
L2/24-162

UTC #180 properties feedback & recommendations
Markus Scherer & Josh Hadley / Unicode properties & algorithms group, 2024-jul-16

Participants..2
1. UCD...2

1.1 More precisely define what Terminal_Punctuation means [#259]... 2
1.2 UAX #31 shows different character for GREEK ANO TELEIA [#284]...3
1.3 DoNotEmit wrong replacement for 0149 [#285].. 4
1.4 DoNotEmit.txt: discourage decomposed forms of some Cyrillic letters [#293]..5
1.5 add Duployan to scx for several characters [#294]... 5
1.6 DoNotEmit U+13217 EGYPTIAN HIEROGLYPH N035A [#295]...7
1.7 scx=Hani for two new strokes 31E4..31E5 [#296]...8
1.8 Should Unikemet Normative and Informative properties be listed in Property(Value)Aliases? (Yes.)
[#298].. 9
1.9 Is gc=Lo really right for the two CHINESE SMALL ER? (No.) [#299]... 10
1.10 The description of Hex_Digit is incorrect [#304].. 11
1.11 DoNotEmit.txt and Kashmiri [#305]... 12

2. Characters...13
2.1 YANGQIN SIGN SLOW TWO through FOUR [#286]..13

3. Proposed new scripts & characters...14
4. Normalization.. 15

4.1 document NFC_QC=N = Full_Composition_Exclusion [#310]..15
4.2 UAX #15 “transform text according to the Stream-Safe Text Format” [#311].. 16

5. Line Break... 17
5.1 Linebreak property value of U+00AD SOFT HYPHEN [#273].. 17
5.2 Follow-up on UTC-172-A66 and UTC-172-A100 [#291]... 18
5.3 L2/24-143 changes to East_Asian_Width property [#300].. 20
5.4 Line_Break of U+19DA NEW TAI LUE THAM DIGIT ONE [#302].. 21
5.5 UAX #14 - AI Line_Break class description omissions [#303]...22
5.6 Update LB10 and LB21a for implementability [#307].. 24
5.7 lb=ID: no more unassigned in CJK Unified Ideographs & CJK Unified Ideographs Extension A [#312].27

6. Segmentation.. 28
6.1 Word boundaries and line breaks [#280]...28
6.2 grapheme cluster boundaries vs. canonical equivalence: Kannada vowel signs etc. [#287].................. 28
6.3 more Sentence_Break changes after AI 179-A113 [#292].. 30
6.4 East Asian Auto Spacing [#306]..32

7. IDNA..33
7.1 UTS #46 disallowed_STD3_valid and disallowed_STD3_mapped [#282]..33
7.2 UTS #46: clarify whether it is an error for Punycode decoding to not yield any non-ASCII output [#283]..
35

https://www.unicode.org/consortium/props-algorithms.html

Participants
The following people have contributed to this document:

Markus Scherer (chair), Josh Hadley (vice chair), Asmus Freytag, Christopher Chapman, Elango Cheran,
Peter Constable, Mark Davis, Manish Goregaokar, Ned Holbrook, Robin Leroy, Roozbeh Pournader, Ken
Whistler, John Wilcock

1. UCD

1.1 More precisely define what Terminal_Punctuation means [#259]

Recommended UTC actions

1. Consensus: In UAX # 44, clarify the description of Terminal_Punctation to mention that it is normally
not part of the preceding word, as described in L2/24-162 item 1.1. For Unicode Version 16.0.

2. Action Item for Ken Whistler, PAG: In UAX # 44, clarify the description of Terminal_Punctation to
mention that it is normally not part of the preceding word, as described in L2/24-162 item 1.1. For
Unicode Version 16.0.

PAG input

From Mark Davis, PAG

Terminal_Punctuation is an ill-defined property, which severely limits its usefulness. This came up in
discussions of PAG issue “Are abbreviation marks Terminal_Punctuation? (No.)” (internally #246, see UTC-179
PAG report).

It cannot be "any punctuation that terminates anything, saying nothing about whether it is included in what it
terminates", so it has to be far better specified than it is. There was some discussion of this in Background
information / discussion in “Are abbreviation marks Terminal_Punctuation? (No.)”. That seems to say saying at
least something about the terminating punctuation, than it is not included in the entity that it terminates. But
that is clearly not true for !, since that is part of the sentence that it terminates!

We should be explicit about

1. the kinds of entities that are being terminated by a Terminal_Punctuation
2. whether or not the Terminal_Punctuation is included with an entity it terminates

For point 1, I suggest that we focus on sentences, clauses, and phrases. That is, a Terminal_Punctuation
character generally terminates a sentence, clause, or phrase. Usage may vary by language, and by context.

For point 2, I suggest that we say that the Terminal_Punctuation are included in what they terminate. If there
are punctuation in Terminal_Punctuation that would be excluded under this rule, we could consider whether
or not it would be worth adding a Terminal_Separator property that would contain them.

2

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetL2Ref.pl?179

Background information / discussion

It was noted in PAG discussion that part of the renewed interest in the Terminal_Punctuation property was the
prospect of using it in a linkification algorithm in ICU-22657 and L2/24-122. For that application, what matters is
not that terminal punctuation is part of what it terminates, whatever that may be. Neither is it obvious that this
statement is true: figuring out which clause contains the commas delimiting subordinate clauses in German
seems neither the UTC’s business nor actually useful to algorithms; and word separators, which are
Terminal_Punctation and delimit words, are not part of words.
Instead, the crucial point is that it is not generally part of the word preceding it. Incidentally, this is why we
found that dedicated abbreviation marks are not Terminal_Punctuation in UTC-179-C21.

The description of Terminal_Punctation could clarify that as follows:

Property Type Status Description

Terminal_Punctuation B I Punctuation characters that generally mark the end of
textual units. Add: These marks are not part of the
word preceding them. A notable exception is the
U+002E FULL STOP. Terminal_Punctuation
characters may be part of some larger textual unit that
they terminate.

1.2 UAX #31 shows different character for GREEK ANO TELEIA [#284]

Recommended UTC actions

1. No Action: PAG recommends no action: The issue has been corrected editorially.

Feedback (verbatim)

PRI-491

Date/Time: Mon Feb 05 21:59:46 CST 2024
ReportID: ID20240205215946
Name: Jules Bertholet
Report Type: Error Report
Opt Subject: Unicode® Standard Annex #31: Unicode Identifiers and Syntax

In Section 2.5 (https://www.unicode.org/reports/tr31/#Backward_Compatibility),
there is the line:

U+0387 (·) GREEK ANO TELEIA

However, the character between the parentheses is not actually U+0387 (·); U+00B7
(·) MIDDLE DOT is erroneously used instead. (U+0387 NFC-decomposes to U+00B7.)

3

https://unicode-org.atlassian.net/browse/ICU-22657
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-122
https://www.unicode.org/cgi-bin/GetL2Ref.pl?179-C21
https://www.unicode.org/reports/tr44/#Terminal_Punctuation
https://util.unicode.org/UnicodeJsps/character.jsp?a=002E
https://www.unicode.org/review/pri491
https://www.unicode.org/review/pri491/feedback.html#ID20240205215946
https://www.unicode.org/reports/tr31/#Backward_Compatibility
https://util.unicode.org/UnicodeJsps/character.jsp?a=0387
https://util.unicode.org/UnicodeJsps/character.jsp?a=0387
https://util.unicode.org/UnicodeJsps/character.jsp?a=00B7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0387
https://util.unicode.org/UnicodeJsps/character.jsp?a=00B7

1.3 DoNotEmit wrong replacement for 0149 [#285]

Recommended UTC actions

1. Consensus: Change the line for U+0149 LATIN SMALL LETTER N PRECEDED BY APOSTROPHE in
DoNotEmit.txt to: 0149; 2019 006E; Deprecated — For Unicode 16.0. See L2/24-162 item 1.3.

2. Action Item for Roozbeh Pournader, PAG: Change the line for U+0149 LATIN SMALL LETTER N
PRECEDED BY APOSTROPHE in DoNotEmit.txt to: 0149; 2019 006E; Deprecated— For
Unicode 16.0. See L2/24-162 item 1.3.

