize strings where desired before
supplying them to the regular-expression engine. Such usage is conformant, as long as the situation is clearly documented.

A conformance claim may also include capabilities added by an optional add-on, such as an optional library module, as long as this is
clearly documented.

For backwards compatibility, some of the functionality may only be available if some special setting is turned on. None of the
conformance requirements require the functionality to be available by default.

1 Basic Unicode Support: Level 1

Regular expression syntax usually allows for an expression to denote a set of single characters, such as [a-z A-Z 0-9]. Because
there are a very large number of characters in the Unicode Standard, simple list expressions do not suffice.

1.1 Hex Notation

The character set used by the regular expression writer may not be Unicode, or may not have the ability to input all Unicode code
points from a keyboard.

RL1.1 Hex Notation

To meet this requirement, an implementation shall supply a mechanism for specifying any Unicode code point

(from U+0000 to U+10FFFF), using the hexadecimal code point representation.

The syntax must use the code point in its hexadecimal representation. For example, syntax such as \uD834\uDD1E or
\xF0\x9D\x84\x9E does not meet this requirement for expressing U+1D11E (𝄞) because "1D11E" does not appear in the syntax. In
contrast, syntax such as \U0001D11E, \x{1D11E} or \u{1D11E} does satisfy the requirement for expressing U+1D11E.

A sample notation for listing hex Unicode characters within strings uses "\u" followed by four hex digits or "\u{" followed by any
number of hex digits and terminated by "}", with multiple characters indicated by separating the hex digits by spaces. This would
provide for the following addition:

<codepoint>  := <character> 
<codepoint>  := "\u" HEX_CHAR HEX_CHAR HEX_CHAR HEX_CHAR 
<codepoint>  := "\u{" HEX_CHAR+ "}" 
<codepoints> := "\u{" HEX_CHAR+ (SEP HEX_CHAR+)* "}" 
<sep>        := \s+ 
 
U_SHORT_MARK := "u" 

The following table gives examples of this hex notation:

Syntax Matches

[\u{3040}-\u{309F} \u{30FC}] Hiragana characters, plus prolonged sound sign

[\u{B2} \u{2082}] superscript ² and subscript ₂

[a \u{10450}] "a" and U+10450 SHAVIAN LETTER PEEP

ab\u{63 64} "abcd"

More advanced regular expression engines can also offer the ability to use the Unicode character name for readability. See 2.5
Name Properties.

For comparison, the following table shows some additional, current examples of escape syntax for Unicode code points:

Type Escaped Characters Escaped String

Unescaped 👽 € £ a <tab> 👽€£a<tab>

Code Point† U+1F47D U+20AC U+00A3 U+0061 U+0009 U+1F47D U+20AC U+00A3 U+0061 U+0009

CSS† \1F47D \20AC \A3 \61 \9 \1F47D \20AC \A3 \61 \9

UTS18, Ruby \u{1F47D} \u{20AC} \u{A3} \u{61} \u{9} \u{1F47D 20AC A3 61 9}

Perl \x{1F47D} \x{20AC} \x{A3} \x{61} \x{9} \x{1F47D}\x{20AC}\x{A3}\u{61}

XML/HTML &#x1F47D; &#x20AC; &#xA3; &#x61; &#x9; &#x1F47D;&#x20AC;&#xA3;&#x61;&#x9;

C++/Python/ICU \U0001F47D \u20AC \u00A3 \u0061 \u0009 \U0001F47D\u20AC\u00A3\u0061\u0009
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Java/JS/ICU* \uD83D\uDC7D \u20AC \u00A3 \u0061 \u0009 \uD83D\uDC7D\u20AC\u00A3\u0061\u0009

URL* %F0%9F%91%BD %E2%82%AC %C2%A3 %61 %09 %F0%9F%91%BD%E2%82%AC%C2%A3%61%09

XML/HTML* &#128125; &#8364; &#163; &#97; &#9; &#128125;&#8364;&#163;&#97;&#9;

† Following whitespace is consumed.
* Does not satisfy RL1.1

1.1.1 Hex Notation and Normalization

The Unicode Standard treats certain sequences of characters as equivalent, such as the following:

u + grave U+0075 ( u ) LATIN SMALL LETTER U +
U+0300 ( ◌̀ ) COMBINING GRAVE ACCENT

u_grave U+00F9 ( ù ) LATIN SMALL LETTER U WITH GRAVE

Literal text in regular expressions may be normalized (converted to equivalent characters) in transmission, out of the control of the
authors of that text. For example, a regular expression may contain a sequence of literal characters 'u' and grave, such as the
expression [aeiou◌̀◌́◌̈] (the last three character being U+0300 ( ◌̀ ) COMBINING GRAVE ACCENT, U+0301 ( ◌́ ) COMBINING
ACUTE ACCENT, and U+0308 ( ◌̈ ) COMBINING DIAERESIS. In transmission, the two adjacent characters in Row 1 might be
changed to the different expression containing just one character in Row 2, thus changing the meaning of the regular expression.
Hex notation can be used to avoid this problem. In the above example, the regular expression should be written as [aeiou\u{300 301
308}] for safety.

A regular expression engine may also enforce a single, uniform interpretation of regular expressions by always normalizing input text
to Normalization Form NFC before interpreting that text. For more information, see UAX #15, Unicode Normalization Forms [UAX15].

1.2 Properties

Because Unicode is a large character set that is regularly extended, a regular expression engine needs to provide for the recognition
of whole categories of characters as well as simply ranges of characters; otherwise the listing of characters becomes impractical, out
of date, and error-prone. This is done by providing syntax for sets of characters based on the Unicode character properties, and
related properties and functions. Examples of such syntax are \p{Script=Greek} and [:Script=Greek:], which stands for the set of
characters that have the Script value of Greek. In addition to the basic syntax, regex engines also need to allow them to be mixed
with lists and ranges of individual code points. An example is [\p{Script=Greek}-\p{General_Category=Letter}], which stands for the
set of characters that have the Script value of Greek and that do not have the General_Category value of Letter.

There are a large number of character properties defined in the Unicode Character Database (UCD), which also provides the official
data for mapping Unicode characters (and code points) to property values. See Section 2.7, Full Properties; UAX #44, Unicode
Character Database [UAX44]; and Chapter 4 in The Unicode Standard [Unicode]. For use in regular expressions, properties can also
be considered to be defined by Unicode definitions and algorithms, and by data files and definitions associated with other Unicode
Technical Standards, such as UTS #51 Unicode Emoji. For example, this includes the Emoji_Modifier definition from UTS #51. The
full list of recommended properties is in 2.7 Full Properties. the defined Unicode string functions, such as isNFC() and isLowercase(),
which also apply to single code points and may be useful to support in regular expressions.

Review Notes:

The discussion of isNFC() and isLowercase() was moved down to Section 2.8 Optional Properties (formerly 1.2.3).

The values of those character properties defined in the Unicode Character Database have the following types: binary, enumerated,
code point, or string.

Property Type Property Example Code Point Character Property Value

Binary White_Space U+0020   True

Enumerated Script U+30FC ー Common

Code point Simple_Lowercase_Mapping U+0041 A a
\u{61}

String Name U+0020   SPACE
\u{53 50 41 43 45}

A property value can also be a set of values. For example, the Script_Extensions property maps from code points to a set of
enumerated Script values, such as:

Property Type Property Example Code Point Character Property Value
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Set of Enumerated Values Script_Extensions U+30FC ー {Hira, Kana}

For best compatibility, expressions involving properties with set values should be interpreted as containment, not equality. So for
example, \p{Script_Extension=Hira} is interpreted as matching each code point cp such that Script_Extension(cp) ⊇ {Hira}. Thus,
\p{Script_Extension=Hira} will match both U+30FC (ー) KATAKANA-HIRAGANA PROLONGED SOUND MARK (with value {Hira
Kana}) and U+3041 (ぁ) HIRAGANA LETTER SMALL A (with value {Hira}). That allows the natural replacement of \p{Script=Hira} by
\p{Script_Extension=Hira}: the latter just adds characters that may be either Hira or some other script. For a more detailed example,
see Section 1.2.2 Script and Script Extensions Properties.

In addition to properties of characters, there are also properties of strings (sequences of characters). As with properties of
characters, properties of strings can have values that are binary, enumerated, code point, or string — or a set of such values. A
property of strings is more general than a property of characters. In other words, any property of characters is also a property of
strings; its domain is, however, limited to strings consisting of a single character. Data, definitions, and properties defined by the
Unicode Standard and other Unicode Technical Standards, which map from strings to values, can thus be specified in this document
as defining regular-expression properties. For example:

Property Type Property Example Code Point or String Property Value

Binary Basic_Emoji U+231A WATCH True

<U+23F2 U+FE0F> TIMER CLOCK True

A False

AB False

Note that such properties can always be “narrowed” to just contain code points. For example, [\p{Basic_Emoji} && \p{any}] is the set
of characters in Basic_Emoji.

The recommended names for UCD properties and property values are in PropertyAliases.txt and PropertyValueAliases.txt. There are
both abbreviated names and longer, more descriptive names. It is strongly recommended that both names be recognized, and that
loose matching of property names be used, whereby the case distinctions, whitespace, hyphens, and underbar are ignored. Other
Unicode Technical Standards, such as UTS #51 Unicode Emoji, provide names for definitions and algorithms that can be used for the
names of regular expression properties.

Note: It may be a useful implementation technique to load the Unicode tables that support properties and other features on
demand, to avoid unnecessary memory overhead for simple regular expressions that do not use those properties.

Where a regular expression is expressed as much as possible in terms of higher-level semantic constructs such as Letter, it makes it
practical to work with the different alphabets and languages in Unicode. The following is an example of a syntax addition that permits
properties. Following Perl Syntax, the p is lowercase to indicate a positive match, and uppercase to indicate a negative match.

ITEM := POSITIVE_SPEC | NEGATIVE_SPEC
 
POSITIVE_SPEC := ("\p{" PROP_SPEC "}") | ("[:" PROP_SPEC ":]")
  
NEGATIVE_SPEC := ("\P{" PROP_SPEC "}") | ("[:^" PROP_SPEC ":]")
  
PROP_SPEC  := <binary_unicode_property>
  
PROP_SPEC  := <unicode_property> (":" | "=" | "≠" | "!=" ) VALUE
  
PROP_SPEC  := <script_or_category_property_value> ("|" <script_or_category_property_value>)*
  
PROP_VALUE := <unicode_property_value> ("|" <unicode_property_value>)* 
  

The following table shows examples of this extended syntax to match properties:

Syntax Matches

[\p{L} \p{Nd}]

all letters and decimal digits

[\p{letter}
\p{decimal
number}]

[\p{letter|decimal
number}]

[\p{L|Nd}]

\P{script=greek} anything that does not have the Greek script
\P{script:greek}

\p{script≠greek}

[:^script=greek:]

http://www.unicode.org/Public/UCD/latest/ucd/PropertyAliases.txt
http://www.unicode.org/Public/UCD/latest/ucd/PropertyValueAliases.txt
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[:^script:greek:]

[:script≠greek:]

\p{East Asian
Width:Narrow}

anything that has the enumerated property value East_Asian_Width = Narrow

\p{Whitespace} anything that has binary property value Whitespace = True

\p{scx=Kana} The match is to all characters whose Script_Extensions property value includes the specified value(s).
So this expression matches U+30FC, which has the Script_Extensions value {Hira, Kana}

Review Note:

The syntax for expressing properties of strings is not settled; feedback is welcome.

The main reason for considering different options is that the match of the negation of set of strings is problematic, and needs to be
disallowed in regex expressions [see why-ban-the-use-of-these-properties-within-character-classes]. The options for implementation
will be illustrated by two different binary properties:

Property Sample code

point match

Sample string

match

Description

White_Space U+0020
SPACE

none Matches a fixed set of code points

Basic_Emoji U+231A
WATCH

<U+23F2
U+FE0F> TIMER
CLOCK

Matches a fixed set of strings (as defined by ED-20. basic emoji set in UTS

#51 Unicode Emoji) — many of the strings being single characters.

In the following text the term invalid means that such syntax should be detected and handled as a syntax error, much as
\p{SomePropertyThatDoesntExist}.

