
7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 1/20

Technical Reports

Proposed Update Unicode® Standard Annex #24

UNICODE SCRIPT PROPERTY

Version Unicode 15.0.0

Editors Ken Whistler (ken@unicode.org)

Date 2022-03-02

This Version https://www.unicode.org/reports/tr24/tr24-33.html

Previous Version https://www.unicode.org/reports/tr24/tr24-32.html

Latest Version https://www.unicode.org/reports/tr24/tr24

Latest Proposed
Update

https://www.unicode.org/reports/tr24/proposed.html

Revision 33

Summary

This annex describes two related Unicode code point properties. Both properties share the
use of Script property values. The Script property itself assigns single script values to all
Unicode code points, identifying a primary script association, where possible. The
Script_Extensions property assigns sets of Script property values, providing more detail for
cases where characters are commonly used with multiple scripts. This information is useful
in mechanisms such as regular expressions and other text processing tasks, as explained
in implementation notes for these properties.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,
but is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in the
Conformance chapter of that version of the Unicode Standard. The version number
of a UAX document corresponds to the version of the Unicode Standard of which it
forms a part.

https://www.unicode.org/
https://www.unicode.org/reports/
mailto:ken@unicode.org
https://www.unicode.org/reports/tr24/tr24-33.html
https://www.unicode.org/reports/tr24/tr24-32.html
https://www.unicode.org/reports/tr24/
https://www.unicode.org/reports/tr24/proposed.html
rick
Text Box
L2/22-170

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 2/20

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version
of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports,
see [Reports]. For more information about versions of the Unicode Standard, see
[Versions]. For any errata which may apply to this annex, see [Errata].

Contents

1 Introduction
1.1 Examples of Script Classification
1.2 Script Identity and Unicode
1.3 Scripts and Blocks
1.4 Script Classification in Text Processing
1.5 Classification of Text by Script Property
1.6 Usage Not Reflected in the Script Property

2 The Script Property
2.1 Script Property Values
2.2 Relation to ISO 15924 Codes
2.3 Assignment of Script Property Values
2.4 Script Designators in Character and Block Names
2.5 Script Property Value Aliases
2.6 Script Names
2.7 Script Anomalies

3 The Script_Extensions Property
3.1 Script_Extensions Property Values
3.3 Assignment of Script_Extensions Property Values

4 Data Files
4.1 Scripts.txt
4.2 ScriptsExtensions.txt
4.3 PropertyValueAliases.txt

5 Implementation Notes
5.1 Handling Characters with the Common Script Property
5.2 Handling Combining Marks
5.3 Multiple Script Values
5.4 Using Script Property Values in Regular Expressions
5.5 Use of the Script Property in Rendering Systems
5.6 Limitations
5.7 Spoofing

Acknowledgments
References
Modifications

1 Introduction

The concept of script is a key organizational principle for the Unicode Standard [Unicode].
This annex introduces the general concept of script and the specific ways in which the
concept is used in the standard. Two character properties, Script and Script_Extensions,
are then specified in detail.

A script is a collection of letters and other written signs that generally has the following
attributes:

The written elements share a common graphological style and history.

https://www.unicode.org/reporting.html
https://www.unicode.org/reports/tr41/tr41-28.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
https://www.unicode.org/errata/
https://www.unicode.org/reports/tr41/tr41-28.html#Unicode

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 3/20

The collection is used (in full, or as a subset) to represent textual information in a
writing system for one or more languages.

For example, the Russian language is written with a distinctive set of letters, as well as
other marks or symbols that together form a subset of the Cyrillic script. Other languages
using the Cyrillic script, such as Ukrainian or Serbian, employ a different subset of those
letters.

Normally, the letter shapes of one script are unrelated to those of another script. So, for
example, the letter shapes of the Cyrillic script share nothing in common with the letter
shapes of the Hebrew script. However, writing systems may be historically related to each
other, in which case there are often systematic similarities in letter shapes and occasional
identical shapes. So because the Cyrillic script is historically related to the Greek script,
those two scripts share a significant number of letter forms.

A script may also explicitly borrow letters from another script. For example, some writing
systems that use the Cyrillic script have borrowed letter forms from the Latin script.
Furthermore, letter forms may show accidental similarity in shapes: a simple line or circle
used as a letter, for example, could have been independently created many times in the
history of the development of writing systems.

The writing system for a language occasionally employs more than one script. The best
known example is the Japanese language, whose writing system uses four scripts: the
Han ideographs (kanji), as well as the Hiragana and Katakana syllabaries, but also a
subset of the Latin letters.

Some languages may have competing writing systems that use different scripts, or change
scripts from one historical period to another. For example, the Turkish language was
historically written in the Arabic script but is now written using the Latin script. For many
other languages there are similar cases, where an historical writing system used one
script, while a modern writing system for the same language may use a different script.

Some scripts, such as the Latin script or the Arabic script, have an historically developed
cosmopolitan status, and are used for the representation of the writing systems of
hundreds or even thousands of different languages. The script in such cases consists of
the complete set of letters and other signs needed to represent all of the writing systems
covered, which may include historical as well as modern text forms, rather than simply
being a single alphabet or other set of graphic symbols needed for writing a single
language.

1.1 Examples of Script Classification

Independent of its use by the Unicode Standard, there are distinct needs for classification
by script. For example, writing systems can be classified by the script or scripts they use.
In cases of continuous historical derivation of scripts from predecessor scripts, an existing
graphological classification may consider a writing system to be using a variant of an
ancestor script, whereas the Unicode Standard may give each historic stage its own script
identity for the purposes of character encoding.

In another example, bibliographers need to catalog documents by the primary script in
which they are written. In so doing, bibliographers often ignore small inclusions of other
scripts in the form of quoted material, for the purpose of catalog identification. Conversely,
significant differences in writing style for the same script may be reflected in the
bibliographical classification—for example, Fraktur or Gaelic styles for the Latin script.