Feedback (verbatim)

PRI-489

Date/Time: Fri Jan 12 22:00:43 CST 2024
ReportID: ID20240112220043
Name: Ben Scarborough
Report Type: Public Review Issue
Opt Subject: 489

This is specifically a response to L2/24-021, the current draft of a new
DoNotEmit.txt file meant for Unicode 16.0.

One line reads as follows:

0149; 02BC 006E; Deprecated # LATIN SMALL LETTER N PRECEDED BY APOSTROPHE;
MODIFIER LETTER APOSTROPHE, LATIN SMALL LETTER N

The character in question, U+0149 LATIN SMALL LETTER N PRECEDED BY
APOSTROPHE, has had the Deprecated property since Unicode 5.2. According to
L2/08-287, the character was deprecated because its compatibility
decomposition used the wrong apostrophe character—RIGHT SINGLE QUOTATION
MARK is the preferred character for Afrikaans, not MODIFIER LETTER
APOSTROPHE.

The line in DoNotEmit.txt should use the preferred string instead of
U+0149's compatibility decomposition. The line should be changed to:

0149; 2019 006E; Deprecated # LATIN SMALL LETTER N PRECEDED BY APOSTROPHE;
RIGHT SINGLE QUOTATION MARK, LATIN SMALL LETTER N

4

https://util.unicode.org/UnicodeJsps/character.jsp?a=0149
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://util.unicode.org/UnicodeJsps/character.jsp?a=0149
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri489
https://www.unicode.org/review/pri489/feedback.html#ID20240112220043
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-021
https://util.unicode.org/UnicodeJsps/character.jsp?a=0149
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/08-287
https://util.unicode.org/UnicodeJsps/character.jsp?a=0149

1.4 DoNotEmit.txt: discourage decomposed forms of some Cyrillic letters
[#293]

Recommended UTC actions

1. No Action: PAG recommends no action: canonically equivalent sequences are out of scope for
DoNotEmit.txt.

Feedback (verbatim)

Date/Time: Wed May 15 10:35:38 CDT 2024
ReportID: ID20240515103538
Name: Mikhail Merkuryev
Report Type: Public Review Issue
Opt Subject: DoNotEmit.txt

DoNotEmit.txt: Add to “Discouraged” or “Preferred spelling” decomposition of those Cyrillic letter known by me:
Ёё Йй Ўў
(Cyrillic capital/small letter Io, Cyrillic capital/small letter Short I, Cyrillic capital/small letter Short U)

e.g.
0415 0308 → 0401 # Cyrillic capital letter Ie + combining diaeresis → Cyrillic capital letter Io

Maybe others, but I don’t know.

Її (Cyrillic capital/small letter Yi) is tricky and IDK what to do: discouraged in decomposed form in modern
Ukrainian text, but maybe allowed in Old Slavonic.

Rationale: most Cyrillic fonts do not lay combining marks properly, and common breve has other shape
different from Cyrillic. And these four letters in modern shape are really distinct entities.

1.5 add Duployan to scx for several characters [#294]

Recommended UTC actions

1. Consensus: Add Duployan (Dupl) to the Script_Extensions of U+00B7 MIDDLE DOT, U+0307
COMBINING DOT ABOVE, U+0308 COMBINING DIAERESIS, U+030A COMBINING RING ABOVE,
U+0323 COMBINING DOT BELOW, U+0324 COMBINING DIAERESIS BELOW, and U+2E3C
STENOGRAPHIC FULL STOP. For Unicode 16.0. See L2/24-162 item 1.5 and
PRI-502#ID20240522040217.

2. Action Item for Roozbeh Pournader, PAG: Add Duployan (Dupl) to the Script_Extensions of U+00B7
MIDDLE DOT, U+0307 COMBINING DOT ABOVE, U+0308 COMBINING DIAERESIS, U+030A
COMBINING RING ABOVE, U+0323 COMBINING DOT BELOW, U+0324 COMBINING DIAERESIS
BELOW, and U+2E3C STENOGRAPHIC FULL STOP. For Unicode Version 16.0. See L2/24-162 item
1.5.

3. Action Item for Rick McGowan, PAG: Ask Charlotte Buff for evidence for the use in Duployan
shorthand of other combining diacritical marks. See L2/24-162 item 1.5.

5

https://util.unicode.org/UnicodeJsps/character.jsp?a=00B7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0307
https://util.unicode.org/UnicodeJsps/character.jsp?a=0308
https://util.unicode.org/UnicodeJsps/character.jsp?a=030A
https://util.unicode.org/UnicodeJsps/character.jsp?a=0323
https://util.unicode.org/UnicodeJsps/character.jsp?a=0324
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E3C
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri502
https://util.unicode.org/UnicodeJsps/character.jsp?a=00B7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0307
https://util.unicode.org/UnicodeJsps/character.jsp?a=0308
https://util.unicode.org/UnicodeJsps/character.jsp?a=030A
https://util.unicode.org/UnicodeJsps/character.jsp?a=0323
https://util.unicode.org/UnicodeJsps/character.jsp?a=0324
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E3C
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162

Feedback (verbatim)

PRI-502

Date/Time: Wed May 22 04:02:17 CDT 2024
ReportID: ID20240522040217
Name: Charlotte Buff
Report Type: Public Review Issue
Opt Subject: 502

I propose adding Duployan (Dupl) to the Script_Extensions for the following code points based on annotations
in the names list for the Duployan block, the contents of UTN # 37, “Duployan Shorthand”, and the original
encoding proposal for Duployan, L2/10-272r2:

U+00B7 MIDDLE DOT
U+0300 COMBINING GRAVE ACCENT
U+0301 COMBINING ACUTE ACCENT
U+0304 COMBINING MACRON
U+0306 COMBINING BREVE
U+0307 COMBINING DOT ABOVE
U+0308 COMBINING DIAERESIS
U+030A COMBINING RING ABOVE
U+0323 COMBINING DOT BELOW
U+0324 COMBINING DIAERESIS BELOW
U+0331 COMBINING MACRON BELOW
U+2E3C STENOGRAPHIC FULL STOP

Duployan for Romanian also makes use of U+00B0 DEGREE SIGN in numerical contexts, though as this
character is in common use in a variety of writing systems and has no explicit Script_Extensions as of now
there would likely be little benefit to specifically listing just Duployan.

Background information / discussion

Roozbeh noted the following:
I can confirm that the following are explicitly mentioned in the NamesList, UTN #37, and L2/10-272r2: U+00B7,
U+0307, U+0308, U+030A, U+0323, U+0324, U+2E3C. I also agree that the degree sign is too common to add
an scx list for. The rest seem to be only ambiguously refered to, in a list ending in "&c":

Combining diacritical marks on vowels.

Several Duployan orthographies use combining diacritical marks to distinguish vowels. These
diacritics include acute, grave, breve, macron, under macron, over dot, under dot, diaeresis, under
diaeresis, &c. They can appear on orienting vowels, circle vowels, and nasal vowels (On, and An).
Although there are several vowel letters with marks included in the allocation, these are not
decomposable as a combining sequence, as the diacritic marks change position along with their
"base" orienting vowel. Combining diacritics indicate vowels with diacritics that consistently appear
above or below the base character, no
matter the adjacent joining characters.