A. \m notation (for “multicharacter property”)

With this notation, different syntax is used for properties of characters and properties of strings. For properties of strings, there is no
single-character (uppercase) negation. Other ways of expressing negation (such as [:^Basic_Emoji:] or [^\m{Basic_Emoji}]) would
also be invalid.

\m{White_Space} valid?

\p{White_Space} valid

\P{White_Space} valid

\m{Basic_Emoji} valid

\p{Basic_Emoji} invalid

\P{Basic_Emoji} invalid

B. \p notation

With this notation, \p is used both for properties of characters and properties of strings. Any expression that negated a property of
strings would be invalid. So \P{Basic_Emoji}, [^\p{Basic_Emoji}], and [:^Basic_Emoji:] would all be invalid.

\p{White_Space} valid

\P{White_Space} valid

\p{Basic_Emoji} valid (same set as \m above)

\P{Basic_Emoji} invalid

Some properties are binary: they are either true or false for a given code point. In that case, only the property name is required.
Others have multiple values, so for uniqueness both the property name and the property value need to be included.

For example, Alphabetic is a binary property, but it is also a value of the enumerated Line_Break property. So \p{Alphabetic} would
refer to the binary property, whereas \p{Line Break:Alphabetic} or \p{Line_Break=Alphabetic} would refer to the enumerated
Line_Break property.

There are two exceptions to the general rule that expressions involving properties with multiple value should include both the
property name and property value. The Script and General_Category properties commonly have their property name omitted. Thus

https://github.com/tc39/proposal-regexp-unicode-sequence-properties#why-ban-the-use-of-these-properties-within-character-classes
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\p{Unassigned} is equivalent to \p{General_Category = Unassigned}, and \p{Greek} is equivalent to \p{Script:Greek}.

RL1.2 Properties

To meet this requirement, an implementation shall provide at least a minimal list of properties, consisting of

the following:

General_Category

Script and Script_Extensions

Alphabetic

Uppercase

Lowercase

White_Space

Noncharacter_Code_Point

Default_Ignorable_Code_Point

ANY, ASCII, ASSIGNED

The values for these properties must follow the Unicode definitions, and include the property and property

value aliases from the UCD. Matching of Binary, Enumerated, Catalog, and Name values, must follow the

Matching Rules from [UAX44] with one exception: implementations are not required to ignore an initial prefix

string of "is" in property values.

RL1.2a Compatibility Properties

  To meet this requirement, an implementation shall provide the properties listed in Annex C: Compatibility

Properties, with the property values as listed there. Such an implementation shall document whether it is using

the Standard Recommendation or POSIX-compatible properties.

In order to meet requirements RL1.2 and RL1.2a, the implementation must satisfy the Unicode definition of the properties for the
supported version of The Unicode Standard, rather than other possible definitions. However, the names used by the implementation
for these properties may differ from the formal Unicode names for the properties. For example, if a regex engine already has a
property called "Alphabetic", for backwards compatibility it may need to use a distinct name, such as "Unicode_Alphabetic", for the
corresponding property listed in RL1.2.

Implementers may add aliases beyond those recognized in the UCD. For example, in the case of the the Age property an
implementation could match the defined aliases "3.0" and "V3_0", but also match "3", "3.0.0", "V3.0", and so on. However,
implementers must be aware that such additional aliases may cause problems if they collide with future UCD aliases for different
values.

Ignoring an initial "is" in property values is optional. Loose matching rule UAX44-LM3 in [UAX44] specifies that occurrences of an
initial prefix of "is" are ignored, so that, for example, "Greek" and "isGreek" are equivalent as property values. Because existing
implementations of regular expressions commonly make distinctions based on the presence or absence of "is", this requirement from
[UAX44] is dropped.

For more information on properties, see UAX #44, Unicode Character Database [UAX44].

Of the properties in RL1.2, General_Category and Script have enumerated property values with more than two values; the other
properties are binary. An implementation that does not support non-binary enumerated properties can essentially "flatten" the
enumerated type. Thus, for example, instead of \p{script=latin} the syntax could be \p{script_latin}.

When propertyx is defined to have values that are sets of other values, the notation \p{propertyx=valuey} represents the set of all
code points whose property values contain valuey. For example, the Script_Extensions property value for U+30FC ( ー ) is the set
{Hiragana, Katakana}. So U+30FC ( ー ) is contained in \p{Script_Extensions=Hiragana}, and is also contained in
\p{Script_Extensions=Katakana}.

Review note: the point made in the above paragraph has been moved earlier in this section.

1.2.1 General Category Property

The most basic overall character property is the General_Category, which is a basic categorization of Unicode characters into:
Letters, Punctuation, Symbols, Marks, Numbers, Separators, and Other. These property values each have a single letter
abbreviation, which is the uppercase first character except for separators, which use Z. The official data mapping Unicode characters
to the General_Category value is in UnicodeData.txt.

Each of these categories has different subcategories. For example, the subcategories for Letter are uppercase, lowercase, titlecase,
modifier, and other (in this case, other includes uncased letters such as Chinese). By convention, the subcategory is abbreviated by
the category letter (in uppercase), followed by the first character of the subcategory in lowercase. For example, Lu stands for
Uppercase Letter.

http://unicode.org/reports/tr44/#General_Category
http://unicode.org/reports/tr44/#Script
http://unicode.org/reports/tr44/#Script_Extensions
http://unicode.org/reports/tr44/#Alphabetic
http://unicode.org/reports/tr44/#Uppercase
http://unicode.org/reports/tr44/#Lowercase
http://unicode.org/reports/tr44/#White_Space
http://unicode.org/reports/tr44/#Noncharacter_Code_Point
http://unicode.org/reports/tr44/#Default_Ignorable_Code_Point
http://unicode.org/reports/tr44/#Matching_Rules
http://unicode.org/reports/tr44/#UAX44-LM3
http://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt
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Note: Because it is recommended that the property syntax be lenient as to spaces, casing, hyphens and underbars, any of the
following should be equivalent: \p{Lu}, \p{lu}, \p{uppercase letter}, \p{Uppercase Letter}, \p{Uppercase_Letter}, and
\p{uppercaseletter}

The General_Category property values are listed below. For more information on the meaning of these values, see see UAX #44,
Unicode Character Database [UAX44].

Abb. Long form

L Letter

Lu Uppercase Letter

Ll Lowercase Letter

Lt Titlecase Letter

Lm Modifier Letter

Lo Other Letter

M Mark

Mn Non-Spacing Mark

Mc Spacing Combining Mark

Me Enclosing Mark

N Number

Nd Decimal Digit Number

Nl Letter Number

No Other Number

Abb. Long form

S Symbol

Sm Math Symbol

Sc Currency Symbol

Sk Modifier Symbol

So Other Symbol

P Punctuation

Pc Connector Punctuation

Pd Dash Punctuation

Ps Open Punctuation

Pe Close Punctuation

Pi Initial Punctuation

Pf Final Punctuation

Po Other Punctuation

Abb. Long form

Z Separator

Zs Space Separator

Zl Line Separator

Zp Paragraph Separator

C Other

Cc Control

Cf Format

Cs Surrogate

Co Private Use

Cn Unassigned

- Any*

- Assigned*

- ASCII*

Starred entries in the table are not part of the enumeration of General_Category values. They are explained below.

Value Matches Equivalent to Notes

Any all code points [\u{0}-\u{10FFFF}] In some regular expression languages, \p{Any} may be
expressed by a period ("."), but that usage may exclude newline
characters.

Assigned all assigned characters
(for the target version of
Unicode)

\P{Cn} This also includes all private use characters. It is useful for
avoiding confusing double negatives. Note that Cn includes
noncharacters, so Assigned excludes them.

ASCII all ASCII characters [\u{0}-\u{7F}]  

 

1.2.2 Script and Script Extensions Properties

A regular-expression mechanism may choose to offer the ability to identify characters on the basis of other Unicode properties
besides the General Category. In particular, Unicode characters are also divided into scripts as described in UAX #24, Unicode Script
Property [UAX24] (for the data file, see Scripts.txt). Using a property such as \p{sc=Greek} allows implementations to test whether
letters are Greek or not.

Some characters, such as U+30FC ( ー ) KATAKANA-HIRAGANA PROLONGED SOUND MARK, are regularly used with multiple
scripts. For such characters the Script_Extensions property (abbreviated as scx) identifies the set of associated scripts. The following
shows some sample characters with their Script and Script_Extensions property values:

Code Char Name sc scx

U+3042 あ HIRAGANA LETTER A Hira {Hira}

U+30FC ー KATAKANA-HIRAGANA PROLONGED SOUND MARK Zyyy =
Common

{Hira, Kana}

U+3099 ゙ COMBINING KATAKANA-HIRAGANA VOICED SOUND Zinh = {Hira, Kana}

http://www.unicode.org/Public/UCD/latest/ucd/Scripts.txt
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MARK Inherited

U+30FB ・ KATAKANA MIDDLE DOT Zyyy =
Common

{Bopo, Hang, Hani, Hira, Kana,
Yiii}

The expression \p{sc=Hira} includes those characters whose Script value is Hira, while the expression \p{scx=Hira} includes all the
characters whose Script_Extensions value contains Hira. The following table shows the difference:

Expression Contents of Set

\p{sc=Hira} [ぁ-ゖゝ-ゟ𛀁🈀]

\p{scx=Hira} [、-〃〆〈-】〓-〟〰-〵〷〼-〿ぁ-ゖ -゙゠・ー㆐-㆟㇀-㇣㈠-㉃㊀-㊰㋀-㋋㍘-㍰ ㍻-㍿㏠-㏾﹅﹆｡-･ｰﾞﾟ𛀁🈀]

The expression \p{scx=Hira} contains not only the characters in \p{script=Hira}, but many other characters such as U+30FC ( ー ),
which are either Hiragana or Katakana.

In most cases, script extensions are a superset of the script values (\p{scx=X} ⊇ \p{sc=X}). However, in some cases that is not true.
For example, the Script property value for U+30FC ( ー ) is Common, but the Script_Extensions value for U+30FC ( ー ) does not
contain the script value Common. In other words, \p{scx=Common} ⊉ \p{sc=Common}.

The usage model for the Script and Script_Extensions properties normally requires that people construct somewhat more complex
regular expressions, because a great many characters (Common and Inherited) are shared between scripts. Documentation should
point users to the description in [UAX24]. The values for Script_Extensions are likely be extended over time as new information is
gathered on the use of characters with different scripts. For more information, see The Script_Extensions Property in UAX #24,
Unicode Script Property [UAX24].

1.2.3 Other Properties

Review note: this section was moved to Section 2.8 Optional Properties; other sections have not yet been renumbered.

1.2.4 Age

As defined in the Unicode Standard, the Age property (in the DerivedAge data file in the UCD) specifies the first version of the
standard in which each character was assigned. It does not refer to how long it has been encoded, nor does it indicate the historic
status of the character.

In regex expressions, the Age property is used to indicate the characters that were in a particular version of the Unicode Standard.
That is, a character has the Age property of that version or less. Thus \p{age=3.0} includes the letter a, which was included in
Unicode 1.0. To get characters that are new in a particular version, subtract off the previous version as described in 1.3 Subtraction
and Intersection. For example: [\p{age=3.1} -- \p{age=3.0}].

1.2.5 Blocks

Unicode blocks have an associated enumerated property, the Block property. However, there are some very significant caveats to the
use of Unicode blocks for the identification of characters: see Annex A: Character Blocks. If blocks are used, some of the names can
collide with Script names, so they should be distinguished, with syntax such as \p{Greek Block} or \p{Block=Greek}.

1.3 Subtraction and Intersection

As discussed earlier, character properties are essential with a large character set. In addition, there needs to be a way to "subtract"
characters from what is already in the list. For example, one may want to include all non-ASCII letters without having to list every
character in \p{letter} that is not one of those 52.

RL1.3 Subtraction and Intersection

To meet this requirement, an implementation shall supply mechanisms for union, intersection and set-difference

of sets of characters within regular expression character class expressions.