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 4/20

Such stylistic distinctions are ignored in the Unicode Standard, which treats them as
presentation styles of the Latin script.

Bibliographers also assign a single classification code for Japanese or Korean documents,
even though the respective writing systems use a mix of scripts. Such single codes have
also proven useful as a shorthand notation for describing the repertoires of characters
needed when supporting identifiers, as for the Internationalized Domain Names (IDN).

1.2 Script Identity and Unicode

The Unicode Standard fundamentally considers characters as elements of scripts in
making encoding decisions. For example, when a letter is borrowed from one script into
another, it often is encoded again as a distinct element of the borrowing script. This occurs
most often in the case for letters. For punctuation and other similar marks, the decision
may instead be made to explicitly designate a character for common use with all scripts, or
to document its use with a defined subset of all scripts.

In addition to letters, the Unicode Standard includes many graphic symbols which fall
outside the scope of particular writing systems and are not associated with particular
scripts. For example, there are commonly used punctuation marks such as commas and
quotation marks that are widely shared across scripts. The same consideration applies to
the European digits "1", "2", "3", The Unicode Standard also contains many combining
marks intended to be used in multiple writing systems, as well as symbols for notational
systems like mathematics that have their own rules and identity independent of writing
systems for particular languages.

1.3 Scripts and Blocks

Unicode characters are divided into non-overlapping ranges called blocks [Blocks]. Many
of these blocks have a name derived from a script name, because characters of that script
are primarily encoded in that block. However, blocks and scripts differ in the following
ways:

Blocks are simply ranges, and often contain code points that are unassigned.
Characters from the same script may be encoded in several different blocks.
Characters from different scripts may be encoded in the same block.

As a result, using the block names as simplistic substitute for script identity generally leads
to poor results. For example, see Annex A, Character Blocks, in Unicode Technical
Standard #18, "Unicode Regular Expressions" [UTS18].

1.4 Script Classification in Text Processing

In text processing the classification of text by script is by necessity more fine-grained than
when cataloging documents. The classification by script is essential for a variety of tasks
that need to analyze a piece of text and determine what parts of it are in which script.
Examples include regular expressions or assigning different fonts to parts of a plain text
stream based on the prevailing script. For all of these tasks, the challenge is to break a text
into script runs, or stretches of text that are all treated as belonging to the same script.

Script information is also taken into consideration in collation, so that strings are grouped
by script when sorted. To that end, the Default Unicode Collation Element Table (DUCET)
assigns letters of different scripts different ranges of primary sort weights. However,
numbers, symbols, and punctuation are not grouped with the letters. For the purposes of

https://www.unicode.org/reports/tr41/tr41-28.html#Blocks
https://www.unicode.org/reports/tr41/tr41-28.html#UTS18

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 5/20

ordering, therefore, explicit script identity is most significant for the letters. For more
information, see Unicode Technical Standard #10, “Unicode Collation Algorithm” [UTS10].

These examples demonstrate that the use of script (and to a certain extent, its exact
specification) depends on the intended purposes of the classification. Table 1 summarizes
some of the purposes for which text elements can be classified by script.

Table 1. Classification of Text by Script

Granularity Classification Purpose Special
Values

Document Bibliographical Record in which script a text is printed
or published; subdivides some scripts—
for example, Latin into normal, Fraktur,
and Gaelic styles

Unknown

Character Graphological/
typographical

Describe to which script a character
belongs based on its origin

Orthographical Describe with which script (or scripts) a
character is used

Common,
Inherited

For collation Group letters by script in collation
element table

Run For font
binding or
search

Determine extent of run of like script in
(potentially) mixed-script text

1.5 Classification of Text by Script Property

The exact way in which one uses script information about text depends on the kind of
processing that is involved. In addition to being normally less-fine-grained, bibliographical,
graphological, or historical classifications of scripts need different distinctions than
common text processing-related tasks. To assist in the development of interoperable
implementations for text processing that depends on script classification, the Unicode
Standard defines two character properties, Script and Script_Extensions.

The Script property assigns a single value to each character, either explicitly associating it
with a particular script, or assigning one of several special values. The Script property is
discussed in detail in Section 2, The Script Property. The Script_Extensions property builds
on this model, by better documenting cases where characters are neither used solely with
members of a single script nor shared universally. The Script_Extensions property is
unusual in that each of its values is a set of Script values. The Script_Extensions property
is discussed in detail in Section 3, The Script_Extensions Property.

The special property values required to support text-processing needs are different from
those needed in other classifications. For example, when bibliographers are unable to
determine the script of a document, they may classify it using a special value for

https://www.unicode.org/reports/tr41/tr41-28.html#UTS10

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 6/20

Unknown. In text processing, the identities of all characters are normally known, but some
characters may be shared across scripts or attached to any character, thus requiring
special values for Common and Inherited.

Despite these differences in focus, the vast majority of Unicode Script property values
correspond more or less directly to the script identifiers used by bibliographers and others.

This annex documents the definition and use of those properties and describes the data
files in the Unicode Character Database [UCD] that specify exact values of those
properties for all Unicode characters.

1.6 Usage Not Reflected in the Script Property

Many characters are regularly used out of their normal contexts for specialized purposes—
for example, for pedagogical use or as part of mathematical, scientific, or scholarly
notations. Such uses are not reflected in the assignment of values for either the Script or
Script_Extensions properties, because those properties aim rather to reflect ordinary and
common usage of characters with a script (or set of scripts). Implementers are cautioned
that such "out-of-context" usage of characters does exist and needs to be supported where
required, regardless of the Script and Script_Extensions property values for a given
character.