6

https://www.unicode.org/review/pri502
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/10-272r2
https://util.unicode.org/UnicodeJsps/character.jsp?a=00B7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0300
https://util.unicode.org/UnicodeJsps/character.jsp?a=0301
https://util.unicode.org/UnicodeJsps/character.jsp?a=0304
https://util.unicode.org/UnicodeJsps/character.jsp?a=0306
https://util.unicode.org/UnicodeJsps/character.jsp?a=0307
https://util.unicode.org/UnicodeJsps/character.jsp?a=0308
https://util.unicode.org/UnicodeJsps/character.jsp?a=030A
https://util.unicode.org/UnicodeJsps/character.jsp?a=0323
https://util.unicode.org/UnicodeJsps/character.jsp?a=0324
https://util.unicode.org/UnicodeJsps/character.jsp?a=0331
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E3C
https://util.unicode.org/UnicodeJsps/character.jsp?a=00B0
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/10-272r2
https://util.unicode.org/UnicodeJsps/character.jsp?a=00B7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0307
https://util.unicode.org/UnicodeJsps/character.jsp?a=0308
https://util.unicode.org/UnicodeJsps/character.jsp?a=030A
https://util.unicode.org/UnicodeJsps/character.jsp?a=0323
https://util.unicode.org/UnicodeJsps/character.jsp?a=0324
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E3C

1.6 DoNotEmit U+13217 EGYPTIAN HIEROGLYPH N035A [#295]

Recommended UTC actions

1. Consensus: Remove Egyptian hieroglyphs from DoNotEmit.txt. For Unicode Version 16.0. See
L2/24-162 item 1.6.

Feedback (verbatim)

PRI-502

Date/Time: Thu May 23 09:34:28 CDT 2024
ReportID: ID20240523093428
Name: Charlotte Buff
Report Type: Public Review Issue
Opt Subject: 502

DoNotEmit.txt currently includes the following line:

13217; 13216 13430 13216 13430 13216; Precomposed_Hieroglyph # EGYPTIAN HIEROGLYPH N035A;
EGYPTIAN HIEROGLYPH N035, EGYPTIAN HIEROGLYPH VERTICAL JOINER, EGYPTIAN HIEROGLYPH
N035, EGYPTIAN HIEROGLYPH VERTICAL JOINER, EGYPTIAN HIEROGLYPH N035

However, section 11.4.3 of the core spec specifically states:

»For example, U+13217 EGYPTIAN HIEROGLYPH N035A apparently could be represented by the
sequence <13216, 13430, 13216, 13430, 13216>. However, this compound sign is considered a single entity
in Ancient Egyptian by Egyptologists, because the compound sign conveys a function that is not covered by
the meaning of its individual parts. As a result, the atomic character U+13217 should be used.«

I do not know which representation is actually the preferred one, so either this DoNotEmit entry or this section
of the core spec should be removed.

Background information / discussion

The Properties and Algorithms Working Group reviewed this feedback and found that the data in DoNotEmit.txt
16.0β is consistent with the text of the Unicode 15.1 core specification, but not with the text of the Unicode
16.0β core specification referenced by the feedback.

The issue was referred to the Script Encoding Working Group.
The Script Encoding Working Group found that the Unicode 16.0β core specification text correctly reflects the
current guidance from Egyptologists. However, this guidance has evolved in the recent past: in Unicode 14.0
the recommendation was systematically in favour of the compound signs, in 15.0 it was systematically in
favour of the sequences, and now it is a more nuanced approach. While the guidance appears to be
converging, it is not stable enough to be included in DoNotEmit.txt; further, the examples listed in the core
specification are far from comprehensive. Recommendations informed and stabilized by usage, together with a
general review of relations between hieroglyphs as described by the Unikemet database, would be needed to
produce useful DoNotEmit data for hieroglyphs. For now, we should not pretend that we have usable data
there.

7

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri502
https://util.unicode.org/UnicodeJsps/character.jsp?a=13217
https://util.unicode.org/UnicodeJsps/character.jsp?a=13217

The change has been made in the working draft of the UCD, so no action item needs to be recorded.

1.7 scx=Hani for two new strokes 31E4..31E5 [#296]

Recommended UTC actions

1. No Action: The recommended changes have been made.

Feedback (verbatim)

PRI-502

Date/Time: Thu May 23 09:57:09 CDT 2024
ReportID: ID20240523095709
Name: Charlotte Buff
Report Type: Public Review Issue
Opt Subject: 502

The two new CJK strokes, U+31E4 CJK STROKE HXG and U+31E5 CJK STROKE SZP, currently have no
explicit Script_Extensions. They should be given the property value “Hani” like all the other CJK strokes
(U+31C0..U+31E3).

Background information / discussion

Since these characters are new in Unicode 16.0, we do not need a UTC decision to correct the property
assignments. The changes recommended by Charlotte Buff have been made in the UCD. No further action is
required, except to thank Charlotte Buff for her vigilance.

8

https://www.unicode.org/review/pri502
https://util.unicode.org/UnicodeJsps/character.jsp?a=31E4
https://util.unicode.org/UnicodeJsps/character.jsp?a=31E5
https://util.unicode.org/UnicodeJsps/character.jsp?a=31C0
https://util.unicode.org/UnicodeJsps/character.jsp?a=31E3

1.8 Should Unikemet Normative and Informative properties be listed in
Property(Value)Aliases? (Yes.) [#298]

Recommended UTC actions

1. Action Item for Robin Leroy, PAG: Add the Unikemet Normative and Informative properties to
PropertyAliases.txt and PropertyValueAliases.txt, namely kEH_Cat, kEH_Desc, kEH_HG, kEH_IFAO,
kEH_JSesh, kEH_NoMirror, and kEH_NoRotate (as well as kEH_Core if the UTC does not follow the
recommendation of the Script Encoding Working Group to change its status to Provisional). For
Unicode Version 16.0. See L2/24-162 item 1.8.

PAG input

From Robin Leroy, PAG: UAX #57 defines some Normative and Informative properties; contrary to the
Provisional properties, these are subject to the Property Stability policy. In the 16.0β data files, they are not
listed in PropertyAliases.txt and PropertyValueAliases.txt. Just like the Normative and Informative properties
from UAX #38, they should be listed there; in particular, this would make it easy to enforce the stability policy
(properties should not be removed from these files), and would also simplify handling the properties in the
tooling (no need to put them in the Extra files).

The change has been made in the working draft of the UCD, excluding kEH_Core in anticipation of a
recommendation from the Script Encoding Working Group (internally “Egyptian Hieroglyphs: 3-tier property
system for Ancient Egyptian hieroglyphs”, internal SEW issue 496). We are requesting that an action item be
recorded regardless, so to ensure that the files correctly reflect the status of the properties after UTC-180.

Background information / discussion

Any Informative or Normative property must have property aliases, and property value aliases if appropriate.
For certain non-property properties, it might be beneficial to elevate them to Provisional properties so that they
can be clearly referenced with a name (as opposed to referencing by such-and-such field in file
such-and-such).

9

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://unicode.org/reports/tr57
https://www.unicode.org/policies/stability_policy.html#Property_Stability
https://unicode.org/reports/tr38
https://www.unicode.org/cgi-bin/GetL2Ref.pl?180

1.9 Is gc=Lo really right for the two CHINESE SMALL ER? (No.) [#299]

Recommended UTC actions

1. Note: The provisionally assigned characters U+16FF2 CHINESE SMALL SIMPLIFIED ER and
U+16FF3 CHINESE SMALL TRADITIONAL ER will have General_Category Modifier_Letter (Lm).

PAG input

From Robin Leroy, PAG:

In “PAG review of L2/23-284 Proposal to encode two small form CJK characters for Chinese” (internally #233,
reported to UTC-179 in L2/24-064R2 §2.8) we had discussed the GC of the provisionally assigned U+16FF2
CHINESE SMALL SIMPLIFIED ER and U+16FF3 CHINESE SMALL TRADITIONAL ER. The possibility of
gc=Lm had been considered, but rejected, among other reasons because we hesitated to start picking out
some ideographs and giving them gc=Lm based on function.

However, it was pointed out that we already have characters that are gc=Lm and script=Hani, e.g., the iteration
mark U+3005. The new characters behave like U+3005 in line breaking (lb=NS), and are also non-diacritic
extenders; likewise they do not stand on their own as ideographs. Given this precedent, gc=Lm seems more
appropriate.

Background information / discussion

It was noted in discussion that currently, \p{Hani}&\p{gc=Lo} is equal to the scope of the Unihan database
(which can also be characterized as those characters with a kRSUnicode value, as those characters with a
kTotalStrokes value, or those characters with at least one IRG source). If these new characters were gc=Lo,
they would be the first exception to this relation. However, this relation seems like a product of happenstance
rather than a fundamental statement about gc=Lm, gc=Lo, or the scope of various properties in the Unihan
database. This relation therefore was not determinant in the recommendation to make these characters
gc=Lm. In particular, it is possible that some of the characters proposed in L2/24-125 (CJK Abbreviations)
would be exceptions to this relation between General_Category, Script, and the Unihan scope.

It was also noted that the same arguments that were made in L2/24-064R2 §2.8 against Diacritic (behaviour as
a phonetic complement, usage standing in for another syllable—another ideograph—that has become an [ɚ])
can be made against gc=Lm. However, the gc classification is less specific than the Diacritic property; see,
e.g., the non-Diacritic vowel modifier letters in the Phonetic Extensions Supplement, used in some
transcriptions of diphthongs (L2/04-132 §E.4.1). Since that General_Category assignment makes these
characters more consistent with others that behave similarly, there was no sustained objection to Lm.