The following is an example of a syntax extension to handle set operations:

ITEM     := "[" ITEM "]" // for grouping
 
OPERATOR := ""   // no separator = union
 
         := "||" // union: A∪B
 
         := "&&" // intersection: A∩B
 
         := "--" // set difference: A-B
 
         := "~~" // symmetric difference: A⊖B = (A∪B)-(A∩B)

http://unicode.org/reports/tr24/#Script_Extensions
http://www.unicode.org/Public/UCD/latest/ucd/DerivedAge.txt
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Implementations may also choose to offer other set operations. The symmetric difference of two sets is particularly useful. It is
defined as being the union minus the intersection. Thus [\p{letter}~~\p{ascii}] is equivalent to [[\p{letter}\p{ascii}]--
[\p{letter}&&\p{ascii}]].

For compatibility with industry practice, symbols are doubled in the above notation. This practice provides for better backwards
compatibility with expressions using older syntax, because they are unlikely to contain doubled characters. It also allows the
operators to appear adjacent to ranges without ambiguity, such as [\p{letter}--a-z].

Binding or precedence may vary by regular expression engine, so it is safest to always disambiguate using brackets to be sure. In
particular, precedence may put all operators on the same level, or may take union as binding more closely. For example, where A..E
stand for expressions, not characters:

Expression Interpreted as Precedence Means

[ABC--DE]

[[AB]C]--[DE]] Union binds more closely Form the union of A, B, and C, and then subtract the union of
D and E.

[[[[[AB]C]--D]E]] Union binds at the same
level

Form the union of A, B, and C, and then subtract D, and then
add E.

Even where an expression is not ambiguous, extra grouping brackets may be useful for clarity.

The following table shows various examples of set subtraction:

Expression Matches

[\p{L}--QW] all letters but Q and W

[\p{N}--[\p{Nd}--0-9]] all non-decimal numbers, plus 0-9

[\u{0}-\u{7F}--\P{letter}] all letters in the ASCII range, by subtracting non-letters

[\p{Greek}--\N{GREEK SMALL LETTER ALPHA}] Greek letters except alpha

[\p{Assigned}--\p{Decimal Digit Number}--a-fA-Fａ-ｆＡ-
Ｆ]

all assigned characters except for hex digits (using a broad
definition)

The boolean expressions can also involve properties of strings. The only restriction is that the end result cannot be a negated set of
strings. Thus the following matches all code points that neither have a Script value of Greek nor are in Basic_Emoji:

[^[\p{Script=Greek} && [:Basic_Emoji:]]]

whereas the following would result in a syntax error:

[^[[:Basic_Emoji:] -- \p{Script=Greek}]]

The syntax for Character Ranges could be extended to allow for strings, but that is not required by this specification. For example,
the UnicodeSet used in LDML allows for literal strings as part of character ranges, to allow strings to be part of the exemplar sets for
languages.

ITEM := CODE_POINT2 
     := CODE_POINT2 "-" CODE_POINT2 // range 
     := STRING 
 
STRING := "{" CODE_POINT2+ "}"

Matching is handled as though the strings were pulled out into an ‘or’ expression:

[a-d{de}{efg}] ≅ ([a-d] | de | efg)

Thus [a-d{de}{efg}]{2} would match “defg”.

1.4 Simple Word Boundaries

Most regular expression engines allow a test for word boundaries (such as by "\b" in Perl). They generally use a very simple
mechanism for determining word boundaries: one example of that would be having word boundaries between any pair of characters
where one is a <word_character> and the other is not, or at the start and end of a string. This is not adequate for Unicode regular
expressions.

RL1.4 Simple Word Boundaries

To meet this requirement, an implementation shall extend the word boundary mechanism so that:

http://mathworld.wolfram.com/SymmetricDifference.html
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1. The class of <word_character> includes all the Alphabetic values from the Unicode character database, from

UnicodeData.txt, plus the decimals (General_Category=Decimal_Number, or equivalently

Numeric_Type=Decimal), and the U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER

(Join_Control=True). See also Annex C: Compatibility Properties.

2. Nonspacing marks are never divided from their base characters, and otherwise ignored in locating

boundaries.

Level 2 provides more general support for word boundaries between arbitrary Unicode characters which may override this behavior.

1.5 Simple Loose Matches

Most regular expression engines offer caseless matching as the only loose matching. If the engine does offers this, then it needs to
account for the large range of cased Unicode characters outside of ASCII.

RL1.5 Simple Loose Matches

To meet this requirement, if an implementation provides for case-insensitive matching, then it shall provide at

least the simple, default Unicode case-insensitive matching, and specify which properties are closed and which

are not.

To meet this requirement, if an implementation provides for case conversions, then it shall provide at least the

simple, default Unicode case folding.

In addition, because of the vagaries of natural language, there are situations where two different Unicode characters have the same
uppercase or lowercase. To meet this requirement, implementations must implement these in accordance with the Unicode Standard.
For example, the Greek U+03C3 "σ" small sigma, U+03C2 "ς" small final sigma, and U+03A3 "Σ" capital sigma all match.

Some caseless matches may match one character against two: for example, U+00DF "ß" matches the two characters "SS". And
case matching may vary by locale. However, because many implementations are not set up to handle this, at Level 1 only simple
case matches are necessary. To correctly implement a caseless match, see Chapter 3, Conformance of [Unicode]. The data file
supporting caseless matching is [CaseData].

To meet this requirement, where an implementation also offers case conversions, these must also follow Chapter 3, Conformance of
[Unicode]. The relevant data files are [SpecialCasing] and [UData].

Matching case-insensitively is one example of matching under an equivalence relation:

A regular expression R matches under an equivalence relation E whenever for all strings S and T:

If S is equivalent to T under E, then R matches S if and only if R matches T.

In the Unicode Standard, the relevant equivalence relation for case-insensitivity is established according to whether two strings case
fold to the same value. The case folding can either be simple (a 1:1 mapping of code points) or full (with some 1:n mappings).

“ABC” and “Abc” are equivalent under both full and simple case folding.
“cliff” (with the “ff” ligature) and “CLIFF” are equivalent under full case folding, but not under simple case folding.

In practice, regex APIs are not set up to match parts of characters. For this reason, full case equivalence is difficult to handle with
regular expressions. For more information, see Section 2.1, Canonical Equivalents .

For case-insensitive matching:

1. Each string literal is matched case-insensitively. That is, it is logically expanded into a sequence of OR expressions, where
each OR expression lists all of the characters that have a simple case-folding to the same value.

For example, /Dåb/ matches as if it were expanded into /(?:d|D)(?:å|Å|\u{212B})(?:b|B)/.
(The \u{212B} is an angstrom sign, identical in appearance to Å.)
Back references are subject to this logical expansion, such as /(?i)(a.c)\1/, where \1 matches what is in the first grouping.

2. (optional) Each character class is closed under case. That is, it is logically expanded into a set of code points, and then closed
by adding all simple case equivalents of each of those code points.

For example, [\p{Block=Phonetic_Extensions} [A-E]] is a character class that matches 133 code points (under Unicode
6.0). Its case-closure adds 7 more code points: a-e, Ᵽ, and Ᵹ, for a total of 140 code points.

For condition #2, in both property character classes and explicit character classes, closing under simple case-insensitivity means
including characters not in the set. For example:

The case-closure of \p{Block=Phonetic_Extensions} includes two characters not in that set, namely Ᵽ and Ᵹ.
The case-closure of [A-E] includes five characters not in that set, namely [a-e].

http://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt
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Conformant implementations can choose whether and how to apply condition #2: the only requirement is that they declare what they
do. For example, an implementation may:

A. uniformly apply condition #2 to all property and explicit character classes
B. uniformally not apply condition #2 to any property or explicit character classes
C. apply condition #2 only within the scope of a switch
D. apply condition #2 to just specific properties and/or explicit character classes

1.6 Line Boundaries

Most regular expression engines also allow a test for line boundaries: end-of-line or start-of-line. This presumes that lines of text are
separated by line (or paragraph) separators.

RL1.6 Line Boundaries

To meet this requirement, if an implementation provides for line-boundary testing, it shall recognize not only

CRLF, LF, CR, but also NEL (U+0085), PARAGRAPH SEPARATOR (U+2029) and LINE SEPARATOR (U+2028).

Formfeed (U+000C) also normally indicates an end-of-line. For more information, see Chapter 3 of [Unicode].

These characters should be uniformly handled in determining logical line numbers, start-of-line, end-of-line, and arbitrary-character
implementations. Logical line number is useful for compiler error messages and the like. Regular expressions often allow for SOL
and EOL patterns, which match certain boundaries. Often there is also a "non-line-separator" arbitrary character pattern that
excludes line separator characters.

The behavior of these characters may also differ depending on whether one is in a "multiline" mode or not. For more information, see
Anchors and Other "Zero-Width Assertions" in Chapter 3 of [Friedl].

A newline sequence is defined to be any of the following:

\u{A} | \u{B} | \u{C} | \u{D} | \u{85} | \u{2028} | \u{2029} | \u{D A}

1. Logical line number
The line number is increased by one for each occurrence of a newline sequence.
Note that different implementations may call the first line either line zero or line one.

2. Logical beginning of line (often "^")
SOL is at the start of a file or string, and depending on matching options, also immediately following any occurrence of a
newline sequence.
There is no empty line within the sequence \u{D A}, that is, between the first and second character.
Note that there may be a separate pattern for "beginning of text" for a multiline mode, one which matches only at the
beginning of the first line. For example, in Perl this is \A.

3. Logical end of line (often "$")
EOL at the end of a file or string, and depending on matching options, also immediately preceding a final occurrence of a
newline sequence.
There is no empty line within the sequence \u{D A}, that is, between the first and second character.
SOL and EOL are not symmetric because of multiline mode: EOL can be interpreted in at least three different ways:

a. EOL matches at the end of the string
b. EOL matches before final newline
c. EOL matches before any newline

4. Arbitrary character pattern (often ".")
Where the 'arbitrary character pattern' matches a newline sequence, it must match all of the newline sequences, and \u{D
A} (CRLF) should match as if it were a single character. (The recommendation that CRLF match as a single character is,
however, not required for conformance to RL1.6.)
Note that ^$ (an empty line pattern) should not match the empty string within the sequence \u{D A}, but should match the
empty string within the reversed sequence \u{A D}.

It is strongly recommended that there be a regular expression meta-character, such as "\R", for matching all line ending characters
and sequences listed above (for example, in #1). This would correspond to something equivalent to the following expression. That
expression is slightly complicated by the need to avoid backup.

(?:\u{D A}|(?!\u{D A})[\u{A}-\u{D}\u{85}\u{2028}\u{2029}]

Note: For some implementations, there may be a performance impact in recognizing CRLF as a single entity, such as with an
arbitrary pattern character ("."). To account for that, an implementation may also satisfy R1.6 if there is a mechanism available
for converting the sequence CRLF to a single line boundary character before regex processing.

For more information on line breaking, see [UAX14].

1.7 Code Points

A fundamental requirement is that Unicode text be interpreted semantically by code point, not code units.
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RL1.7 Supplementary Code Points

To meet this requirement, an implementation shall handle the full range of Unicode code points, including

values from U+FFFF to U+10FFFF. In particular, where UTF-16 is used, a sequence consisting of a leading

surrogate followed by a trailing surrogate shall be handled as a single code point in matching.

UTF-16 uses pairs of 16-bit code units to express code points above FFFF16, while UTF-8 uses from two to four 8-bit code units to
represent code points above 7F16. Surrogate pairs (or their equivalents in other encoding forms) are be handled internally as single
code point values. In particular, [\u{0}-\u{10000}] will match all the following sequence of code units:

Code Point UTF-8 Code Units UTF-16 Code Units UTF-32 Code Units

7F 7F 007F 0000007F

80 C2 80 0080 00000080

7FF DF BF 07FF 000007FF

800 E0 A0 80 0800 00000800

FFFF EF BF BF FFFF 0000FFFF

10000 F0 90 80 80 D800 DC00 00010000

For backwards compatibility, some regex engines allow for switches to reset matching to be by code unit instead of code point. Such
usage is discouraged. For example, in order to match 👎 it is better to write \u{1F44E) rather than \uD83D\uDC4E (using UTF-16) or
\xF0\x9F\x91\x8E (using UTF-8).