2 The Script Property

2.1 Script Property Values

The Script property is an enumerated property of type catalog. Its values form a full
partition of the codespace: every Unicode code point is assigned a single Script property
value. This value is either the explicit value for a specific script, such as Cyrillic, or is one
of the following three special values:

Inherited—for characters that may be used with multiple scripts, and that inherit their
script from a preceding base character. These include nonspacing combining marks
and enclosing combining marks, as well as U+200C ZERO WIDTH NON-JOINER
and U+200D ZERO WIDTH JOINER.
Common—for other characters that may be used with multiple scripts.
Unknown—for unassigned, private-use, noncharacter, and surrogate code points.

Collectively, these three special values are called implicit values, in contrast to all other
Script property values, which each refer to one specific script and which are called explicit
values.

As new scripts are added to the standard, explicit Script property values will be added to
the enumeration. Implementations are advised to allow for this growth in enumerated
values. See also Section 2.3, Initial Assignment of Script Property Values.

The implicit values Common or Inherited do not indicate which scripts a character is used
with—only that the character is used with more than one script. For example,
U+30FC (ー) KATAKANA-HIRAGANA PROLONGED SOUND MARK is shared between
Hiragana and Katakana and is not typically used with other scripts, such as Latin or Greek.
For many applications such a coarse classification may be insufficient; they require further
detailed information. For example, a character picker application which organizes
characters into visual buckets by script may need to show a Common script character in
two or more buckets, depending on which particular scripts use that character. For data on

https://www.unicode.org/reports/tr41/tr41-28.html#UCD

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 7/20

which scripts a character is commonly used with, see Section 3, The Script_Extensions
Property.

A value of Inherited means that the character is treated as if it had the Script property
value of a preceding base character. (See Section 5.2, Handling Combining Marks.) Where
the character is not part of a combining sequence, as is the case for U+200C ZERO
WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER, there are special script
inheritance rules for use in text run processing.

The Script property values assigned for all characters are specified in the file Scripts.txt
[Data24] in the Unicode Character Database [UCD]. A complete enumeration of Script
property values and their short names is provided in [PropValue]. For further discussion,
see Section 4, Data Files.

2.2 Relation to ISO 15924 Codes

ISO 15924: Code for the Representation of Names of Scripts [ISO15924] provides an
enumeration of four-letter script codes. In [PropValue], where feasible, the short name for
the Unicode Script property value matches the corresponding ISO 15924 code, as
exemplified in Table 3.

Table 3. Unicode Script Property Values and ISO 15924 Codes

Script Property ISO 15924

Long Short

Common Zyyy Zyyy

Inherited Zinh, Qaai Zinh

Unknown Zzzz Zzzz

Latin Latn Latn (Latf, Latg)

Cyrillic Cyrl Cyrl (Cyrs)

Coptic Copt, Qaac Copt

Armenian Armn Armn

Georgian Geor Geor (Geok)

Hebrew Hebr Hebr

Arabic Arab Arab (Aran)

Syriac Syrc Syrc (Syrj, Syrn, Syre)

Braille Brai Brai

Han Hani Hani (Hans, Hant)

...

In some cases the match between the Script property values and the ISO 15924 codes is
not precise, because the goals are somewhat different. ISO 15924 is aimed primarily at the
bibliographic identification of scripts; consequently, it occasionally identifies varieties of
scripts that may be useful for book cataloging, but that are not considered distinct scripts in
the Unicode Standard. For example, ISO 15924 has separate script codes for the Fraktur

https://www.unicode.org/reports/tr41/tr41-28.html#Data24
https://www.unicode.org/reports/tr41/tr41-28.html#UCD
https://www.unicode.org/reports/tr41/tr41-28.html#PropValue
https://www.unicode.org/reports/tr41/tr41-28.html#ISO15924
https://www.unicode.org/reports/tr41/tr41-28.html#PropValue

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 8/20

and Gaelic varieties of the Latin script. Such codes for script varieties are shown in
parentheses in Table 3.

Where there are no corresponding ISO 15924 codes, private-use codes starting with the
letter Q are used. Such values are likely to change in the future. In such a case, the Q-
names will be retained as aliases in the file [PropValue] for backward compatibility. For
example, the older Script property value Qaai was retained as an alias for Inherited, when
the newly defined script code Zinh was added to ISO 15924 and then used as the
preferred short name for Inherited starting in Unicode 5.2.

2.3 Initial Assignment of Script Property Values

New characters and scripts are continually added to the Unicode Standard. The following
principle determines the assignment of Script property values for existing characters and
for characters that are newly added to the Unicode Standard:

A. If a character is only regularly used in one script, it takes the Script property value for
that script

B. Otherwise, if the predominant use of the character is in one script, but it is also used
in others, then it takes the Script property value associated with that predominant use

C. Otherwise, nonspacing marks (Mn, Me) and zero width joiner/non-joiner are
Inherited

D. Otherwise, use Common

An example of criterion "B" would be the occasional use of an Arabic character in a related
minor-use or historic script. In such a case, the predominant use would still be for Arabic,
and the Script property value is determined to be Arabic, rather than Common. The
determination of predominant use in such cases is based in part on an estimation of likely
frequency of use. This choice is designed to maximize the usefulness of the Script property
value for determination of script runs in text, for regular expressions, and so on, without
having to branch to more elaborate processing to determine how to handle Common
property values by examining the Script_Extensions value set in these edge cases. The
choice of an explicit Script property value, instead of Common or Inherited, in these
edges cases is done when, in the judgement of the Unicode Technical Committee, that
explicit Script property value is a reasonable default. However, some characters that are
definitely members of a given script, based on their forms and history, nevertheless are
assigned one of the implicit Script values instead.

Although Braille is not a script in the same sense as Latin or Greek, it is given an explicit
Script property value. This is useful for various applications for which these Script property
values are intended, such as matching spans of similar characters in regular expressions.