10

https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF2
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF3
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-284
https://www.unicode.org/cgi-bin/GetL2Ref.pl?179
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-064R2
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF2
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF3
https://util.unicode.org/UnicodeJsps/character.jsp?a=3005
https://util.unicode.org/UnicodeJsps/character.jsp?a=3005
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-125
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-064R2
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/04-132

1.10 The description of Hex_Digit is incorrect [#304]

Recommended UTC actions

1. Action Item for Ken Whistler, PAG: In Unicode Standard Annex # 44, Unicode Character Database,
correct the description of property Hex_Digit as mentioned in L2/24-162 item 1.10, to mention that it
only includes those compatibility equivalents to ASCII hex digits that have Decomposition_Type=Wide.
For Unicode Version 16.0. See L2/24-162 item 1.10.

PAG input

From Robin Leroy, PAG. UAX #44 reads:

Property Type Status Description

Hex_Digit B I Characters commonly used for the representation of hexadecimal
numbers, plus their compatibility equivalents.

That description would include 331 characters in Unicode Version 15.1: [0０𝟎𝟘𝟢𝟬𝟶 1１𝟏𝟙𝟣𝟭𝟷 2２𝟐𝟚𝟤𝟮𝟸 3３
𝟑𝟛𝟥𝟯𝟹 4４𝟒𝟜𝟦𝟰𝟺 5５𝟓𝟝𝟧𝟱𝟻 6６𝟔𝟞𝟨𝟲𝟼 7７𝟕𝟟𝟩𝟳𝟽 8８𝟖𝟠𝟪𝟴𝟾 9９𝟗𝟡𝟫𝟵𝟿 ⓪⁰₀ ①¹₁ ②²₂ ③³₃ ④⁴₄ ⑤⁵₅ ⑥⁶₆ ⑦⁷₇ ⑧⁸₈

⑨⁹₉ aａ𝐚𝑎𝒂𝒶𝓪𝔞𝕒𝖆𝖺𝗮𝘢𝙖𝚊ⓐªᵃₐA Ａ𝐀𝐴𝑨𝒜𝓐𝔄𝔸𝕬𝖠𝗔𝘈𝘼𝙰Ⓐᴬ🄰 bｂ𝐛𝑏𝒃𝒷𝓫𝔟𝕓𝖇𝖻𝗯𝘣𝙗𝚋ⓑᵇBＢℬ 𝐁𝐵𝑩𝓑𝔅𝔹𝕭𝖡𝗕𝘉𝘽𝙱Ⓑᴮ🄱 c
ｃⅽ𝐜𝑐𝒄𝒸𝓬𝔠𝕔𝖈𝖼𝗰𝘤𝙘𝚌ⓒᶜCＣ Ⅽℂℭ𝐂𝐶𝑪𝒞𝓒𝕮𝖢𝗖𝘊𝘾𝙲Ⓒ🄫 🄲 dｄⅾⅆ𝐝𝑑𝒅𝒹𝓭𝔡𝕕𝖉𝖽𝗱𝘥𝙙𝚍ⓓᵈD Ｄ

Ⅾⅅ𝐃𝐷𝑫𝒟𝓓𝔇𝔻𝕯𝖣𝗗𝘋𝘿𝙳Ⓓᴰ🄳 eｅℯⅇ𝐞𝑒𝒆𝓮𝔢𝕖𝖊𝖾𝗲𝘦𝙚𝚎ⓔᵉₑE Ｅℰ𝐄𝐸𝑬𝓔𝔈𝔼𝕰𝖤𝗘𝘌𝙀𝙴Ⓔᴱ🄴 fｆ𝐟𝑓𝒇𝒻𝓯𝔣𝕗𝖋𝖿𝗳𝘧𝙛𝚏ⓕᶠFＦℱ
𝐅𝐹𝑭𝓕𝔉𝔽𝕱𝖥𝗙𝘍𝙁𝙵Ⓕ 🄵], but \p{Hex_Digit} only contains 44: [0０ 1１ 2２ 3３ 4４ 5５ 6６ 7７ 8８ 9９ aａAＡ bｂBＢ c
ｃCＣ dｄDＤ eｅEＥ fｆFＦ].

The description should be amended as follows:

Property Type Status Description

Hex_Digit B I Characters commonly used for the representation of hexadecimal
numbers, plus their compatibility equivalents Add: with
Decomposition_Type=Wide.

Background information / discussion

The current description was slightly more accurate in Unicode Version 3.1: \p{U3.1:Hex_Digit} has 94
characters, [0０𝟎𝟘𝟢𝟬𝟶 1１𝟏𝟙𝟣𝟭𝟷 2２𝟐𝟚𝟤𝟮𝟸 3３𝟑𝟛𝟥𝟯𝟹 4４𝟒𝟜𝟦𝟰𝟺 5５𝟓𝟝𝟧𝟱𝟻 6６𝟔𝟞𝟨𝟲𝟼 7７𝟕𝟟𝟩𝟳𝟽 8８𝟖𝟠𝟪𝟴𝟾 9９𝟗𝟡𝟫𝟵𝟿
aａAＡ bｂBＢ cｃCＣ dｄDＤ eｅEＥ fｆFＦ]. However even then it did not include all dt=Font compatibility
equivalents of ASCII hex digits, only those of the decimal digits; nor did it include other decomposition types
(Circle, Compat, Sub, and Super).

Hex_Digit was limited to dt=Wide in Unicode Version 3.2, by decision UTC-86-M13:

[86-M13] Motion: Approve the proplist file (L2/01-082) as amended in the meeting with:

● removal of math alphanumeric digits from hex digits,

11

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://unicode.org/reports/tr44
https://www.unicode.org/reports/tr44/#Hex_Digit
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bdm%3D%2F%5E%5B0-9A-F%5D%24%2F%7D&g=age&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bdm%3D%2F%5E%5B0-9A-F%5D%24%2F%7D&g=age&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bdm%3D%2F%5E%5B0-9A-F%5D%24%2F%7D&g=age&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bdm%3D%2F%5E%5B0-9A-F%5D%24%2F%7D&g=age&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bdm%3D%2F%5E%5B0-9A-F%5D%24%2F%7D&g=age&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bdm%3D%2F%5E%5B0-9A-F%5D%24%2F%7D&g=age&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BHex_Digit%7D&g=dt&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BHex_Digit%7D&g=dt&i=
https://www.unicode.org/reports/tr44/#Hex_Digit
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BU3.1%3AHex_Digit%7D&g=dt&i=
https://www.unicode.org/cgi-bin/GetL2Ref.pl?86-M13
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/01-082

Unset

● addition of ASCII hex digits as a category,
● making non-character, bidi, ASCII hex digits, joiner, and two whitespace categories normative with the

names to be decided later, and
● have two whitespace categories that differ only by inclusion of ZWSP.

Moved by Mark Davis, seconded by Asmus Freytag

11 for (Apple, Basis, Compaq, HP, IBM, Justsystem, Progress, RLG, Sun, Sybase, Unisys)
0 against
1 abstain (Microsoft)

1.11 DoNotEmit.txt and Kashmiri [#305]

Recommended UTC actions

1. Action Item for Roozbeh Pournader, PAG: Remove the three DoNotEmit entries for Hamza_Forms
mentioned in feedback ID20240625045929. For Unicode 16.0. See L2/24-162 item 1.11.

Feedback (verbatim)

PRI-502

Date/Time: Tue Jun 25 04:59:29 CDT 2024
ReportID: ID20240625045929
Name: Richard Ishida
Report Type: Public Review Issue [PAG]
Opt Subject: 502

The Do Not Emit data file contains the following lines.

ٔ;ب ; Hamza_Form # ARABIC LETTER BEH, ARABIC HAMZA ABOVE; ARABIC LETTER BEH WITH HAMZA ABOVE
ځٔ;ح ; Hamza_Form # ARABIC LETTER HAH, ARABIC HAMZA ABOVE; ARABIC LETTER HAH WITH HAMZA ABOVE
ݬٔ;ر ; Hamza_Form # ARABIC LETTER REH, ARABIC HAMZA ABOVE; ARABIC LETTER REH WITH HAMZA ABOVE

These mappings are valid for orthographies that use the atomic character as
a letter of the alphabet, but they are not appropriate for Kashmiri, which
uses the hamza as a vowel diacritic, not as an ijam.