Note: It is permissible, but not required, to match an isolated surrogate code point (such as \u{D800}), which may occur in
Unicode 16-bit Strings. See Unicode String in the Unicode [Glossary].

2 Extended Unicode Support: Level 2

Level 1 support works well in many circumstances. However, it does not handle more complex languages or extensions to the
Unicode Standard very well. Particularly important cases are canonical equivalence, word boundaries, extended grapheme cluster
boundaries, and loose matches. (For more information about boundary conditions, see UAX #29, Unicode Text Segmentation
[UAX29].)

Level 2 support matches much more what user expectations are for sequences of Unicode characters. It is still locale-independent
and easily implementable. However, for compatibility with Level 1, it is useful to have some sort of syntax that will turn Level 2
support on and off.

The features comprising Level 2 are not in order of importance. In particular, the most useful and highest priority features in practice
are:

RL2.3 Default Word Boundaries
RL2.5 Name Properties
RL2.6 Wildcards in Property Values
RL2.7 Full Properties

2.1 Canonical Equivalents

The equivalence relation for canonical equivalence is established by whether two strings are identical when normalized to NFD.

For most full-featured regular expression engines, it is quite difficult to match under canonical equivalence, which may involve
reordering, splitting, or merging of characters. For example, all of the following sequences are canonically equivalent:

A. o + horn + dot_below
1. U+006F ( o ) LATIN SMALL LETTER O
2. U+031B ( ◌̛ ) COMBINING HORN
3. U+0323 ( ◌ ̣) COMBINING DOT BELOW

B. o + dot_below + horn
1. U+006F ( o ) LATIN SMALL LETTER O
2. U+0323 ( ◌ ̣) COMBINING DOT BELOW
3. U+031B ( ◌̛ ) COMBINING HORN

C. o-horn + dot_below
1. U+01A1 ( ơ ) LATIN SMALL LETTER O WITH HORN
2. U+0323 ( ◌ ̣) COMBINING DOT BELOW

D. o-dot_below + horn
1. U+1ECD ( ọ ) LATIN SMALL LETTER O WITH DOT BELOW

http://www.unicode.org/glossary/#unicode_string
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2. U+031B ( ◌̛ ) COMBINING HORN
E. o-horn-dot_below

1. U+1EE3 ( ợ ) LATIN SMALL LETTER O WITH HORN AND DOT BELOW

The regular expression pattern /o\u{31B}/ matches the first two characters of A, the first and third characters of B, the first character
of C, part of the first character together with the third character of D, and part of the character in E.

In practice, regex APIs are not set up to match parts of characters or handle discontiguous selections. There are many other edge
cases: a combining mark may come from some part of the pattern far removed from where the base character was, or may not
explicitly be in the pattern at all. It is also unclear what /./ should match and how back references should work.

It is feasible, however, to construct patterns that will match against NFD (or NFKD) text. That can be done by:

1. Putting the text to be matched into a defined normalization form (NFD or NFKD).
2. Having the user design the regular expression pattern to match against that defined normalization form. For example, the

pattern should contain no characters that would not occur in that normalization form, nor sequences that would not occur.
3. Applying the matching algorithm on a code point by code point basis, as usual.

2.2 Extended Grapheme Clusters

One or more Unicode characters may make up what the user thinks of as a character. To avoid ambiguity with the computer use of
the term character, this is called a grapheme cluster. For example, "G" + acute-accent is a grapheme cluster: it is thought of as a
single character by users, yet is actually represented by two Unicode characters. The Unicode Standard defines extended grapheme
clusters that keep Hangul syllables together and do not break between base characters and combining marks. The precise definition
is in UAX #29, Unicode Text Segmentation [UAX29]. These extended grapheme clusters are not the same as tailored grapheme
clusters, which are covered in Section 3.2, Tailored Grapheme Clusters.

RL2.2 Extended Grapheme Clusters

To meet this requirement, an implementation shall provide a mechanism for matching against an arbitrary

extended grapheme cluster, a literal cluster, and matching extended grapheme cluster boundaries.

For example, an implementation could interpret \X as matching any extended grapheme cluster, while interpreting "." as matching any
single code point. It could interpret \b{g} as a zero-width match against any extended grapheme cluster boundary, and \B{g} as the
negation of that.

More generally, it is useful to have zero width boundary detections for each of the different kinds of segment boundaries defined by
Unicode ([UAX29] and [UAX14]). For example:

Syntax Zero-width Match at

\b{g} a Unicode extended grapheme cluster boundary

\b{w} a Unicode word boundary. Note that this is different than \b alone, which corresponds to \w and \W. See Annex
C: Compatibility Properties.

\b{l} a Unicode line break boundary

\b{s} a Unicode sentence boundary

Thus \X is equivalent to .+?\b{g}; proceed the minimal number of characters (but at least one) to get to the next extended grapheme
cluster boundary.

Regular expression engines should also provide some mechanism for easily matching against literal clusters, because they are more
likely to match user expectations for many languages. One mechanism for doing that is to have explicit syntax for literal clusters, as
in the following syntax:

ITEM := "\q{" CODE_POINT + "}"

This syntax can also be used for tailored grapheme clusters (see Tailored Grapheme Clusters).

The following table shows examples of use of the \q syntax:

Expression Matches

[a-z\q{x\u{323}}] a-z, and x with an under-dot (used in American Indian languages)

[a-z\q{aa}] a-z, and aa (treated as a single character in Danish)

[a-z ñ \q{ch} \q{ll} \q{rr}] some lowercase characters in traditional Spanish

In implementing extended grapheme clusters, the expression /[a-m \q{ch} \q{rr}]/ should behave roughly like /(?: ch | rr | [a-
m])/. That is, the expression would:
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match ch or rr and advance by two code points, or
match a-m and advance one code point, or
fail to match

Note that the strings need to be ordered as longest first to work correctly in arbitrary regex engines, because some regex engines try
the leftmost matching alternative first. For example, the expression /[a-m {ch} {chh}]/ would need to behave like /(?: chh | ch | [a-
m])/, with "chh" before "ch".

Matching a complemented set containing strings like \q{ch} may behave differently in the two different modes: the normal mode
where code points are the unit of matching, or the mode where extended grapheme clusters are the unit of matching. That is, the
expression [^ a-m \q{ch} \q{rr}] should behave in the following way:

Mode Behavior Description

normal (?! ch | rr | [a-m] )
[\u{0}-\u{10FFFF}]

failing with strings starting with a-m, ch, or rr, and otherwise advancing by one
code point

grapheme
cluster

(?! ch | rr | [a-m] )
\X

failing with strings starting with a-m, ch, or rr, and otherwise advancing by one
extended grapheme cluster

A complex character set containing strings like \q{ch} plus embedded complement operations is interpreted as if the complement
were pushed up to the top of the expression, using the following rewrites recursively:

Original Rewrite

^^x x

^x || ^y ^(x && y)

^x || y ^(x -- y)

x || ^y ^(y -- x)

^x && ^y
^(x || y)

^x -- y

^x && y
y -- x

^x -- ^y

x && ^y x -- y

x -- ^y x && y

^x ~~ ^y x ~~ y

^x ~~ y
^(x ~~ y)

x ~~ ^y

Applying these rewrites results in a simplification of the regex expression. Either the complement operations will be completely
eliminated, or a single remaining complement operation will remain at the top level of the expression. Logically, then, the rest of the
expression consists of a flat list of characters and/or multi-character strings; matching strings can then can be handled as described
above.

2.2.1 Grapheme Cluster Mode

A grapheme cluster mode behaves more like users' expectations for character boundaries, and is especially useful for handling
canonically equivalent matching. In a grapheme cluster mode, matches are guaranteed to be on extended grapheme cluster
boundaries. Each atomic literal of the pattern matches complete extended grapheme clusters, and thus behaves as if followed by
\b{g}. Atomic literals include: a dot, a character class (like [a-m]), a sequence of characters (perhaps with some being escaped) that
matches as a unit, or syntax that is equivalent to these. Note that in /abc?/, the "abc" is not matching as a unit; the ? modifier is only
affecting the last character, and thus the ab and the c are separate atomic literals. To summarize:

Syntax Behaves Like Description

. \X matches a full extended grapheme cluster going forward

[abc{gh}] [abc{gh}]\b{g} matches only if the end point of the match is at a grapheme cluster boundary

abcd abcd\b{g} matches only if the end point of the match is at a grapheme cluster boundary
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Note that subdivisions can modify the behavior in this mode. Normally /(xy)/ is equivalent to /(x)(y)/ in terms of matching (where x
and y are arbitrary literal character strings); that is, only the grouping is different. That is not true in grapheme cluster mode, where
each atomic literal acts as if it is followed by \b{g}.

For example, /(x\u{308})/ is not the same as /(x)(\u{308})/ in matching. The former behaves like /(x\u{308}\b{g})/ while the latter
behaves like /(x\b{g})(\u{308}\b{g})/. The latter will never match in grapheme cluster mode, since it would only match if there were a
grapheme cluster boundary after the x and if x is followed by \u{308}, but that can never happen simultaneously.

Note that the boundary definitions in CLDR are more comprehensive than what is defined in UAX #29: Unicode Text Segmentation.

2.3 Default Word Boundaries

RL2.3 Default Word Boundaries

To meet this requirement, an implementation shall provide a mechanism for matching Unicode default word

boundaries.

The simple Level 1 support using simple <word_character> classes is only a very rough approximation of user word boundaries. A
much better method takes into account more context than just a single pair of letters. A general algorithm can take care of character
and word boundaries for most of the world's languages. For more information, see UAX #29, Unicode Text Segmentation [UAX29].

Note: Word boundaries and "soft" line-break boundaries (where one could break in line wrapping) are not generally the same;
line breaking has a much more complex set of requirements to meet the typographic requirements of different languages. See
UAX #14, Line Breaking Properties [UAX14] for more information. However, soft line breaks are not generally relevant to
general regular expression engines.

A fine-grained approach to languages such as Chinese or Thai—languages that do not use spaces—requires information that is
beyond the bounds of what a Level 2 algorithm can provide.

2.4 Default Case Conversion

RL2.4 Default Case Conversion

To meet this requirement, if an implementation provides for case conversions, then it shall provide at least the

full, default Unicode case folding.

Previous versions of RL2.4 included full default Unicode case-insensitive matching. For most full-featured regular expression
engines, it is quite difficult to match under code point equivalences that are not 1:1. For more discussion of this, see 1.5 Simple
Loose Matches and 2.1 Canonical Equivalents. Thus that part of RL2.4 has been retracted.

Instead, it is recommended that implementations provide for full, default Unicode case conversion, allowing users to provide both
patterns and target text that has been fully case folded. That allows for matches such as between U+00DF "ß" and the two
characters "SS". Some implementations may choose to have a mixed solution, where they do full case matching on literals such as
"Strauß", but simple case folding on character classes such as [ß].

To correctly implement case conversions, see [Case]. For ease of implementation, a complete case folding file is supplied at
[CaseData]. Full case mappings use the data files [SpecialCasing] and [UData].

2.5 Name Properties

RL2.5 Name Properties

To meet this requirement, an implementation shall support individually named characters.

When using names in regular expressions, the data is supplied in both the Name (na) and Name_Alias properties in the UCD, as
described in UAX #44, Unicode Character Database [UAX44], or computed as in the case of CJK Ideographs or Hangul Syllables.
Name matching rules follow Matching Rules from [UAX44#UAX44-LM2].