Script values are not immutable. As more data on the usage of individual characters is
collected, the Script property value assigned to a character may change. Rarely would a
character change from one specific script to another. However, if it becomes established
that a character is regularly used with more than one script, it will be assigned the
Common or Inherited Script property value. Similarly, if it becomes established that a
character is regularly used with only a single, specific script, it will be assigned an explicit
Script property value. The occasional use of character from one script in the context of
another script, as for instance the citation of a Greek letter used as a mathematical
constant in the midst of Latin text, or the use of a Latin letter in the midst of Han text, is not
considered sufficient evidence of "regular use" requiring a designation of Common Script
property value. It is also possible for a character, once given a Common or Inherited
Script property value, upon further research, to be changed to a specific script, instead.

https://www.unicode.org/reports/tr41/tr41-28.html#PropValue

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 9/20

2.4 Script Designators in Character and Block Names

Many character names contain a script designator as their first element(s). For example:

LATIN SMALL LETTER S
KATAKANA LETTER SA
NEW TAI LUE LETTER LOW SA
PHAGS-PA LETTER SA

Character names are guaranteed to be unique even when ignoring case differences and
the presence of SPACE or HYPHEN-MINUS. Underscores are not used in character
names. In practice, this means that script designators are also unique, and, because they
are a part of character names, they are limited to the same characters used in character
names:

Latin letters A–Z
Digits 0–9
SPACE and medial HYPHEN-MINUS

Digits do not actually occur in script designators used in character names.

Many block names, for example, "Latin-1 Supplement", also contain script designators.
These script designators are closely (but not precisely) aligned with the script designators
used for character names in the corresponding blocks. Similar restrictions apply to script
designators as part of block names, except that there is no restriction on the case of
letters.

2.5 Script Property Value Aliases

In addition to short names derived from ISO 15924 script codes, as discussed in Section
2.2, Relation to ISO 15924 Codes, each Script property value is also given a long name as
a Script property value alias. These long names are also listed in [PropValue]. They are
constructed to be appropriate for use as identifiers. The long or short property value
aliases are the identifiers that should be used in regular expressions and similar usages.

Except for the implicit Script property values Common and Inherited, the long name
aliases usually correspond to the script designators, with the replacement of SPACE or
HYPHEN-MINUS by underscores, and titlecasing each subpart of the resulting identifier,
for consistency with the conventions used for aliases for other Unicode character
properties. For example:

Latin
Katakana
New_Tai_Lue
Phags_Pa

As for all property aliases, Script property value aliases are guaranteed to be unique within
their respective namespace. See the Character Encoding Stability Policies [Stability] for
details. When comparing Script property value aliases, loose matching criteria which
ignore case differences and the presence of spaces, hyphens, and underscores, should be
used. See Section 5.9, Matching Rules, in [UAX44] for explanation of loose matching
criteria.

2.6 Script Names

https://www.unicode.org/reports/tr41/tr41-28.html#PropValue
https://www.unicode.org/reports/tr41/tr41-28.html#Stability
https://www.unicode.org/reports/tr41/tr41-28.html#UAX44

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 10/20

The term script name is no longer used as part of the formal specification of the Unicode
Script property because it tends to be used informally in several ambiguous senses:

1. To designate the orthographic name of a script in the Unicode Standard. For
example: chirilică, Кириллица, or キリル文字 for Cyrillic (Cyrl). Even in English,
such names may occasionally include characters not allowed in script designators or
Script property values. For example: Hanunóo or N'Ko

2. To designate any variety of writing, some of which may have ISO 15924 script variety
codes, such as the Gaelic script, and some of which may not, such as the Hebrew
Cursive script.

3. As a synonym of the term script designator as it appears in character or block
names. For example: HANUNOO or NKO

4. As a synonym of the long name alternate of Script property value aliases. For
example: Hanunoo (as opposed to the script code Hano) or Nko (as opposed to the
script code Nkoo)

Because of these ambiguities, in Unicode contexts where precision of denotation is
required, use of the terms Script property value or script designator, whichever may be
appropriate, is preferred.

2.7 Script Anomalies

There are a number of compatibility symbols derived from East Asian character sets which
have the Script property value Common but whose compatibility decompositions contain
characters with other Script property values. In particular, the parenthesized ideographs,
circled ideographs, Japanese era name symbols, and Chinese telegraph symbols in the
3200..33FF range contain Han ideographs, and the squared Latin abbreviation symbols in
the same range contain Latin (and occasional Greek) letters. Examples of such characters
are listed in Table 4. Some of these characters have different scripts in their compatibility
decompositions. This means that script extents calculated on the basis of the script
property value of the symbols themselves will differ from script extents calculated on NFKD
normalized text, in which these characters decompose into sequences including the Han
and/or Latin characters.

Table 4. Examples of East Asian Symbols with Script Value = Common

U+249C (⒜) PARENTHESIZED LATIN SMALL LETTER A

U+24B6 (Ⓐ) CIRCLED LATIN CAPITAL LETTER A

U+1F130 (🄰) SQUARED LATIN CAPITAL LETTER A

U+3382 (㎂) SQUARE MU A

U+1F12A (🄪) TORTOISE SHELL BRACKETED LATIN CAPITAL LETTER S

U+3192 (㆒) IDEOGRAPHIC ANNOTATION ONE MARK

U+3220 (㈠) PARENTHESIZED IDEOGRAPH ONE

U+3244 (㉄) CIRCLED IDEOGRAPH QUESTION

U+3280 (㊀) CIRCLED IDEOGRAPH ONE

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 11/20

U+32C0 (㋀) IDEOGRAPHIC TELEGRAPH SYMBOL FOR JANUARY

U+3358 (㍘) IDEOGRAPHIC TELEGRAPH SYMBOL FOR HOUR ZERO

U+337B (㍻) SQUARE ERA NAME HEISEI

U+33E0 (㏠) IDEOGRAPHIC TELEGRAPH SYMBOL FOR DAY ONE

The UTC has determined that because these symbols may be used with multiple scripts in
Chinese, Japanese, and/or Korean contexts, their Script property value should simply be
left as Common. There are other, more reliable clues about the behavior of these
compatibility symbols, such as their association with East Asian character sets, which can
be used by rendering systems to assure their appropriate display and appropriate font
choice. This determination is somewhat different from that for the more script-specific
parenthesized and circled Hangul and Katakana symbols in the same range, which are
given specific Script property values. Examples of such characters are shown in Table 5.