See
https://r12a.github.io/scripts/arab/ks.html#non_canonical
https://r12a.github.io/scripts/arab/homographs.html#nehomographs

12

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri502
https://www.unicode.org/review/pri502/feedback.html#ID20240625045929
https://r12a.github.io/scripts/arab/ks.html#non_canonical
https://r12a.github.io/scripts/arab/homographs.html#nehomographs

Although the hamza is not a tashkil, the distinction made here follows the
logic in the standard related to ijam vs tashkil usage. See
https://r12a.github.io/scripts/arab/homographs.html#ijam_tashkil

Having special rules for just a few, arbitrary combinations of hamza and
base in Kashmiri is likely not only to lead to inconsistency in encoding,
leading to failures in searching and other operations, but it is also a
recipe for confusion for users. Note that all other uses of the vowel hamza
above a base character in Kashmiri have no corresponding ijam (and if
there's a possibility that atomic characters for these pairings may be
created for other languages in the future this adds further complexity).

It seems to me that one solution to this would be to add some sort of
qualification, by language, for these entries. Or perhaps it would be
helpful to make these combinations canonically equivalent and remove them
from Do Not Emit. Users would then be able to type the items either way,
and end up with compatible text.

2. Characters

2.1 YANGQIN SIGN SLOW TWO through FOUR [#286]

Recommended UTC actions

1. Consensus: Change the name of the provisionally assigned characters U+16FF4, U+16FF5, and
U+16FF6 from YANGQIN SIGN SLOW TWO, YANGQIN SIGN SLOW THREE, and YANGQIN SIGN
SLOW FOUR to YANGQIN SIGN SLOW ONE BEAT, YANGQIN SIGN SLOW THREE HALF BEATS,
and YANGQIN SIGN SLOW TWO BEATS.

2. Action Item for Ken Whistler, UTC: Update the Pipeline to change the name of the provisionally
assigned characters U+16FF4, U+16FF5, and U+16FF6 from YANGQIN SIGN SLOW TWO, YANGQIN
SIGN SLOW THREE, and YANGQIN SIGN SLOW FOUR to YANGQIN SIGN SLOW ONE BEAT,
YANGQIN SIGN SLOW THREE HALF BEATS, and YANGQIN SIGN SLOW TWO BEATS. See
L2/24-162 item 2.1.

3. Note: U+16FF4, U+16FF5, and U+16FF6 will have General_Category Letter_Number (Nl).

Document

● L2/24-071R by Eiso Chan: Proposal to encode three stable extended Suzhou Numeral–like letters for
Cantonese Music

○ I propose three extended Suzhou Numeral–like letters in this document, which are used for
Cantonese Music (广东音乐/粤乐).

● Code points: 16FF4..16FF6
● CJK recommendations doc and section: L2/24-067 §38

13

https://r12a.github.io/scripts/arab/homographs.html#ijam_tashkil
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF4
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF5
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF6
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF4
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF5
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF6
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF4
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF5
https://util.unicode.org/UnicodeJsps/character.jsp?a=16FF6
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-071R
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-067

Background information / discussion

The PAG noted that the proposed General_Category=Other_Letter (Lo) for these characters could be highly
disruptive, as these would be the first Hani Other_Letters to without Unihan data, and would add
exceptions to the relation between the Ideographic and Unified_Ideograph properties.
General_Category=Other_Symbol (So) was considered; while less egregious, it too would add create
inconsistencies with existing characters, including the Yangqin sign slow one (half-beat), which is unified with
the existing gc=Nl Suzhou numeral six (〦). General_Category=Letter_Number (Nl) seems preferable. Since
that requires a numeric value, it was suggested to make that value the number of beats, rather than half-beats,
and to make the character names more explicit.

3. Proposed new scripts & characters
PAG members reviewed the following proposals, provided feedback to SAH, and the feedback has been
addressed.

No further recommended actions from our side.

● L2/24-106 Request to encode DOT ABOVE characters for the ORIYA/ODIA script in the UCS -- Evans
[SEW #454]

○ Propertywise like the neighbouring ORIYA SIGN OVERLINE; one of the non-Alphabetic
InSC=Dependent_Vowels.

● L2/24-107 Revised Proposal to encode three Armenian superscript characters - Hossep Dolatian [SEW
#432]

○ The UnicodeData.txt lines in L2/24-107 incorrectly have U+055B and U+055C instead of
U+058B and U+058C; this has been corrected in the draft UCD changes.

○ Like existing modifier small letters in other cased scripts, these are Other_Lowercase and
Diacritic and have a compatibility Decomposition_Mapping of type <super>.

● L2/24-105 Unicode request for double caron - Miller [SEW #297]
○ A diacritic above, like the ones from SEW #298, with the same properties.

● L2/24-131 Proposal to encode Arabic Crown Letters (التاجحروف) -- Goregaokar, Hosny, Yang, Hasan
[SEW #353]

○ A mark above, a number of letters. First occurrence of jt=L in Arabic, but that does not have any
special implications for our algorithms.

○ Collation is interesting.
○ The crowned letters (whether encoded atomically or using the combining mark) should be

primary-equal after their bareheaded counterparts.
○ Since this was meant as a case distinction, tertiary differences make sense; but these would be

confusing relative to other relative distinctions among Arabic characters, and would run into
technical hurdles in the sifter. Secondary differences (like the ḥarakāt) should work fine for
foreseeable use cases (mainly fuzzy string search based on primary collation weights).

● L2/24-130R Unicode request for modifier voiceless implosive letters -- Miller [SEW #442]
○ More Latin modifier letters, propertywise like the existing ones; Other_Lowercase, Diacritic,

<super>-decomposing to the corresponding small letters. The one with a retroflex hook has a
DoNotEmit entry.

14

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-106
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-107
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-107
https://util.unicode.org/UnicodeJsps/character.jsp?a=055B
https://util.unicode.org/UnicodeJsps/character.jsp?a=055C
https://util.unicode.org/UnicodeJsps/character.jsp?a=058B
https://util.unicode.org/UnicodeJsps/character.jsp?a=058C
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-105
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-131
https://www.unicode.org/L2/L2024/24130r-voiceless.implosive.pdf

4. Normalization

4.1 document NFC_QC=N = Full_Composition_Exclusion [#310]

Recommended UTC actions

1. Action Item for Markus Scherer, PAG: Document in UAX #15 and in UAX #44 that NFC_QC=N =
Full_Composition_Exclusion. For Unicode 16.0. See L2/24-162 item 4.1.

Feedback (verbatim)

Date/Time: Tue May 28 13:45:01 CDT 2024
ReportID: ID20240528134501
Name: Alexei Chimendez
Report Type: Public Review Issue
Opt Subject: 506

The derived property NFC_Quick_Check=N is defined as characters
that "cannot (ever) occur in [Normalization Form C]"
(UAX15 §9, UAX44 §5.7.5). The definition of NFC (full decomposition
followed by full recomposition) guarantees that the only characters that
cannot occur in NFC are those with the property
Full_Composition_Exclusion=Y, which will only appear in their decomposed
form.

These two sets are, by definition, always equal. Because this is not
immediately obvious, I think it would be of help to implementers to add
this fact as a note in UAX15; or alternatively in some other relevant
place, such as UAX44, Table 9.

Such an annotation can be useful, for example, to people implementing
normalization in environments where memory usage is a concern, since they
can choose to implement a check for the property Comp_Ex=Y as a lookup in
the same table used for NFC_QC=N, or vice versa.

Background information / discussion

Makes sense. ICU does rely on this equivalence, and uses it in its implementation of
Full_Composition_Exclusion.

15

https://unicode.org/reports/tr15
https://unicode.org/reports/tr44
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri506/feedback.html#ID20240528134501
https://unicode.org/reports/tr15
https://unicode.org/reports/tr44
https://unicode.org/reports/tr15
https://unicode.org/reports/tr44

4.2 UAX #15 “transform text according to the Stream-Safe Text Format”
[#311]

Recommended UTC actions

1. Action Item for Markus Scherer, PAG: Make editorial changes to conformance clause UAX15-C4 along
the lines of L2/24-162 item 4.2. For Unicode 16.0. See L2/24-162 item 4.2.