The following provides examples of usage:

Syntax Set Note

\p{name=ZERO WIDTH NO-BREAK SPACE} [\u{FEFF}] using the Name property

\p{name=zerowidthno breakspace} [\u{FEFF}] using the Name property, and Matching Rules [UAX44]

\p{name=BYTE ORDER MARK} [\u{FEFF}] using the Name_Alias property

\p{name=BOM} [\u{FEFF}] using the Name_Alias property (a second value)

\p{name=HANGUL SYLLABLE GAG} [\u{AC01}] with a computed name

\p{name=BEL} [\u{7}] the control character

https://cldr.unicode.org/
https://unicode.org/reports/tr29/
http://unicode.org/reports/tr44/#Matching_Rules
http://unicode.org/reports/tr44/#Matching_Rules
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\p{name=BELL} [\u{1F514} the graphic symbol 🔔

Certain code points are not assigned names or name aliases in the standard. With the exception of "reserved", these should be given
names based on Code Point Label Tags table in [UAX44], as shown in the following examples:

Syntax Set Note

\p{name=private-use-E000} [\u{E000}]  

\p{name=surrogate-D800} [\u{D800}] would only apply to isolated surrogate code points

\p{name=noncharacter-FDD0} [\u{FDD0}]  

\p{name=control-0007} [\u{7}]  

Characters with the <reserved> tag in the Code Point Label Tags table of [UAX44] are excluded: the syntax \p{reserved-058F} would
mean that the code point U+058F is unassigned. While this code point was unassigned in Unicode 6.0, it is assigned in Unicode 6.1
and thus no longer "reserved".

Implementers may add aliases beyond those recognized in the UCD. They must be aware that such additional aliases may cause
problems if they collide with future character names or aliases. For example, implementations that used the name "BELL" for U+0007
broke when the new character U+1F514 ( 🔔 ) BELL was introduced.

Previous versions of this specification recommended supporting ISO control names from the Unicode 1.0 name field. These names
are now covered by the name aliases (see NameAliases.txt).In four cases, the name field included both the ISO control name as well
as an abbreviation in parentheses.

U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+000D CARRIAGE RETURN (CR)
U+0085 NEXT LINE (NEL)

These abbreviations were intended as alternate aliases, not as part of the name, but the documentation did not make this
sufficiently clear. As a result, some implementations supported the entire field as a name. Those implementations might benefit
from continuing to support them for compatibility. Beyond that, their use is not recommended.

The \p{name=...} syntax can be used meaningfully with wildcards (see Section 2.6 Wildcards in Property Values). For example, in
Unicode 6.1, \p{name=/ALIEN/} would include a set of two characters:

U+1F47D ( 👽 ) EXTRATERRESTRIAL ALIEN,
U+1F47E ( 👾 ) ALIEN MONSTER

The namespace for the \p{name=...} syntax is the namespace for character names plus name aliases.

2.5.1 Individually Named Characters

The following provides syntax for specifying a code point by supplying the precise name. This syntax specifies a single code point,
which can thus be used in ranges.

<codepoint> := "\N{" <character_name> "}"

The \N syntax is related to the syntax \p{name=...}, but there are three important distinctions:

1. \N matches a single character or a sequence, while \p matches a set of characters (when using wildcards).
2. The \p{name=<character_name>} may silently fail, if no character exists with that name. The \N syntax should instead cause a

syntax error for an undefined name.

The namespace for the \N{name=...} syntax is the namespace for character names plus name aliases. Name matching rules follow
Matching Rules from [UAX44#UAX44-LM2].

As with other property values, names should use a loose match, disregarding case, spaces and hyphen (the underbar character "_"
cannot occur in Unicode character names). An implementation may also choose to allow namespaces, where some prefix like
"LATIN LETTER" is set globally and used if there is no match otherwise.

There are, however, three instances that require special-casing with loose matching, where an extra test shall be made for the
presence or absence of a hyphen.

U+0F68 TIBETAN LETTER A and
U+0F60 TIBETAN LETTER -A
U+0FB8 TIBETAN SUBJOINED LETTER A and
U+0FB0 TIBETAN SUBJOINED LETTER -A
U+116C HANGUL JUNGSEONG OE and
U+1180 HANGUL JUNGSEONG O-E

http://www.unicode.org/reports/tr44/#Label_Tags_Table
http://www.unicode.org/reports/tr44/#Label_Tags_Table
https://www.unicode.org/Public/UNIDATA/NameAliases.txt
http://unicode.org/reports/tr44/#Matching_Rules
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The following table gives examples of the \N syntax:

Expression Equivalent to

\N{WHITE SMILING FACE}
\u{263A}

\N{whitesmilingface}

\N{GREEK SMALL LETTER ALPHA} \u{3B1}

\N{FORM FEED} \u{C}

\N{SHAVIAN LETTER PEEP} \u{10450}

[\N{GREEK SMALL LETTER ALPHA}-\N{GREEK SMALL LETTER BETA}] [\u{3B1}-\u{3B2}]

2.6 Wildcards in Property Values

RL2.6 Wildcards in Property Values

To meet this requirement, an implementation shall support wildcards in Unicode property values.

Instead of a single property value, this feature allows the use of a regular expression to pick out a set of characters based on whether
the property values match the regular expression. The regular expression must support at least wildcards; other regular expressions
features are recommended but optional.

PROP_VALUE := <value> 
            | "/" <regex expression> "/" 
            | "@" <unicode_property> "@"

Note: Where regular expressions are used in matching, the case, spaces, hyphen, and underbar are significant; it is presumed
that users will make use of regular-expression features to ignore these if desired.

The @…@ syntax is used to compare property values, and is primarily intended for string properties. It allows for expressions such
as [:^toNFKC_Casefold=@toNFKC@:], which expresses the set of all and only those code points CP such that
toNFKC_Casefold(CP) = toNFKC(CP). The value identity can be used in this context. For example, \p{toLowercase≠@identity@}
expresses the set of all characters that are changed by the toLowercase mapping.

The following table shows examples of the use of wildcards:

Expression Matched Set

Characters whose NFD form contains a "b" (U+0062) in the value:

\p{toNfd=/b/} U+0062 ( b ) LATIN SMALL LETTER B
U+1E03 ( ḃ ) LATIN SMALL LETTER B WITH DOT ABOVE
U+1E05 ( ḅ ) LATIN SMALL LETTER B WITH DOT BELOW
U+1E07 ( ḇ ) LATIN SMALL LETTER B WITH LINE BELOW

Characters with names starting with "LATIN LETTER" and ending with "P":

\p{name=/^LATIN LETTER.*P$/} U+01AA ( ƪ ) LATIN LETTER REVERSED ESH LOOP
U+0294 ( ʔ ) LATIN LETTER GLOTTAL STOP
U+0296 ( ʖ ) LATIN LETTER INVERTED GLOTTAL STOP
U+1D18 ( ᴘ ) LATIN LETTER SMALL CAPITAL P

Characters with names containing "VARIATION" or "VARIANT":

\p{name=/VARIA(TION|NT)/} U+180B (  ) MONGOLIAN FREE VARIATION SELECTOR ONE
… U+180D (  ) MONGOLIAN FREE VARIATION SELECTOR THREE
U+299C ( ⦜ ) RIGHT ANGLE VARIANT WITH SQUARE
U+303E ( 〾 ) IDEOGRAPHIC VARIATION INDICATOR
U+FE00 (  ) VARIATION SELECTOR-1
… U+FE0F (  ) VARIATION SELECTOR-16
U+121AE ( 𒆮 ) CUNEIFORM SIGN KU4 VARIANT FORM
U+12425 ( 𒐥 ) CUNEIFORM NUMERIC SIGN THREE SHAR2 VARIANT FORM
U+1242F ( 𒐯 ) CUNEIFORM NUMERIC SIGN THREE SHARU VARIANT FORM
U+12437 ( 𒐷 ) CUNEIFORM NUMERIC SIGN THREE BURU VARIANT FORM
U+1243A ( 𒐺 ) CUNEIFORM NUMERIC SIGN THREE VARIANT FORM ESH16
… U+12449 ( 𒑉 ) CUNEIFORM NUMERIC SIGN NINE VARIANT FORM ILIMMU A
U+12453 ( 𒑓 ) CUNEIFORM NUMERIC SIGN FOUR BAN2 VARIANT FORM

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=\p{toNfd=/b/}
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=\p{name=/^LATIN%20LETTER.*P$/}
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=\p{name=/VARIA(TION|NT)/}
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U+12455 ( 𒑕 ) CUNEIFORM NUMERIC SIGN FIVE BAN2 VARIANT FORM
U+1245D ( 𒑝 ) CUNEIFORM NUMERIC SIGN ONE THIRD VARIANT FORM A
U+1245E ( 𒑞 ) CUNEIFORM NUMERIC SIGN TWO THIRDS VARIANT FORM A
U+E0100 (  ) VARIATION SELECTOR-17
… U+E01EF (  ) VARIATION SELECTOR-256

Characters in the Letterlike symbol block with different toLowercase values:

[\p{toLowercase≠@cp@}
& \p{Block=Letterlike Symbols}]

U+2126 ( Ω ) OHM SIGN
U+212A ( K ) KELVIN SIGN
U+212B ( Å ) ANGSTROM SIGN
U+2132 ( Ⅎ ) TURNED CAPITAL F

The lists in the examples above were extracted on the basis of Unicode 5.0; different Unicode versions may produce different results.

The following table some additional samples, illustrating various sets. A click on the link will use the online Unicode utilities on the
Unicode website to show the contents of the sets. Note that these online utilities curently use single-letter operations.

Expression Description

[[:name=/CJK/:]-[:ideographic:]] The set of all characters with names that contain CJK that are not Ideographic

[:name=/\bDOT$/:] The set of all characters with names that end with the word DOT

[:block=/(?i)arab/:] The set of all characters in blocks that contain the sequence of letters "arab" (case-
insensitive)

[:toNFKC=/\./:] the set of all characters with toNFKC values that contain a literal period

2.7 Full Properties

RL2.7 Full Properties

To meet this requirement, an implementation shall support all of the properties listed below that are in the

supported version of the Unicode Standard (or Unicode Technical Standard, respectively), with values that match

the Unicode definitions for that version.

To meet requirement RL2.7, the implementation must satisfy the Unicode definition of the properties for the supported version of
Unicode (or Unicode Technical Standard, respectively), rather than other possible definitions. However, the names used by the
implementation for these properties may differ from the formal Unicode names for the properties. For example, if a regex engine
already has a property called "Alphabetic", for backwards compatibility it may need to use a distinct name, such as
"Unicode_Alphabetic", for the corresponding property listed in RL1.2.

The list excludes provisional, contributory, obsolete, and deprecated properties. It also excludes specific properties:
Unicode_1_Name, Unicode_Radical_Stroke, and the Unihan properties. The properties shown in the table with a gray background
are covered by RL1.2 Properties. For more information on properties, see UAX #44, Unicode Character Database [UAX44].
Properties marked with * are properties of strings, not just single code points.

General Case Shaping and Rendering

Name (Name_Alias) Uppercase Join_Control

Block Lowercase Joining_Group

Age Lowercase_Mapping Joining_Type

General_Category Titlecase_Mapping Vertical_Orientation

Script (Script_Extensions) Uppercase_Mapping Line_Break

White_Space Case_Folding Grapheme_Cluster_Break

Alphabetic Simple_Lowercase_Mapping Sentence_Break

Hangul_Syllable_Type Simple_Titlecase_Mapping Word_Break

Noncharacter_Code_Point Simple_Uppercase_Mapping East_Asian_Width

Default_Ignorable_Code_Point Simple_Case_Folding Prepended_Concatenation_Mark

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B%5B:name=/CJK/:%5D-%5B:ideographic:%5D%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:name=/%5CbDOT$/:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:block=/%28?i%29arab/:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toNFKC=/%5C./:%5D
http://unicode.org/reports/tr44/#Name
http://unicode.org/reports/tr44/#Name_Alias
http://unicode.org/reports/tr44/#Uppercase
http://unicode.org/reports/tr44/#Join_Control
http://unicode.org/reports/tr44/#Block
http://unicode.org/reports/tr44/#Lowercase
http://unicode.org/reports/tr44/#Joining_Group
http://unicode.org/reports/tr44/#Age
http://unicode.org/reports/tr44/#Lowercase_Mapping
http://unicode.org/reports/tr44/#Joining_Type
http://unicode.org/reports/tr44/#General_Category
http://unicode.org/reports/tr44/#Titlecase_Mapping
https://unicode.org/reports/tr44/#Vertical_Orientation
http://unicode.org/reports/tr44/#Script
http://unicode.org/reports/tr44/#Script_Extensions
http://unicode.org/reports/tr44/#Uppercase_Mapping
http://unicode.org/reports/tr44/#Line_Break
http://unicode.org/reports/tr44/#White_Space
http://unicode.org/reports/tr44/#Case_Folding
http://unicode.org/reports/tr44/#Grapheme_Cluster_Break
http://unicode.org/reports/tr44/#Alphabetic
http://unicode.org/reports/tr44/#Simple_Lowercase_Mapping
http://unicode.org/reports/tr44/#Sentence_Break
http://unicode.org/reports/tr44/#Hangul_Syllable_Type
http://unicode.org/reports/tr44/#Simple_Titlecase_Mapping
http://unicode.org/reports/tr44/#Word_Break
http://unicode.org/reports/tr44/#Noncharacter_Code_Point
http://unicode.org/reports/tr44/#Simple_Uppercase_Mapping
http://unicode.org/reports/tr44/#East_Asian_Width
http://unicode.org/reports/tr44/#Default_Ignorable_Code_Point
http://unicode.org/reports/tr44/#Simple_Case_Folding
http://unicode.org/reports/tr44/#Prepended_Concatenation_Mark
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Deprecated Soft_Dotted  