Table 5. Examples of East Asian Symbols with Katakana or Hangul Script Values

U+32D0 (㋐) CIRCLED KATAKANA A

U+3260 (㉠) CIRCLED HANGUL KIYEOK

U+3200 (㈀) PARENTHESIZED HANGUL KIYEOK

U+3300 (㌀) SQUARE APAATO

There are other symbols not constrained to primary use in East Asian contexts, which have
the Common script, but where some users would expect to have a specific script.
Examples are shown in Table 6. Symbols in such cases are assigned to the Common
script because they may be used with a wide variety of scripts, and are not necessarily
limited to the script values of their compatibility decompositions.

Table 6. Examples of Other Symbols with Script Value = Common

U+2122 (™) TRADE MARK SIGN

U+2120 (℠) SERVICE MARK

U+00A9 (©) COPYRIGHT SIGN

U+210F (ℏ) PLANCK CONSTANT OVER TWO PI

U+2109 (℉) DEGREE FAHRENHEIT

U+214D (⅍) AKTIESELSKAB

At this point keeping the Script property value stable for these compatibility symbols is
more useful for implementers than attempting to reconcile these distinctions in treatment
by modifying values for them. Implementations that wish to have Script property values
that are preserved over compatibility equivalence would tailor the Script property values for
these characters.

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 12/20

3 The Script_Extensions Property

Where a character is commonly used in the context of several scripts, it is often desirable
to know more precisely in which script context such characters can be expected to occur.
The implicit Script property values Common and Inherited were originally designed simply
to indicate that a character, such as a punctuation mark, occurs widely in conjunction with
many scripts, rather than being associated with use for just one script. However, many of
the characters that are assigned a value of Common or Inherited are not commonly used
with all scripts, but rather only with a limited set of scripts. In cases where the list of such
scripts can be explicitly enumerated, it can help various processing to have the list
specified. Such lists of use by a character across several scripts are documented with the
Script_Extensions (scx) property.

The Script_Extensions property is implemented as sets of Script property values, known as
scx sets ("Es Cee Ex sets"). Table 7 gives examples of scx sets for various Unicode code
points, along with their Script and General_Category property values. Note that for
completeness, default values for scx sets are given for all Unicode code points, including
reserved code points and noncharacters. The details of assignment of scx set values are
discussed further below.

Table 7. Script_Extensions Examples

Code Scx Set Script Gc Character Name

Scx set contains one implicit Script value

0020 {Common} Common Zs SPACE

0301 {Inherited} Inherited Mn COMBINING ACUTE
ACCENT

243F {Unknown} Unknown Cn <reserved-243F>

FFFF {Unknown} Unknown Cn <noncharacter-FFFF>

Scx set contains one explicit Script value

0061 {Latn} Latin Ll LATIN SMALL LETTER A

0363 {Latn} Inherited Mn COMBINING LATIN SMALL
LETTER A

1CD1 {Deva} Inherited Mn VEDIC TONE SHARA

Scx set contains multiple explicit Script values; Script(cp) is implicit

30FC {Hira Kana} Common Lm KATAKANA-HIRAGANA
PROLONGED SOUND
MARK

3099 {Hira Kana} Inherited Mn COMBINING KATAKANA-
HIRAGANA VOICED

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 13/20

SOUND MARK

1CD0 {Beng Deva Gran Knda} Inherited Mn VEDIC TONE KARSHANA

1802 {Mong Phag} Common Po MONGOLIAN COMMA

060C {Arab Nkoo Rohg Syrc Thaa
Yezi}

Common Po ARABIC COMMA

0640 {Adlm Arab Mand Mani Ougr
Phlp Rohg Sogd Syrc}

Common Lm ARABIC TATWEEL

Scx set contains multiple explicit Script values; Script(cp) is explicit

096F {Deva Dogr Kthi Mahj} Devanagari Nd DEVANAGARI DIGIT NINE

09EF {Beng Cakm Sylo} Bengali Nd BENGALI DIGIT NINE

1049 {Cakm Mymr Tale} Myanmar Nd MYANMAR DIGIT NINE

For example, U+30FC KATAKANA-HIRAGANA PROLONGED SOUND MARK is shared
across the Hiragana and Katakana scripts, but is not used in other scripts, so it is assigned
an scx set value of {Hira Kana}. U+0640 ARABIC TATWEEL is used in Adlam, Mandaic,
Manichaean, Old Uyghur, Psalter Pahlavi, Hanifi Rohingya, Sogdian, and Syriac, as well
as the Arabic script, but is not used with non-cursive scripts or with scripts unrelated to that
family of writing systems, so it is assigned an scx set value of {Adlm Arab Mand Mani Ougr
Phlp Rohg Sogd Syrc}.

The Script_Extensions property is primarily targeted at customary modern use of
characters, and does not encompass technical usage such as phonetic transcriptional
systems or mathematics.

3.1 Script_Extensions Property Values

This section describes formal construction and constraints on the Script_Extensions (scx)
property values.

A. Each code point is associated with exactly one non-empty set of values of the sc
property. This set is known as the code point's scx set.

Unlike most other character properties, all values of the scx property constitute sets of
values. The empty set is not allowed; the scx value for unassigned, private use, and non-
character code points is the set { Unknown }.