Feedback (verbatim)

Date/Time: Tue May 28 13:40:01 CDT 2024
ReportID: ID20240528134001
Name: Alexei Chimendez
Report Type: Public Review Issue
Opt Subject: 506

The conformance clause UAX15-C4 states:

A process that purports to transform text according to the Stream-Safe
Text Format must do so in accordance with the specifications in this annex.

This should be:

[...] transform text into the Stream-Safe Text Format [...]

(which is done "according to" a process.)

Background information / discussion

Modified suggestion: This would be improved by writing the conformance clause as "... according to the
Stream-Safe Text Process..." and then linking that to
https://www.unicode.org/reports/tr15/tr15-55.html#UAX15-D4
instead of to Section 13, per se. D4 defines the process, which is what one wants to claim conformance to, and
the process then incorporates the D3 definition of the format.

16

https://unicode.org/reports/tr15
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri506/feedback.html#ID20240528134001
https://unicode.org/reports/tr15
https://www.unicode.org/reports/tr15/tr15-55.html#UAX15-D4

Unset

5. Line Break

5.1 Linebreak property value of U+00AD SOFT HYPHEN [#273]

Recommended UTC actions

1. No Action: PAG recommends no action: the current behavior is reasonable, and note that changing the
default semantics of a common format control character after twenty-five years would be disruptive to
implementers; contra L2/19-041, major implementations follow the default semantics for this character.

Replacement for UTC Action Item

B.11.5.1.3 Linebreak property value of U+00AD SOFT HYPHEN [Muller, L2/19-041]

[158-A50] Action Item for Andy Heninger: Follow up with Eric Muller about document L2/19-041.

Background information / discussion

2024-apr: We still have

00AD ; BA # Cf SOFT HYPHEN

The long-standing linebreak property of a widely-used character created precisely for interaction with line
breaking should be out of scope, as it would be sure to be highly disruptive to implementers (in particular, the
specifics of the special-casing required of implementers could change).

[long-standing: 25 years: this character has had lb=BA since the first version of UAX #14.]

The document states

Many layout engines that determine their linebreak opportunities using a stock implementation of
UAX#14 either tailor it or post-process the result to ignore this linebreak opportunity. I have seen at
least three independent implementations doing this, and I believe that Chromium does that too.

At least in Chrome, the use of U+00AD does create a line break opportunity, which is used, and which does
result in the appearance of a hyphen glyph when it is used: the text consisting of fifty-eight occurrences of the
word « meow », separated by U+00AD, displays as follows:

There are plenty of other implementations that break at a SHY, even when "automatic hyphenation" is turned
off. Asmus provided an example of a popular inexpensive publishing suite:

17

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/19-041
https://util.unicode.org/UnicodeJsps/character.jsp?a=00AD
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/19-041
http://www.unicode.org/cgi-bin/GetL2Ref.pl?158-A50
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/19-041
https://unicode.org/reports/tr14
https://util.unicode.org/UnicodeJsps/character.jsp?a=00AD
https://util.unicode.org/UnicodeJsps/character.jsp?a=00AD

The SHY is used as a linebreak opportunity even when other words only receive emergency linebreaks.

5.2 Follow-up on UTC-172-A66 and UTC-172-A100 [#291]

Recommended UTC actions

1. Consensus: Approve the change of the Line_Break property of the Creative Commons symbols
U+1F10D..U+1F10F, U+1F16D..U+1F16F, and U+1F1AD from Line_Break=Ideographic (ID) to
Line_Break=Alphabetic (AL), and of the phonetic closing brackets U+2E56, U+2E58, U+2E5A, and
U+2E5C from Line_Break=Close_Punctuation (CL) to Line_Break=Close_Parenthesis (CP). For
Unicode 16.0". See L2/24-162 item 5.2.

These changes have been made for Unicode 16.0 before the start of the beta. No further action needed.

PAG input

From Robin Leroy, for Ken Whistler, PAG

Ken Whistler has the following action items:

[172-A66] Action Item for Ken Whistler, PAG: Consider Line_Break values for Creative Commons symbols; for
a future version of the Unicode Standard. See L2/22-124 item UCD11.

[172-A100] Action Item for Ken Whistler, PAG: Investigate whether to change the Line_Break values for
U+2E55..U+2E5C to match those for the ASCII square brackets; for a future version of the Unicode Standard.
See L2/22-124 item Seg6.

These stem from public feedback
https://www.unicode.org/review/pri453/feedback.html#:~:text=Fri%20Jun%2024%2009:56:01%20CDT%20202

18

https://util.unicode.org/UnicodeJsps/character.jsp?a=1F10D
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F10F
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F16D
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F16F
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1AD
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E56
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E58
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E5A
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E5C
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetL2Ref.pl?172-A66
https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-124
https://www.unicode.org/cgi-bin/GetL2Ref.pl?172-A100
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E55
https://util.unicode.org/UnicodeJsps/character.jsp?a=2E5C
https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-124
https://www.unicode.org/review/pri453/feedback.html#:~:text=Fri%20Jun%2024%2009:56:01%20CDT%202022

Unset

2 (Charlotte Buff) and
https://www.unicode.org/review/pri446/feedback.html#:~:text=Fri%20Jun%203%2019:49:05%20CDT%202022
(David Corbett).

Ken considered the relevant part of the feedback from Charlotte Buff and investigated the feedback from David
Corbett, and agreed that both of the suggested sets of changes make sense.

These changes have been made in 16.0β data and in Proposed Update UAX # 14, so no actions need to be
recorded to make the changes; however a decision must be recorded to approve them, per
https://www.unicode.org/reports/tr44/#Allowed_Changes.

Background information / discussion

The feedback from Charlotte Buff was:

The following characters in the Enclosed Alphanumeric Supplement, Alchemical
Symbols, Geometric Shapes Extended, and Supplemental Arrows-C blocks
currently are Line_Break=Ideographic (ID):

Intellectual property rights symbols:
U+1F10D..U+1F10F CIRCLED ZERO WITH SLASH..CIRCLED DOLLAR SIGN WITH OVERLAID

BACKSLASH
U+1F16D..U+1F16F CIRCLED CC..CIRCLED HUMAN FIGURE
U+1F1AD MASK WORK SYMBOL

Astronomical and astrological symbols:
U+1F774..U+1F776 LOT OF FORTUNE..LUNAR ECLIPSE
U+1F77B..U+1F77F HAUMEA..ORCUS

Go stone markers (compare ⚆, ⚇, ⚈, ⚉):
U+1F7D5..U+1F7D8 CIRCLED TRIANGLE..NEGATIVE CIRCLED SQUARE

Star symbol (compare ☆, , etc.):
U+1F7D9 NINE POINTED WHITE STAR

Arithmetic symbol dingbat (compare ➕, ➖, ✖, ➗):
U+1F7F0 HEAVY EQUALS SIGN

Arrows for legacy computing:
U+1F8B0..U+1F8B1 ARROW POINTING UPWARDS THEN NORTH WEST..ARROW POINTING

RIGHTWARDS THEN CURVING SOUTH WEST

A more appropriate line break value for them would be Alphabetic (AL) as a
matter of consistency, because all comparable characters are categorised as
Alphabetic (or Ambiguous in a few cases) as well. The Creative Commons
symbols in particular would benefit from this change because several of
them are often used in sequence.

19

https://www.unicode.org/review/pri453/feedback.html#:~:text=Fri%20Jun%2024%2009:56:01%20CDT%202022
https://www.unicode.org/review/pri446/feedback.html#:~:text=Fri%20Jun%203%2019:49:05%20CDT%202022
https://www.unicode.org/reports/tr44/#Allowed_Changes

Unset

In fact, it would be a good idea to likewise set the default line break
value for unassigned code points in these four blocks to Alphabetic since
the encoding of Ideographic characters in these ranges seems to be the
exception rather than the norm.

The feedback from David Corbett was:

L2/21-042 gives examples of U+2E55..U+2E5C within words, just like how
U+0029 is used in “(s)he”. It is central to these characters’ purpose to
appear within words, so it is likely that their line breaking works the
same as for U+0029. The closing characters U+2E56, U+2E58, U+2E5A, and
U+2E5C should therefore have Line_Break=Close_Parenthesis.