Logical_Order_Exception Cased Bidirectional

Variation_Selector Case_Ignorable Bidi_Class

  Changes_When_Lowercased Bidi_Control

Numeric Changes_When_Uppercased Bidi_Mirrored

Numeric_Value Changes_When_Titlecased Bidi_Mirroring_Glyph

Numeric_Type Changes_When_Casefolded Bidi_Paired_Bracket

Hex_Digit Changes_When_Casemapped Bidi_Paired_Bracket_Type

ASCII_Hex_Digit    

  Normalization Miscellaneous

Identifiers Canonical_Combining_Class Math

ID_Continue Decomposition_Type Quotation_Mark

ID_Start NFC_Quick_Check Dash

XID_Continue NFKC_Quick_Check Sentence_Terminal

XID_Start NFD_Quick_Check Terminal_Punctuation

Pattern_Syntax NFKD_Quick_Check Diacritic

Pattern_White_Space NFKC_Casefold Extender

  Changes_When_NFKC_Casefolded Grapheme_Base

CJK   Grapheme_Extend

Ideographic Emoji Regional_Indicator

Unified_Ideograph Emoji Indic_Positional_Category

Radical Emoji_Presentation Indic_Syllabic_Category

IDS_Binary_Operator Emoji_Modifier  

IDS_Trinary_Operator Emoji_Modifier_Base  

Equivalent_Unified_Ideograph Emoji_Component  

  Extended_Pictographic  

  Basic Emoji*  

  RGI_Emoji_Modifier_Sequence*  

  RGI_Emoji_Tag_Sequence*  

  RGI_Emoji_ZWJ_Sequence*  

  RGI_Emoji*  

Review Notes:

Some of the links under Emoji will not work yet.
Additional possible candidates for this list are in 2.8 Optional Properties. Feedback is requested as to whether any of those
would be useful to move here.
The properties in SpecialCasing.txt such as Lowercase_Mapping are actually conditional, and should probably be removed
since they require another argument (the condition).

The Name and Name_Alias properties are used in \p{name=…} and \N{…}. The data in NamedSequences.txt is also used in \N{…}.
For more information see Section 2.5, Name Properties . The Script and Script_Extensions properties are used in \p{scx=…}. For
more information, see Section 1.2.2, Script_Property.

http://unicode.org/reports/tr44/#Deprecated
http://unicode.org/reports/tr44/#Soft_Dotted
http://unicode.org/reports/tr44/#Logical_Order_Exception
http://unicode.org/reports/tr44/#Cased
http://unicode.org/reports/tr44/#Variation_Selector
http://unicode.org/reports/tr44/#Case_Ignorable
http://unicode.org/reports/tr44/#Bidi_Class
http://unicode.org/reports/tr44/#CWL
http://unicode.org/reports/tr44/#Bidi_Control
http://unicode.org/reports/tr44/#CWU
http://unicode.org/reports/tr44/#Bidi_Mirrored
http://unicode.org/reports/tr44/#Numeric_Value
http://unicode.org/reports/tr44/#CWT
http://unicode.org/reports/tr44/#Bidi_Mirroring_Glyph
http://unicode.org/reports/tr44/#Numeric_Type
http://unicode.org/reports/tr44/#CWCF
http://unicode.org/reports/tr44/#Bidi_Paired_Bracket
http://unicode.org/reports/tr44/#Hex_Digit
http://unicode.org/reports/tr44/#CWCM
http://unicode.org/reports/tr44/#Bidi_Paired_Bracket_Type
http://unicode.org/reports/tr44/#ASCII_Hex_Digit
http://unicode.org/reports/tr44/#Canonical_Combining_Class
http://unicode.org/reports/tr44/#Math
http://unicode.org/reports/tr44/#ID_Continue
http://unicode.org/reports/tr44/#Decomposition_Type
http://unicode.org/reports/tr44/#Quotation_Mark
http://unicode.org/reports/tr44/#ID_Start
http://unicode.org/reports/tr44/#NFC_Quick_Check
http://unicode.org/reports/tr44/#Dash
http://unicode.org/reports/tr44/#XID_Continue
http://unicode.org/reports/tr44/#NFKC_Quick_Check
http://unicode.org/reports/tr44/#STerm
http://unicode.org/reports/tr44/#XID_Start
http://unicode.org/reports/tr44/#NFD_Quick_Check
http://unicode.org/reports/tr44/#Terminal_Punctuation
http://unicode.org/reports/tr44/#Pattern_Syntax
http://unicode.org/reports/tr44/#NFKD_Quick_Check
http://unicode.org/reports/tr44/#Diacritic
http://unicode.org/reports/tr44/#Pattern_White_Space
http://unicode.org/reports/tr44/#NFKC_Casefold
http://unicode.org/reports/tr44/#Extender
http://unicode.org/reports/tr44/#CWKCF
http://unicode.org/reports/tr44/#Grapheme_Base
http://unicode.org/reports/tr44/#Grapheme_Extend
http://unicode.org/reports/tr44/#Ideographic
https://unicode.org/reports/tr44/#Regional_Indicator
http://unicode.org/reports/tr44/#Unified_Ideograph
https://unicode.org/reports/tr51/#def_emoji_character
https://unicode.org/reports/tr44/#Indic_Positional_Category
http://unicode.org/reports/tr44/#Radical
https://unicode.org/reports/tr51/#def_emoji_presentation
https://unicode.org/reports/tr44/#Indic_Syllabic_Category
http://unicode.org/reports/tr44/#IDS_Binary_Operator
https://unicode.org/reports/tr51/#def_emoji_modifier
http://unicode.org/reports/tr44/#IDS_Trinary_Operator
https://unicode.org/reports/tr51/#def_emoji_modifier_base
https://unicode.org/reports/tr44/#Equivalent_Unified_Ideograph
https://unicode.org/reports/tr51/#def_level2_emoji
https://unicode.org/reports/tr51/#def_level1_emoji
https://unicode.org/reports/tr51/#def_basic_emoji_set
https://unicode.org/reports/tr51/#def_std_emoji_modifier_sequence_set
https://unicode.org/reports/tr51/#def_std_emoji_tag_sequence_set
https://unicode.org/reports/tr51/#def_emoji_ZWJ_sequences
https://unicode.org/reports/tr51/#def_rgi_set
https://unicode.org/Public/UNIDATA/SpecialCasing.txt
http://unicode.org/reports/tr44/#Lowercase_Mapping
http://unicode.org/reports/tr44/#Name
http://unicode.org/reports/tr44/#Name_Alias
http://unicode.org/reports/tr44/#Script
http://unicode.org/reports/tr44/#Script_Extensions
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Other recommended properties are described in 2.7 Full Properties. See also 2.5 Name Properties and 2.6 Wildcards in Property
Values.

2.8 Optional Properties

Review Note: This section was moved from Section 1.2.3 Other Properties and retitled to better reflects the optional nature of these
properties.

Implementations may also add other regular expression properties based on Unicode data that are not listed above. Some possible
candidates include the following. These are not required by any conformance clauses in this document.

isCased, isLowercase, toLowercase, and so on from [Case]
toNFKC_Casefold from [Case]
cjkTraditionalVariant, cjkSimplifiedVariant, CJK_Radical number from the Unihan data in the UCD [UAX38]
isNFx, toNFx (x = D, C, KD, KC from [UAX15])
Exemplar characters from [UTS35]
IDNA status and mapping from [UTS46]
Identifier_Status and Identifier_Type from [UTS39]
DUCET primary values from [UTS10]
Emoji, Emoji_Presentation, Emoji_Modifier and Emoji_Modifier_Base from [UTR51]
vertical orientation from [UTR50]
Named sequences (from NamedSequences.txt)

Review Notes:

Depending on the resolution of the /m vs /p issue above, we can change the POSIX-style syntax to the \p or \m syntax.
Note that the narrowed set of single characters can be represented with formulations such as [\p{any}&&\p{toNFC=Å}].
Note that the Named_Sequences is moved up from the \N discussion. It was inappropriate there, since it would have made \N
be a property of strings.
Should we add optional syntax for ranges that contain multi-character strings, such as in Section 1.3 Subtraction and
Intersection?

The UnicodeSet notation could be enhanced by doubling the ‘{’ and ‘}’ for backwards compatibility, as is done with && and
--, and by using | as a separator between successive strings to reduce the length.
That syntax has little advantage in isolation, but can be useful in boolean combinations, such as [[:Basic_Emoji:]--[⏩-
⏬{{⏏ |⏭ |⏮ |⏯ }}]] (The last 4 emoji are multi-character).

The following tables gives examples of such properties in use:

String properties Description

[:toNFC=Å:] The set of all strings X such that toNFC(X) = "a"

[:toNFD=A\u{300}:] The set of all strings X such that toNFD(X) = "A\u{300}"

[:toNFKC=A:] The set of all strings X such that toNFKC(X) = "A"

[:toNFKD=A\u{300}:] The set of all strings X such that toNFKD(X) = "A\u{300}"

[:toLowercase=a:] The set of all strings X such that toLowercase(X) = "a"

[:toUppercase=A:] The set of all strings X such that toUppercase(X) = "A"

[:toTitlecase=A:] The set of all strings X such that toTitlecase(X) = "A"

[:toCaseFold=a:] The set of all strings X such that toCasefold(X) = "A"

[:Exemplar=ja:] or
[:Exemplar_Punctuation=ja:]

Exemplar characters and strings from CLDR (for Japanese) The string value must be a
valid Unicode language ID.

[:Named_Sequence=KHMER
CONSONANT SIGN COENG
KA:]

The sequence named KHMER CONSONANT SIGN COENG KA in NamedSequences.txt.
(To be most useful, this should match any name according to the Name property,
NamedAliases.txt, and NamedSequences.txt, so that [:Named_Sequence=X:] is a drop-in
for [:Name=X:].)

Review Notes:

toNFKC_Casefold is not a very useful property for regular expressions, because its mapping removes all
Default_Ignorable_Code_Points, such as U+00AD. Thus the expression [:toNFKC_Casefold=a:] would be open-ended,
matching U+00AD ... U+00AD a U+00AD ... U+00AD.

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toNFC=%C3%85:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toNFC=%C3%85:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toNFD=A%5Cu0300:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toNFKC=A:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toNFKD=A%5Cu0300:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toLowercase=a:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toUppercase=A:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toTitlecase=A:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toCaseFold=a:%5D
http://unicode.org/reports/tr35/#Unicode_language_identifier
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Removing the following examples of binary properties as well, since their scope requires more thought.

Binary properties Description

[:isNFC:] The set of all characters X such that toNFC(X) = X

[:isNFD:] The set of all characters X such that toNFD(X) = X

[:isNFKC:] The set of all characters X such that toNFKC(X) = X

[:isNFKD:] The set of all characters X such that toNFKD(X) = X

[:isLowercase:] The set of all characters X such that toLowercase(X) = X

[:isUppercase:] The set of all characters X such that toUppercase(X) = X

[:isTitlecase:] The set of all characters X such that toTitlecase(X) = X

[:isCaseFolded:] The set of all characters X such that toCasefold(X) = X

[:isCased:] The set of all cased characters.

 

3 Tailored Support: Level 3

Review Notes: We should consider retracting some additional parts of Level 3, or perhaps even the whole section. It was included to
consider some features that were tried in implementations (such as including characters in ranges based on locale-specific ordering),
and some more speculative possible features. Feedback is welcome.