B. The elements of the scx set consist of an unordered list of unique values of the Script
(sc) property values.

The scx values { Latn Grek } and { Grek Latn } are identical; for ease of comparison, the
values in the sets may be sorted and listed in alphabetical order.

C. An scx set either contains a single implicit sc value or one or more explicit sc values.

The vast majority of characters in the standard are used with only a single script. For those
characters, the Script_Extensions property value is a set containing as its single member

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 14/20

the Script property value for that character.

D. If the sc property value of a code point is explicit, then that value must be an element of
the scx set for that code point as well.

Even though there is no formal constraint on the number of explicit values that may occur
in an scx set, it is unlikely that any scx value would individually list even a majority of
existing scripts. The implicit sc value Common is intended instead for use in those cases
where a character is in very widespread use across many scripts.

There are no formal rules specifying when a particular sc value must be added to the scx
set for a particular assigned character. Whether to document that a character is used with
multiple scripts via the Script_Extensions property remains a judgment call, and is always
based on the best information available to the Unicode Technical Committee.

Occasionally, even characters that have a Script property value of Common or Inherited
might have a Script_Extensions property value containing only a single script. This does
not mean that those characters are used solely with a single script—rather, such
characters are known or strongly suspected of being used with multiple scripts. However,
reliable information is lacking regarding which other scripts belong in this set. Examples
illustrating this can be seen in Table 7, where the Samavedic tone mark U+1CD0 VEDIC
TONE KARSHANA is attested at least for Devanagari, Bengali, Kannada, and Grantha, but
where U+1CD1 VEDIC TONE SHARA is only known (for now) to occur in Devanagari
Samavedic texts. The Script_Extensions property for such characters will be updated in
future versions of the standard, if better information becomes available.

Conversely, characters for which the Script_Extensions property value contains multiple
Script property values typically have a Script property value of either Common or
Inherited. However, in some cases, a character belonging to a particular script may be
borrowed for use with one or more other scripts. While the Script property value for such a
borrowed character would be the same as the script it is primarily used with, the
Script_Extensions property value at times will also include additional scripts. Examples can
be seen in Table 7 for shared sets of digits. It is common for one Indic script to use digits
from another script; Devanagari digits are known, for example, to also be used in Dogra,
Kaithi and Mahajani. As a result of this kind of borrowing across scripts, there is no
guarantee that it will always be true that:

Script_Extensions(c) ≠ {Script(c)} → (Script(c) = Common) ∨ (Script(c) = Inherited)

Table 8 provides examples of scx sets that are not allowed, according to the well-
formedness rules for scx sets.

Table 8. Examples of Disallowed (Ill-formed) Scx Sets

Scx Set Script Problem Description

{Latn} Unknown Set contains an explicit value for
Script(cp)=Unknown

{Common} Inherited Set contains an implicit value that does not match
Script(cp)

{Latn Latn} Latn Same value occurs more than once in the set

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 15/20

{Inherited
Common}

Inherited More than one implicit value occurs in the set

{Latn Common} Latn Explicit and implicit values both occur in the set

{Latn Grek} Hani Script(cp) does not occur in the list of explicit
values

The complete list of Script_Extensions scx set values are specified in the file
ScriptExtensions.txt in the Unicode Character Database [UCD].

3.2 Initial Assignment of Script_Extensions Property Values

The following principles determines the assignment of Script_Extensions property values
for existing characters and for characters that are newly added to the Unicode Standard:

A. If a character has the Script property value of Common or Inherited, and in principle
might occur with almost any script, its Script_Extensions value is {Common} or
{Inherited}, respectively.

B. If a character is regularly or occasionally used in more than one script, but such
usage is limited to a small, enumerable list, then the character takes the
Script_Extensions property value consisting of the set of Script property values for
each of those scripts.

C. Otherwise, the Script_Extensions property value defaults to a set containing a single
value, the Script property value for that code point.

Examples of characters that have the Script property value of Common or Inherited, but
in principle might occur with almost any script, would include many symbol characters.
They simply get a Script_Extensions default value of {Common} or {Inherited}. Only when
the common usage consists of a relatively small and well-determined list of scripts is it
useful to enumerate that set explicitly for a Script_Extensions property value. In many
cases such sets may involve shared typographical traditions between neighboring or
related scripts. Note that assignment of an enumerated set of more than one Script
property values to the Script_Extensions property value for a character can occur both in
cases where that character has the Script property value Common or Inherited and in
cases where it has an explicit Script property value such as Arabic.

Script_Extensions property values are not immutable. As more data on the usage of
individual characters is collected, Script_Extensions property values may be adjusted. This
may occur either as a result of the Script property value for the character being changed,
or as a result of a determination that a given character is used with more (or fewer) scripts
than earlier determined. The values can be expected to change more frequently than many
other Unicode character properties, as more information is gleaned about the usage of
given characters. Thus, implementers should be prepared for enhancements and
corrections to the values whenever they upgrade to a new version of the property.

4 Data Files

The data files associated with the Unicode Script property are available in the Unicode
Character Database. See [Data24].

4.1 Scripts.txt

https://www.unicode.org/reports/tr41/tr41-28.html#UCD
https://www.unicode.org/reports/tr41/tr41-28.html#Data24

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 16/20

The format of this file is similar to that of Blocks.txt [Blocks]. The fields are separated by
semicolons. The first field contains either a single code point or the first and last code
points in a range separated by “..”. The second field provides the script property value for
that range. The comment (after a #) indicates the General_Category and the character
name. For each range, it gives the character count in square brackets and uses the names
for the first and last characters in the range. For example:

0B01; Oriya # Mn ORIYA SIGN CANDRABINDU
0B02..0B03; Oriya # Mc [2] ORIYA SIGN ANUSVARA..ORIYA SIGN VISARGA

The default value for the Script property is Unknown, given to all code points that are not
explicitly mentioned in the data file.