5.3 L2/24-143 changes to East_Asian_Width property [#300]

Recommended UTC actions

1. Action Item for Asmus Freytag, PAG: Review the suggested East_Asian_Width property value
changes in L2/24-143. For Unicode 17.0. See L2/24-162 item 5.3.

The editorial change has been made already.

Document

L2/24-143 by Jules Bertholet
Proposal to change the East_Asian_Width property of various characters, and the derivation of
Line_Break=Ambiguous

Background information / discussion

We are recommending the following editorial change for clarification on this question; there is no hard-and-fast
derivation between East_Asian_Width and Line_Break. This change has been made.

Make a two-word change to UAX #11 ED7, changing "By extension, they also do not occur in East
Asian typography" to "By extension, they also do not tend to occur in East Asian typography".

20

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-143
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-143

5.4 Line_Break of U+19DA NEW TAI LUE THAM DIGIT ONE [#302]

Recommended UTC actions

1. Consensus: Change the Line_Break assignment of U+19DA NEW TAI LUE THAM DIGIT ONE from
Line_Break=Complex Context to Line_Break=Numeric. For Unicode 16.0. See L2/24-162 item 5.4.

2. Action Item for Robin Leroy, PAG: Change the Line_Break assignment of U+19DA NEW TAI LUE
THAM DIGIT ONE from Line_Break=Complex Context to Line_Break=Numeric in LineBreak.txt. For
Unicode 16.0. See L2/24-162 item 5.4.

Feedback (verbatim)

PRI-502
Date/Time: Wed Jun 19 09:19:47 CDT 2024
ReportID: ID20240619091947
Name: Charlotte Buff
Report Type: Public Review Issue
Opt Subject: 502

Currently, U+19DA NEW TAI LUE THAM DIGIT ONE has Line_Break=Complex_Context
while all the other digit characters of the New Tai Lue script
(U+19D0..U+19D9) have Line_Break=Numeric. For consistency, I propose
changing U+19DA to Line_Break=Numeric as well.

21

https://util.unicode.org/UnicodeJsps/character.jsp?a=19DA
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://util.unicode.org/UnicodeJsps/character.jsp?a=19DA
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri502
https://www.unicode.org/review/pri502/feedback.html#ID20240619091947
https://util.unicode.org/UnicodeJsps/character.jsp?a=19DA
https://util.unicode.org/UnicodeJsps/character.jsp?a=19D0
https://util.unicode.org/UnicodeJsps/character.jsp?a=19D9
https://util.unicode.org/UnicodeJsps/character.jsp?a=19DA

5.5 UAX #14 - AI Line_Break class description omissions [#303]

Recommended UTC actions

1. Consensus: Change the Line_Break property of U+2150..U+2153, U+2156..U+215A, and
U+215C..U+215D (VULGAR FRACTION ONE SEVENTH, ONE NINTH, ONE TENTH, ONE THIRD,
TWO FIFTHS, THREE FIFTHS, FOUR FIFTHS, ONE SIXTH, FIVE SIXTHS, THREE EIGHTHS, and
FIVE EIGHTHS) to lb=AI. For Unicode 16.0. See L2/24-162 item 5.5.

2. Action Item for Robin Leroy, PAG: change the Line_Break property of U+2150..U+2153,
U+2156..U+215A, and U+215C..U+215D (VULGAR FRACTION ONE SEVENTH, ONE NINTH, ONE
TENTH, ONE THIRD, TWO FIFTHS, THREE FIFTHS, FOUR FIFTHS, ONE SIXTH, FIVE SIXTHS,
THREE EIGHTHS, and FIVE EIGHTHS) to lb=AI. For Unicode 16.0. See L2/24-162 item 5.5.

3. Action Item for Robin Leroy, PAG: In UAX # 14, update the description of Line_Break class AI to
mention that all vulgar fractions have this value. For Unicode 16.0. See L2/24-162 item 5.5.

Feedback

PRI-490
Date/Time: Sun Jun 09 06:54:59 CDT 2024
ReportID: ID20240609065459
Name: Jules Bertholet
Report Type: Public Review Issue
Opt Subject: 494

The description of the AI Line_Break class claims:

As updated, the AI line breaking class includes all characters with East
Asian Width A that are outside the range U+0000..U+1FFF, plus the following characters:

24EA CIRCLED DIGIT ZERO
2780..2793 DINGBAT CIRCLED SANS-SERIF DIGIT ONE..DINGBAT NEGATIVE CIRCLED
SANS-SERIF NUMBER TEN

However, the class actually includes several more characters:
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BLine_Break%3DAI%7D-%5Cp%7BEast_
Asian_Width%3DAmbiguous%7D

There is no clear rhyme or reason to these. Notably, U+2155 VULGAR FRACTION
ONE FIFTH is included, but many other fractions are not, and U+2574 BOX
DRAWINGS LIGHT LEFT is included, but other light box-drawing characters are
not.

22

https://util.unicode.org/UnicodeJsps/character.jsp?a=2150
https://util.unicode.org/UnicodeJsps/character.jsp?a=2153
https://util.unicode.org/UnicodeJsps/character.jsp?a=2156
https://util.unicode.org/UnicodeJsps/character.jsp?a=215A
https://util.unicode.org/UnicodeJsps/character.jsp?a=215C
https://util.unicode.org/UnicodeJsps/character.jsp?a=215D
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://util.unicode.org/UnicodeJsps/character.jsp?a=2150
https://util.unicode.org/UnicodeJsps/character.jsp?a=2153
https://util.unicode.org/UnicodeJsps/character.jsp?a=2156
https://util.unicode.org/UnicodeJsps/character.jsp?a=215A
https://util.unicode.org/UnicodeJsps/character.jsp?a=215C
https://util.unicode.org/UnicodeJsps/character.jsp?a=215D
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri490
https://www.unicode.org/review/pri490/feedback.html#ID20240609065459
https://util.unicode.org/UnicodeJsps/character.jsp?a=0000
https://util.unicode.org/UnicodeJsps/character.jsp?a=1FFF
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BLine_Break%3DAI%7D-%5Cp%7BEast_Asian_Width%3DAmbiguous%7D
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BLine_Break%3DAI%7D-%5Cp%7BEast_Asian_Width%3DAmbiguous%7D
https://util.unicode.org/UnicodeJsps/character.jsp?a=2155
https://util.unicode.org/UnicodeJsps/character.jsp?a=2574

Background information / discussion

The group investigated this issue and found that the vulgar fractions indeed all behave language-dependently
in line breaking in some common word processing software, so that in order to align with industry practice they
should be lb=AI.

Historical note

The current lb value of U+2155 (which is lb=AI as it should be, despite not being ea=A) is a consequence of an
interaction between a change to East_Asian_Width and the decoupling of lb=AI from ea=A.

A look at https://util.unicode.org/UnicodeJsps/character.jsp?a=2155&history=assigned shows that it used to
have East_Asian_Width=Ambiguous in Unicode Version 3.1 (thus got lb=AI), but that this was changed in
Unicode Version 3.2.

The relevant decision is UTC-90-C26:

[90-C26] Consensus: Update Unicode Standard Annex #11 East Asian Width based on changes
proposed in document L2/02-078. Post as a final UAX as part of Unicode 3.2.

The document in question reads:

(a) Vulgar Fraction
2155;A # VULGAR FRACTION ONE FIFTH
I could not find this in any of the sets we used to generate the EA width
assignment. This looks like a mistake in generating our tables. It’s at the end of a
range, so it might be a ‘one too much’ error.
Suggested action: A → N

The decoupling of lb=AI from ea=A was decided by UTC-97-C21:

[97-C21] Consensus: Decouple East Asian Width properties from from Linebreak properites.
[L2/03-419]

23

https://util.unicode.org/UnicodeJsps/character.jsp?a=2155
https://util.unicode.org/UnicodeJsps/character.jsp?a=2155&history=assigned
https://www.unicode.org/cgi-bin/GetL2Ref.pl?90-C26
http://www.unicode.org/cgi-bin/GetL2Ref.pl?90-C26
http://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/02-078
https://www.unicode.org/cgi-bin/GetL2Ref.pl?97-C21
http://www.unicode.org/cgi-bin/GetL2Ref.pl?97-C21
http://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/03-419

5.6 Update LB10 and LB21a for implementability [#307]

Recommended UTC actions

1. Consensus: Approve the changes to LB10 (to treat all properties of lb=CM characters unaffected by
LB9 as those of U+0041 A, rather than just Line_Break) and to LB21a (to exclude characters that have
both Line_Break=Break_After and East_Asian_Width Fullwidth, Halfwidth, or Wide from participating in
the rule) described in L2/24-162 item 5.6. For Unicode Version 16.0.