All of the above deals with a default specification for a regular expression. However, a regular expression engine also may want to
support tailored specifications, typically tailored for a particular language or locale. This may be important when the regular
expression engine is being used by end-users instead of programmers, such as in a word-processor allowing some level of regular
expressions in searching.

For example, the order of Unicode characters may differ substantially from the order expected by users of a particular language. The
regular expression engine has to decide, for example, whether the list [a-ä] means:

the Unicode characters in binary order between 006116 and 00E516 (including 'z', 'Z', '[', and '¼'), or
the letters in that order in the users' locale (which does not include 'z' in English, but does include it in Swedish).

If both tailored and default regular expressions are supported, then a number of different mechanism are affected. There are two
main alternatives for control of tailored support:

coarse-grained support: the whole regular expression (or the whole script in which the regular expression occurs) can be
marked as being tailored.
fine-grained support: any part of the regular expression can be marked in some way as being tailored.

For example, fine-grained support could use some syntax such as the following to indicate tailoring to a locale within a certain range:

\T{<locale_id>}..\E

Locale (or language) IDs should use the syntax from locale identifier definition in [UTS35], Section 3. Identifiers . Note that the locale
id of "root" or "und" indicates the root locale, such as in the CLDR root collation.

There must be some sort of syntax that will allow Level 3 support to be turned on and off, for two reasons. Level 3 support may be
considerably slower than Level 2, and most regular expressions may require Level 1 or Level 2 matches to work properly. The syntax
should also specify the particular locale or other tailoring customization that the pattern was designed for, because tailored regular
expression patterns are usually quite specific to the locale, and will generally not work across different locales.

Sections 3.6 and following describe some additional capabilities of regular expression engines that are very useful in a Unicode
environment, especially in dealing with the complexities of the large number of writing systems and languages expressible in
Unicode.

3.1 Tailored Punctuation

The Unicode character properties for punctuation may vary from language to language or from country to country. In most cases, the
effects of such changes will be apparent in other operations, such as a determination of word breaks. But there are other
circumstances where the effects should be apparent in the general APIs, such as when testing whether a curly quotation mark is
opening or closing punctuation.

RL3.1 Tailored Punctuation

To meet this requirement, an implementation shall allow for punctuation properties to be tailored according to

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[:isNFC:]
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[:isNFD:]
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[:isNFKC:]
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[:isNFKD:]
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:isLowercase:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:isUppercase:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:isTitlecase:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:isCaseFolded:%5D
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:isCased:%5D
http://unicode.org/reports/tr35/#Identifiers
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locale, using the locale identifier definition in [UTS35], Section 3. Identifiers.

As just described, there must be the capability of turning this support on or off.

3.2 Tailored Grapheme Clusters

RL3.2 Tailored Grapheme Clusters

To meet this requirement, an implementation shall provide for collation grapheme clusters matches based on a

locale's collation order.

Tailored grapheme clusters may be somewhat different than the extended grapheme clusters discussed in Level 2. They are
coordinated with the collation ordering for a given language in the following way. A collation ordering determines a collation
grapheme cluster, which is a sequence of characters that is treated as a unit by the ordering. For example, ch is a collation
grapheme cluster for a traditional Spanish ordering.

The tailored grapheme clusters for a particular locale are the collation grapheme clusters for the collation ordering for that locale. The
determination of tailored grapheme clusters requires the regular expression engine to either draw upon the platform's collation data,
or incorporate its own tailored data for each supported locale.

For example, an implementation could interpret \u{es-u-co-trad} as matching a collation grapheme cluster for a traditional Spanish
ordering, or use a switch to change the meaning of \X during some span of the regular expression.

See Section 6.9, Handling Collation Graphemes in UTS #10, Unicode Collation Algorithm [UTS10] for the definition of collation
grapheme clusters, and Annex B: Sample Collation Grapheme Cluster Code for sample code.

3.3 Tailored Word Boundaries

RL3.3 Tailored Word Boundaries

To meet this requirement, an implementation shall allow for the ability to have word boundaries to be tailored

according to locale.

For example, an implementation could interpret \b{x:…} as matching the word break positions according to the locale information in
CLDR [UTS35] (which are tailorings of word break positions in [UAX29]). Thus it could interpret expressions as show here:

Expression Matches

\b{w:und}
a root word break

\b{w}

\b{w:ja} a Japanese word break

\b{l:ja} a Japanese line break

Alternatively, it could use a switch to change the meaning of \b and \B during some span of the regular expression.

Semantic analysis may be required for correct word boundary detection in languages that do not require spaces, such as Thai. This
can require fairly sophisticated support if Level 3 word boundary detection is required, and usually requires drawing on platform OS
services.

3.4 Tailored Loose Matches (Retracted)

RL3.4 Tailored Loose Matches (Retracted)

Previous versions of RL3.4 described loose matches based on collation order. However, for most full-featured regular expression
engines, it is quite difficult to match under code point equivalences that are not 1:1. For more discussion of this, see 1.5 Simple
Loose Matches and 2.1 Canonical Equivalents. Thus RL3.4 has been retracted.

3.5 Tailored Ranges (Retracted)

RL3.5 Tailored Ranges (Retracted)

Previous versions of RL3.5 described ranges based on collation order. However, tailored ranges can be quite difficult to implement
properly, and can have very unexpected results in practice. For example, languages may also vary whether they consider lowercase
below uppercase or the reverse. This can have some surprising results: [a-Z] may not match anything if Z < a in that locale. Thus
RL3.5 has been retracted.

3.6 Context Matching

RL3.6 Context Matching

http://unicode.org/reports/tr35/#Identifiers
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To meet this requirement, an implementation shall provide for a restrictive match against input text, allowing for

context before and after the match.

For parallel, filtered transformations, such as those involved in script transliteration, it is important to restrict the matching of a regular
expression to a substring of a given string, and yet allow for context before and after the affected area. Here is a sample API that
implements such functionality, where m is an extension of a Regex Matcher.

if (m.matches(text, contextStart, targetStart, targetLimit, contextLimit)) { 
  int end = p.getMatchEnd(); 
}

The range of characters between contextStart and targetStart define a precontext; the characters between targetStart and
targetLimit define a target, and the offsets between targetLimit and contextLimit define a postcontext. Thus contextStart ≤
targetStart ≤ targetLimit ≤ contextLimit. The meaning of this function is that:

a match is attempted beginning at targetStart.
the match will only succeed with an endpoint at or less than targetLimit.
any zero-width look-arounds (look-aheads or look-behinds) can match characters inside or outside of the target, but cannot
match characters outside of the context.

Examples are shown in the following table. In these examples, the text in the pre- and postcontext is italicized and the target is
underlined. In the output column, the text shown with a gray background is the matched portion. The pattern syntax "(←x)" means a
backwards match for x (without moving the cursor) This would be (?<=x) in Perl. The pattern "(→x)" means a forwards match for x
(without moving the cursor). This would be (?=x) in Perl.

Pattern Input Output Comment

/(←a) (bc)* (→d)/ 1abcbcd2 1abcbcd2 matching with context

/(←a) (bc)* (→bcd)/ 1abcbcd2 1abcbcd2 stops early, because otherwise 'd' would not match

/(bc)*d/ 1abcbcd2 no match 'd' cannot be matched in the target, only in the postcontext

/(←a) (bc)* (→d)/ 1abcbcd2 no match 'a' cannot be matched, because it is before the precontext (which is zero-
length, in this case)

While it would be possible to simulate this API call with other regular expression calls, it would require subdividing the string and
making multiple regular expression engine calls, significantly affecting performance.

There should also be pattern syntax for matches (like ^ and $) for the contextStart and contextLimit positions.

Internally, this can be implemented by modifying the regular expression engine so that all matches are limited to characters
between contextStart and contextLimit, and so that all matches that are not zero-width look-arounds are limited to the
characters between targetStart and targetLimit.

3.7 Incremental Matches

RL3.7 Incremental Matches

To meet this requirement, an implementation shall provide for incremental matching.

For buffered matching, one needs to be able to return whether there is a partial match; that is, whether there would be a match if
additional characters were added after the targetLimit. This can be done with a separate method having an enumerated return value:
match, no_match, or partial_match.

if (m.incrementalmatches(text, cs, ts, tl, cl) == Matcher.MATCH) { 
  ... 
}

Thus performing an incremental match of /bcbce(→d)/ against "1abcbcd2" would return a partial_match because the addition of an e
to the end of the target would allow it to match. Note that /(bc)*(→d)/ would also return a partial match, because if bc were added at
the end of the target, it would match.

The following table shows the same patterns as shown above in Section 3.6, Context Matching, but with the results for when an
incremental match method is called:

Pattern Input Output Comment

/(←a) (bc)* (→d)/ 1abcbcd2 partial match 'bc' could be inserted

/(←a) (bc)* (→bcd)/ 1abcbcd2 partial match 'bc' could be inserted

/(bc)*d/ 1abcbcd2 partial match 'd' could be inserted

http://download.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html
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/(←a) (bc)* (→d)/ 1abcbcd2 no match as with the matches function; the backwards search for 'a' fails

The typical usage of incremental matching is to make a series of incremental match calls, marching through a buffer with each
successful match. At the end, if there is a partial match, one loads another buffer (or waits for other input). When the process
terminates (no more buffers or input are available), then a regular match call is made.

Internally, incremental matching can be implemented in the regular expression engine by detecting whether the matching process
ever fails when the current position is at or after targetLimit, and setting a flag if so. If the overall match fails, and this flag is set, then
the return value is set to partial_match. Otherwise, either match or no_match is returned, as appropriate.

The return value partial_match indicates that there was a partial match: if further characters were added there could be a match to
the resulting string. It may be useful to divide this return value into two, instead:

extendable_match: in addition to there being a partial match, there was also a match somewhere in the string. For example,
when matching /(ab)*/ against "aba", there is a match, and if other characters were added ("a", "aba",...) there could also be
another match.
only_partial_match: there was no other match in the string. For example, when matching /abcd/ against "abc", there is only a
partial match; there would be no match unless additional characters were added.

3.8 Unicode Set Sharing (Retracted)

Previous versions described a technique to reduce memory consumption by sharing the underlying implementation data structures
for character classes. That technique has been retracted because it assumed a very specific implementation environment and did not
specify any Unicode related pattern or matching features.

3.9 Possible Match Sets

RL3.9 Possible Match Sets

To meet this requirement, an implementation shall provide for the generation of possible match sets from any

regular expression pattern.

There are a number of circumstances where additional functions on regular expression patterns can be useful for performance or
analysis of those patterns. These are functions that return information about the sets of characters that a regular expression can
match.

When applying a list of regular expressions (with replacements) against a given piece of text, one can do that either serially or in
parallel. With a serial application, each regular expression is applied the text, repeatedly from start to end. With parallel application,
each position in the text is checked against the entire list, with the first match winning. After the replacement, the next position in the
text is checked, and so on.

For such a parallel process to be efficient, one needs to be able to winnow out the regular expressions that simply could not match
text starting with a given code point. For that, it is very useful to have a function on a regular expression pattern that returns a set of
all the code points that the pattern would partially or fully match.

   myFirstMatchingSet = pattern.getFirstMatchSet(Regex.POSSIBLE_FIRST_CODEPOINT);

For example, the pattern /[[\u{0}-\u{FF}] && [:Latin:]] * [0-9]/ would return the set {0..9, A..Z, a..z}. Logically, this is the set of all
code points that would be at least partial matches (if considered in isolation).

Note: An additional useful function would be one that returned the set of all code points that could be matched at any point.
Thus a code point outside of this set cannot be in any part of a matching range.

The second useful case is the set of all code points that could be matched in any particular group, that is, that could be set in the
standard $0, $1, $2, ... variables.

   myAllMatchingSet = pattern.getAllMatchSet(Regex.POSSIBLE_IN$0);

Internally, this can be implemented by analysing the regular expression (or parts of it) recursively to determine which characters
match. For example, the first match set of an alternation (a | b) is the union of the first match sets of the terms a and b.

The set that is returned is only guaranteed to include all possible first characters; if an expression gets too complicated it could be a
proper superset of all the possible characters.