4.2 ScriptExtensions.txt

The format of this data file is similar to Scripts.txt, except that the second field contains a
space-delimited list of short Script property values. That list defines the set of Script
property values which constitute the Script_Extension property value for that code point.
For example:

Script_Extensions=Arab Syrc

064B..0655 ; Arab Syrc # Mn [11] ARABIC FATHATAN..ARABIC HAMZA BELOW

Script_Extensions=Adlm Arab Mand Mani Ougr Phlp Rohg Sogd Syrc

0640 ; Adlm Arab Mand Mani Ougr Phlp Rohg Sogd Syrc # Lm ARABIC TATWEEL

The default value for the Script_Extensions property for a code point not explicitly listed in
ScriptExtensions.txt is an scx set containing one value: the Script property value of that
code point.

4.3 PropertyValueAliases.txt

This file provides the complete enumerated list of all Script property values: both long and
short names. As for all property value aliases, the Script property values listed in the
PropertyValueAliases.txt are not case sensitive, and the presence of hyphen or underscore
is optional. The aliases are listed alphabetically, but that order is only a convenience for
reference and is not otherwise significant. See [PropValue].

5 Implementation Notes

This section discusses various topics related to the implementation of the Script property
and the Script_Extensions property.

5.1 Handling Characters with the Common Script Property

In determining the boundaries of a run of text in a given script, programs must resolve any
of the special Script property values, such as Common, based on the context of the
surrounding characters. A simple heuristic uses the script of the preceding character,
which works well in many cases. However, this may not always produce optimal results.
For example, in the text “... gamma (γ) is ...”, this heuristic would cause matching
parentheses to be in different scripts.

Generally, paired punctuation, such as brackets or quotation marks, belongs to the
enclosing or outer level of the text and should therefore match the script of the enclosing

https://www.unicode.org/reports/tr41/tr41-28.html#Blocks
https://www.unicode.org/reports/tr41/tr41-28.html#PropValue

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 17/20

text. In addition, opening and closing elements of a pair resolve to the same Script property
values, where possible. The use of quotation marks is language dependent; therefore it is
not possible to tell from the character code alone whether a particular quotation mark is
used as an opening or closing punctuation. For more information, see Section 6.2, General
Punctuation, of [Unicode].

Some characters that are normally used as paired punctuation may also be used singly. An
example is U+2019 RIGHT SINGLE QUOTATION MARK, which is also used as
apostrophe, in which case it no longer acts as an enclosing punctuation. An example from
physics would be <ψ| or |ψ>, where the enclosing punctuation characters may not form
consistent pairs.

5.2 Handling Combining Marks

Implementations that determine the boundaries between characters of given scripts should
never break between a combining mark (a character with General_Category value of Mc,
Mn or Me) and its base character. Thus, for boundary determinations and similar sorts of
processing, a combining mark—whatever its Script property value—should inherit the
script property value of its base character. Spacing combining marks are typically only
used with one script and have the corresponding Script property value.

The nonspacing marks normally have the Inherited Script property value to reflect the fact
that their Script property value depends on the base character. However, in cases where
the best interpretation of a nonspacing mark in isolation would be a specific script, its
Script property value may be different from Inherited. For example, the Hebrew marks and
accents are used only with Hebrew characters and are therefore assigned the Hebrew
Script property value.

The recommended implementation strategy is to treat all the characters of a combining
character sequence, including spacing combining marks, as having the Script property
value of the first character in the sequence. This strategy can also be applied to
implementations that use extended grapheme clusters; the differences between combining
character sequences and extended grapheme clusters are not material for script
resolution. For example, rendering generally works best if an entire combining character
sequence can be treated as a segment having a single script, using one set of
orthographic rules, and ideally using a single font for display. Because of this
recommended strategy, even if a combining mark is really only used with a single script, it
makes little difference in practice whether the mark has that particular Script property value
or Inherited.

In cases where the first (base) character itself has the Common Script property value, and
it is followed by one or more combining marks with a specific Script property value, such as
the Hebrew marks, it may be even better for processing to let the base acquire the Script
property value from the first mark. This would be the case, for example, if using a graphic
symbol as a base to illustrate the placement of nonspacing marks in a particular script.
This approach can be generalized by treating all the characters of a combining character
sequence (or extended grapheme cluster) as having the Script property value of the first
non-Inherited, non-Common character in the sequence if there is one, and otherwise
treating all the characters as having the Common Script property value. See Section 2.8,
Multiple Script Values.

Note that exceptional fallback for rendering may be required for defective combining
character sequences or in some cases where a base character and a combining mark

https://www.unicode.org/reports/tr41/tr41-28.html#Unicode

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 18/20

have different specific Script property values. For example, there may simply be no
felicitous way to display a Devanagari combining vowel on a Mongolian consonant base.

5.3 Multiple Script Values

More precise information about the use of a character with multiple scripts is important for
a number of different kinds of processing. The following examples illustrate such cases:

Example 1. Mixed script detection for spoofing.

Using the Script property alone, for example, will not detect that the U+30FC (ー)
KATAKANA-HIRAGANA PROLONGED SOUND MARK (Script=Common) should
not be mixed with Latin. See [UTS39] and [UTS46].

Example 2. Determination of script runs for text layout.

U+30FC (ー) KATAKANA-HIRAGANA PROLONGED SOUND MARK should not
continue a Latin script run, but instead should only continue runs of certain scripts.

Example 3. Regex property testing.

For many common tasks, the regex expression [:script=Arab:] is too narrow, because
it does not include U+060C ARABIC COMMA, but the expression [[:script=Arab:]
[:script=Common:]] is far too broad, because it also includes thousands of symbols,
plus the U+30FC (ー) KATAKANA-HIRAGANA PROLONGED SOUND MARK. A
regex engine can instead specify a regular expression like [:scx=Arab:], which
matches based on the Script_Extensions property value, and which would include
appropriate Script=Common characters such as U+060C ARABIC COMMA. For
more information, see Unicode Technical Standard #18, "Unicode Regular
Expressions" [UTS18].