3.10 Folded Matching (Retracted)

RL3.10 Folded Matching

Previous versions of RL3.10 described tailored folding. However, for most full-featured regular expression engines, it is quite difficult
to match under folding equivalences that are not 1:1. For more discussion of this, see 1.5 Simple Loose Matches and 2.1 Canonical
Equivalents. Thus RL3.10 has been retracted.

3.11 Submatchers

RL3.11 Submatchers
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To meet this requirement, an implementation shall provide for general registration of matching functions for

providing matching for general linguistic features.

There are over 70 properties in the Unicode character database, yet there are many other sequences of characters that users may
want to match, many of them specific to given languages. For example, characters that are used as vowels may vary by language.
This goes beyond single-character properties, because certain sequences of characters may need to be matched; such sequences
may not be easy themselves to express using regular expressions. Extending the regular expression syntax to provide for registration
of arbitrary properties of characters allows these requirements to be handled.

The following provides an example of this. The actual function is just for illustration.

class MultipleMatcher implements RegExSubmatcher { 
// from RegExFolder, must be overridden in subclasses 
  /** 
   * Returns -1 if there is no match; otherwise returns the endpoint; 
   * an offset indicating how far the match got. 
   * The endpoint is always between targetStart and targetLimit, inclusive. 
   * Note that there may be zero-width matches. 
   */ 
int match(String text, int contextStart, int targetStart, int targetLimit, int contextLimit) { 
// code for matching numbers according to numeric value. 
} 
 
// from RegExFolder, may be overridden for efficiency 
  /** 
   * The parameter is a number. The match will match any numeric value that is a multiple. 
   * Example: for "2.3", it will match "0002.3000", "4.6", "11.5", and any non-Western 
   * script variants, like Indic numbers. 
   */ 
RegExSubmatcher clone(String parameter, Locale locale) {...} 
} 
  ... 
 
  RegExSubmatcher.registerMatcher("multiple", new MultipleMatcher()); 
 
  ... 
 
  p = Pattern.compile("xxx\M{multiple=2.3}xxx");

In this example, the match function can be written to parse numbers according to the conventions of different locales, based on OS
functions available for such parsing. If there are mechanisms for setting a locale for a portion of a regular expression, then that locale
would be used; otherwise the default locale would be used.

Note: It might be advantageous to make the Submatcher API identical to the Matcher API; that is, only have one base class
"Matcher", and have user extensions derive from the base class. The base class itself can allow for nested matchers.

Annex A: Character Blocks

The Block property from the Unicode Character Database can be a useful property for quickly describing a set of Unicode characters.
It assigns a name to segments of the Unicode codepoint space; for example, [\u{370}-\u{3FF}] is the Greek block.

However, block names need to be used with discretion; they are very easy to misuse because they only supply a very coarse view of
the Unicode character allocation. For example:

Blocks are not at all exclusive. There are many mathematical operators that are not in the Mathematical Operators block;
there are many currency symbols not in Currency Symbols, and so on.
Blocks may include characters not assigned in the current version of Unicode. This can be both an advantage and
disadvantage. Like the General Property, this allows an implementation to handle characters correctly that are not defined at
the time the implementation is released. However, it also means that depending on the current properties of assigned
characters in a block may fail. For example, all characters in a block may currently be letters, but this may not be true in the
future.
Writing systems may use characters from multiple blocks: English uses characters from Basic Latin and General
Punctuation, Syriac uses characters from both the Syriac and Arabic blocks, various languages use Cyrillic plus a few letters
from Latin, and so on.
Characters from a single writing system may be split across multiple blocks. See the following table on Writing Systems
versus Blocks. Moreover, presentation forms for a number of different scripts may be collected in blocks like Alphabetic
Presentation Forms or Halfwidth and Fullwidth Forms.

The following table illustrates the mismatch between writing systems and blocks. These are only examples; this table is not a
complete analysis. It also does not include common punctuation used with all of these writing systems.

Writing Systems Versus Blocks

Writing System Associated Blocks

Latin Basic Latin, Latin-1 Supplement, Latin Extended-A, Latin Extended-B, Latin Extended-C, Latin
Extended-D, Latin Extended-E, Latin Extended Additional, Combining Diacritical Marks
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Greek Greek, Greek Extended, Combining Diacritical Marks

Arabic Arabic, Arabic Supplement, Arabic Extended-A, Arabic Presentation Forms-A, Arabic Presentation
Forms-B

Korean Hangul Jamo, Hangul Jamo Extended-A, Hangul Jamo Extended-B, Hangul Compatibility Jamo, Hangul
Syllables, CJK Unified Ideographs, CJK Unified Ideographs Extension A, CJK Compatibility Ideographs,
CJK Compatibility Forms, Enclosed CJK Letters and Months, Small Form Variants

Yi Yi Syllables, Yi Radicals

Chinese CJK Unified Ideographs, CJK Unified Ideographs Extension A, CJK Unified Ideographs Extension B, CJK
Unified Ideographs Extension C, CJK Unified Ideographs Extension D, CJK Unified Ideographs
Extension E, CJK Compatibility Ideographs, CJK Compatibility Ideographs Supplement, CJK
Compatibility Forms, Kangxi Radicals, CJK Radicals Supplement, Enclosed CJK Letters and Months,
Small Form Variants, Bopomofo, Bopomofo Extended, ...

For the above reasons, Script values are generally preferred to Block values. Even there, they should be used in accordance with the
guidelines in UAX #24, Unicode Script Property [UAX24].

Annex B: Sample Collation Grapheme Cluster Code

The following provides sample code for doing Level 3 collation grapheme cluster detection. This code is meant to be illustrative, and
has not been optimized. Although written in Java, it could be easily expressed in any programming language that allows access to
the Unicode Collation Algorithm mappings.

   /** 
 * Return the end of a collation grapheme cluster. 
 * @param s         the source string 
 * @param start     the position in the string to search 
 *                  forward from 
 * @param collator  the collator used to produce collation elements. 
 * This can either be a custom-built one, or produced from 
 * the factory method Collator.getInstance(someLocale). 
 * @return          the end position of the collation grapheme cluster 
 */ 
 
static int getLocaleCharacterEnd(String s, 
  int start, RuleBasedCollator collator) { 
    int lastPosition = start; 
    CollationElementIterator it 
      = collator.getCollationElementIterator( 
          s.substring(start, s.length())); 
    it.next(); // discard first collation element 
int primary; 
 
// accumulate characters until we get to a non-zero primary 
 
do { 
        lastPosition = it.getOffset(); 
        int ce = it.next(); 
        if (ce == CollationElementIterator.NULLORDER) break; 
        primary = CollationElementIterator.primaryOrder(ce); 
    } while (primary == 0); 
    return lastPosition; 
}

Annex C: Compatibility Properties

The following table shows recommended assignments for compatibility property names, for use in Regular Expressions. The
standard recommendation is shown in the column labeled "Standard"; applications should use this definition wherever possible. If
populated with a different value, the column labeled "POSIX Compatible" shows modifications to the standard recommendation
required to meet the formal requirements of [POSIX], and also to maintain (as much as possible) compatibility with the POSIX usage
in practice. That modification involves some compromises, because POSIX does not have as fine-grained a set of character
properties as in the Unicode Standard, and also has some additional constraints. So, for example, POSIX does not allow more than
20 characters to be categorized as digits, whereas there are many more than 20 digit characters in Unicode.

Compatibility Property Names

Property Standard POSIX

Compatible

Comments

alpha \p{Alphabetic} Alphabetic includes more than gc = Letter. Note that combining
marks (Me, Mn, Mc) are required for words of many languages.
While they could be applied to non-alphabetics, their principal
use is on alphabetics. See DerivedCoreProperties for Alphabetic.

http://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
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See also DerivedGeneralCategory. Alphabetic should not be
used as an approximation for word boundaries: see word
below.

lower \p{Lowercase} Lowercase includes more than gc = Lowercase_Letter (Ll). See
DerivedCoreProperties.

upper \p{Uppercase} Uppercase includes more than gc = Uppercase_Letter (Lu).

punct \p{gc=Punctuation} \p{gc=Punctuation}
\p{gc=Symbol}
-- \p{alpha}

POSIX adds symbols. Not recommended generally, due to the
confusion of having punct include non-punctuation marks.

digit

(\d)

\p{gc=Decimal_Number} [0..9] Non-decimal numbers (like Roman numerals) are normally
excluded. In U4.0+, the recommended column is the same as
gc = Decimal_Number (Nd). See DerivedNumericType.

xdigit \p{gc=Decimal_Number}
\p{Hex_Digit}

[0-9 A-F a-f] Hex_Digit contains 0-9 A-F, fullwidth and halfwidth, upper and
lowercase.

alnum \p{alpha}
\p{digit}

Simple combination of other properties

space

(\s)

\p{Whitespace} See PropList for the definition of Whitespace.

blank \p{gc=Space_Separator}
\N{CHARACTER TABULATION}

"horizontal" whitespace: space separators plus U+0009 tab.

Engines implementing older versions of the Unicode Standard
may need to use the longer formulation:
\p{Whitespace} --
[\N{LF} \N{VT} \N{FF} \N{CR} \N{NEL} \p{gc=Line_Separator}
\p{gc=Paragraph_Separator}]

cntrl \p{gc=Control} The characters in \p{gc=Format} share some, but not all aspects
of control characters. Many format characters are required in
the representation of plain text.

graph [^
\p{space}
\p{gc=Control}
\p{gc=Surrogate}
\p{gc=Unassigned}]

Warning: the set shown here is defined by excluding space,
controls, and so on with ^.

print \p{graph}
\p{blank}
-- \p{cntrl}

Includes graph and space-like characters.

word

(\w)

\p{alpha}
\p{gc=Mark}
\p{digit}
\p{gc=Connector_Punctuation}
\p{Join_Control}

n/a This is only an approximation to Word Boundaries (see b
below). The Connector Punctuation is added in for
programming language identifiers, thus adding "_" and similar
characters.

\X Extended Grapheme
Clusters

n/a See [UAX29]. Other functions are used for programming
language identifier boundaries.

\b Default Word Boundaries n/a If there is a requirement that \b align with \w, then it would use
the approximation above instead. See [UAX29]. Note that
different functions are used for programming language
identifier boundaries. See also [UAX31].
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Modifications

The following summarizes modifications from the previous revision of this document.

Revision 20

Summary: Broadened the scope of properties for the use of regex to allow for properties of strings as well as properties of
characters / code points; updated the full properties to included newer Unicode properties plus Emoji properties.

Section 1.2 Properties
Broadened the scope of properties to allow for properties of strings.
Moved in material that used to be split across different sections below about properties of strings and property values that
are sets. For example, the behavior of Script_Extensions was moved up.
Added review note requesting feedback on the syntax issue: \p vs \m.

Section 1.2.3 Other Properties
Moved down to 2.8 (shouldn't have been discussed at Level 1), and revised to make the optional nature clear.

Section 1.3 Subtraction and Intersection
Described how subtraction and intersection behave with properties of strings.

Section 1.7 Code Points
Added clarifications about code points vs code units.

Section 2.2.1 Grapheme Cluster Mode
Noted that the boundary definitions in CLDR are more comprehensive.

Section 2.5.1 Individually Named Characters
This section implied that \N was a property of strings. Modified that to clearly be a property of code points, and moved
discussion of Named_Sequences to Section 2.8 Optional Properties.

Section 2.7 Full Properties
Updated for newer versions of Unicode.
Added Emoji properties
Added review note requesting feedback on whether any properties from Section 2.8 Optional Properties should be moved
here.

Section 2.8 Optional Properties
Moved from Section 1.2.3 Other Properties
Made it clear that these are entirely optional.
Removed some properties now covered in Section 2.7 Full Properties
Changed certain cases be properties of strings.
Removed examples of toNFIC_CaseFold, DUCET, CJK properties
Added Named sequences (was previously included as part of Section 2.5.1 Individually Named Characters).
Clarified Exemplar properties in examples.

Section 3 Tailored Support: Level 3
Added review note requesting feedback on whether we should retract more (or all) of Level 3.

Modifications for previous versions are listed in those respective versions.
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