5.4 Using Script Property Values in Regular Expressions

The script property is useful in regular expression syntax for easy specification of spans of
text that consist of a single script or mixture of scripts. In general, regular expressions
should use specific Script property values only in conjunction with both Common and
Inherited. For example, to distinguish a sequence of characters appropriate for Greek text,
one might use

((Greek | Common) (Inherited | Me | Mn)*)*

The preceding expression matches all characters that have a Script property value of
Greek or Common and which are optionally followed by characters with a Script property
value of Inherited. For completeness, the regular expression also allows any nonspacing
or enclosing mark.

Some languages commonly use multiple scripts, so, for example, to distinguish a
sequence of characters appropriate for Japanese text one might use:

((Hiragana | Katakana | Han | Latin | Common) (Inherited | Me | Mn)*)*

Note that while it is necessary to include Latin in the preceding expression to ensure that it
can cover the typical script use found in many Japanese texts, doing so would make it
difficult to isolate a run of Japanese inside an English document, for example. For more

https://www.unicode.org/reports/tr41/tr41-28.html#UTS39
https://www.unicode.org/reports/tr41/tr41-28.html#UTS46
https://www.unicode.org/reports/tr41/tr41-28.html#UTS18

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 19/20

information, see Unicode Technical Standard #18, “Unicode Regular Expressions”
[UTS18].

The assignment of a Script property value, and in particular of a Script_Extensions
property value, is not guaranteed to be stable. The most recently published values always
represent the best information available at the time of publication. It is important not to use
the Script or Script_Extensions properties in regular expressions if the goal is to match a
reproducible, fixed set of characters across versions of the Unicode Standard.

5.5 Use of the Script Property in Rendering Systems

In rendering systems, it is generally necessary to respect a certain set of orthographic and
typographic rules, which vary across the world. For example, the placement of some
diacritics which are nominally rendered above their base may be adjusted to be slightly on
the side, as is normally the case for Greek. Another example of variation in rendering is the
treatment of spaces in justification. In the absence of an explicit specification of those
rules, the Script property value of the characters involved provides a good first
approximation. Typically, a rendering system will partition a text string into segments of
homogeneous script (after resolution of the Common and Inherited occurrences along the
lines described in the previous sections), and then apply the rules appropriate to the script
of each segment.

5.6 Limitations

The script property values form a full partition of the Unicode codespace, but that partition
does not exhaust the possibilities for useful and relevant script-like subsets of Unicode
characters.

For example, a user might wish to define a regular expression to span typical mathematical
expressions, but the subset of Unicode characters used in mathematics does not
correspond to any particular script. Instead, it requires use of the Math property, other
character properties, and particular subsets of Latin, Greek, and Cyrillic letters. For
information on other character properties, see [UCD].

In texts of an academic, scientific, or engineering nature, Greek characters are frequently
used in isolation—for example, Ω for ohm; α, β, and γ for types of radioactive decays or in
names of chemical compounds; π for 3.1415..., and so on. It is generally undesirable to
treat such usage the same as ordinary text in the Greek script. Some commonly used
characters, such as µ, already exist twice in the Unicode Standard, but with different Script
property values.

5.7 Spoofing

The Script property values may also be useful in providing users feedback to signal
possible spoofing, where visually similar characters (confusable characters) are substituted
in an attempt to mislead a user. For example, a domain name such as macchiato.com could
be spoofed with macchiatο.com (using U+03BF GREEK LETTER SMALL LETTER
OMICRON for the first “o”) or maссhiato.com (using U+0441 CYRILLIC SMALL LETTER ES
for the first two “c”s). The user can be alerted to odd cases by displaying mixed scripts with
different colors, highlighting, or boundary marks: macchiatο.com or maссhiato.com, for
example.

Possible spoofing is not limited to mixtures of scripts. Even in ASCII, there are confusable
characters such as 0 and O, or 1 and l. For a more complete approach, the use of Script
property values needs to be augmented with other information such as General_Category

https://www.unicode.org/reports/tr41/tr41-28.html#UTS18
https://www.unicode.org/reports/tr41/tr41-28.html#UCD

7/22/22, 12:36 PM UAX #24: Unicode Script Property

https://www.unicode.org/reports/tr24/tr24-33.html 20/20

values and lists of individual characters that are not distinguished by other Unicode
properties. For additional information, see Unicode Technical Report #36, “Unicode
Security Considerations” [UTR36].

Acknowledgments

Mark Davis authored the initial versions. Ken Whistler has added to and maintains the text
of this annex.

Thanks to Julie Allen for comments on this annex, including earlier versions. Asmus
Freytag added significant sections to the text for Revisions 7, 9, 19, and 26 and assisted in
the rewrite of Section 3 for Revision 13. Eric Muller added Section 2.4 (now 2.5) for
Revision 11 and suggested modifications for Section 2.3.

References

For references for this annex, see Unicode Standard Annex #41, “Common References for
Unicode Standard Annexes.”

Modifications

The following summarizes modifications from the previous revision of this annex.

Revision 33 [KW]

Proposed Update for Unicode 15.0.0.
Corrections for several typos; other small edits.

Revision 32 [KW]

Reissued for Unicode 14.0.0.
Added Nkoo to the scx set for 060C in an example.
Added Ougr to the scx set for 0640 in examples.
Updated various links in the text.

Modifications for previous versions are listed in those respective versions.

© 2022 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any
kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or accompanying this technical report.
The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

https://www.unicode.org/reports/tr41/tr41-28.html#UTR36
https://www.unicode.org/reports/tr41/tr41-28.html
https://www.unicode.org/copyright.html