2. Action Item for Robin Leroy, PAG: In Unicode Standard Annex # 14, change rules LB10 and LB21a as
described in L2/24-162 item 5.6. For Unicode Version 16.0.

3. Action Item for Robin Leroy, PAG: In LineBreakTest.txt, change rules LB10 and LB21a as described in
L2/24-162 item 5.6. For Unicode Version 16.0.

PAG input

From Robin Leroy, PAG: while integrating Unicode 16β line breaking changes, ICU ran into some complex
implementation issues.
These stem from interactions between LB19 and both LB10 and LB21a, as their contexts end up overlapping
in ways that are difficult to handle in the ICU state machine builder language.

These difficulties are easily fixed by small changes to UAX #14 in a way that:

● for LB10:
○ has no effect except in degenerate cases, in which it only retains pre-16 behaviour anyway,
○ simplifies a broad range of implementation strategies;

● for LB21a, improves the behaviour of the algorithm in a corner case (fixing what is effectively a bug).

Since, without this change, it is likely that ICU would be unable to produce an untailored implementation of
Unicode 16.0 line breaking in ICU 76 (whereas convergence had been a major goal of the changes made in
Unicode 16.0 and in ICU 76), and since the change seems like an improvement on its own merits, I propose
making the change now, even though we are quite late in the process.

Proposed change to LB10

The proposed change to LB10 is to say that all properties, not just Line_Break, are those of U+0041 A for a
CM that was unaffected by LB9:

Treat any remaining CM or ZWJ as if it were had the properties of U+0041 A LATIN CAPITAL
LETTER A, that is, Line_Break=AL, General_Category=Lu, East_Asian_Width=Na,
Extended_Pictographic=N.

The only change in behaviour resulting from that change involves an $EastAsian CM that is at the beginning of
the line, or follows a space or zero-width space, and precedes a quotation mark itself followed by an East
Asian character. In that case, with the above change, the behaviour is the same as in Unicode 15.1 and earlier,
whereas with the 16.0β text, an additional break may be permitted on one side of the quotation mark. This is
an obscure, rare, and arguably degenerate case, and we would not be degrading the behaviour compared to
Unicode 15.1 anyway. Note that it has long been obsolete for a combining mark to be in such a place, see
Sections 9.2 of UAX #14 and 7.2 of The Unicode Standard.

24

https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://unicode.org/reports/tr14
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Blb%3DCM%7D%26%5B%5Cp%7Bea%3DF%7D%5Cp%7Bea%3DW%7D%5Cp%7Bea%3DH%7D%5D&g=gc&i=
https://www.unicode.org/reports/tr14/#LegacySpace
https://unicode.org/reports/tr14
https://unicode.org/versions/Unicode16.0.0/core-spec/chapter-7/#G18559

Unset

Unset

This greatly simplifies implementations; besides ICU’s state machine, which would otherwise need rules with
very long distance context to deal with the CM properly in LB19a, it also helps with other kinds of
implementations:

● For a state-machine based implementation, this means that only one CM state is needed, instead of
CM&EastAsian and CM-EastAsian which decay to AL&EastAsian and AL-EastAsian. Since some state
machine implementations (notably, ICU4X) hardcode the handling of the CM state, avoiding splitting
that state is beneficial.

● An implementation that implements LB10 by actually changing the character in some buffer or variable
also does not need to adjust its logic to pick a character that lies in lb=AL but retains the right
East_Asian_Width. This approach to implementing LB10 was the one I used in the demo I had written
in late 2022 for PRI-472. It is also used by the « old monkey » reference implementation originally
written 21 years ago by Andy Heninger and which ICU uses to test its production implementation. It is
therefore likely the case of many naïve implementations of UAX #14.
In the ICU old monkeys, the change necessary for 16.0β (unneeded with this proposal) was from

if (fCM->contains(*posChar)) {
*posChar = u'A';

}

● to

if (fCM->contains(*posChar)) {
switch (u_getIntPropertyValue(*posChar, UCHAR_EAST_ASIAN_WIDTH)) {
case U_EA_WIDE:

*posChar = u'♈';
break;

case U_EA_NEUTRAL:
*posChar = u'ᴬ';
break;

case U_EA_AMBIGUOUS:
*posChar = u'Ⓐ';
break;

default:
puts("Unexpected ea value for lb=CM");
std::terminate();

}
}

● Nothing intractable, but not completely trivial, especially if you don’t know that the introduction of LB19
suddenly requires it.

25

https://www.unicode.org/review/pri472
https://unicode.org/reports/tr14

Proposed change to LB21a

The proposed change to LB21a is to exclude EastAsian (that is [\p{ea=F}\p{ea=W}\p{ea=H}]) from BA in that
rule:

HL (HY | [BA - $EastAsian]) × [^HL]

The only BA & $EastAsian character is U+3000 IDEOGRAPHIC SPACE.
The goal of this rule is to prevent a break after the hyphen in Hebrew + Hyphen + non-Hebrew—because a
hyphen is used to separate the prefix ו- (and) from a word written in another script—; BA is used to catch
HYPHEN as well as HEBREW PUNCTUATION MAQAF, but IDEOGRAPHIC SPACE is clearly out of scope for
the underlying intent1.
The effect of the proposed change is to allow breaks after an ideographic space separating Hebrew from
non-Hebrew, which seems like something that would actually happen, and where a break would be expected.

While it would certainly make sense in the future to exclude more lb=BA characters from LB21a, such as all the
spaces (or to define the hyphens by inclusion like in LB20a), we propose this minimal change for 16.0 to avoid
further unexpected interactions. Note that because lb=BA and $EastAsian are used separately in the 16.0
rules, implementations that compute a single partition of the code space need to have a BA & $EastAsian
class already to implement 16.0, so the change does not require them to refine their partition any further. A
PAG issue has been opened to track future work on LB21a.

Background information / discussion

The UAX #14 changes approved by UTC-179 had been prototyped in ICU, and extensively tested using the «
old monkey tests », which throw random strings at both a naïve UAX #14-like implementation, and the efficient
state machine shipped by ICU.

The changes had been tested both individually and together on millions of strings. However, this failed to catch
the issues, for two reasons:

1. The strings were poorly distributed; the line breaking class was chosen uniformly at random, and the
character chosen uniformly at random within that class; the East_Asian_Width was not taken into
account. ea=W is rare in \p{lb=CM} (4,5‰) and \p{lb=BA} (3,7‰), so comparatively few test cases
involving these combinations of properties were generated.

2. The random number generator was a 32-bit linear congruential generator; on 500-character strings,
each character being picked with two random numbers, the generator cycled over a couple million
strings, rendering further testing meaningless.

Both of these issues have been addressed: the old monkey tests now:

1. construct a maximally coarse partition of the code space such that no rule references a set that refines
the partition (in particular, the singleton [\N{DOTTED CIRCLE}] is one of the sets in the partition), and
from that partition uniformly at random, rather than from the Line_Break partition;

2. use the ranlux48 PRNG, whose cycle length is approximately 2576.

After these changes to the old monkeys, and with rules LB10 and LB21a of the old monkeys amended as
proposed here, the ICU implementation was successfully tested with upward of 624 million 500-character
strings.

26

https://util.unicode.org/UnicodeJsps/character.jsp?a=3000
https://www.unicode.org/notes/tn54/alba-1.html?v=15.1.0#p432.2.a
https://www.unicode.org/notes/tn54/alba-1.html?v=15.1.0#p432.2.a
https://sahtools-test.appspot.com/generate#fn-lb21a-before-3000-ba
https://unicode.org/reports/tr14
https://www.unicode.org/cgi-bin/GetL2Ref.pl?179
https://unicode.org/reports/tr14

ICU complexity

The motivation for filing this issue was intractable complexity in the ICU rules. See various places these had
gone trying to strictly implement 16.0β:

● https://github.com/unicode-org/icu/blob/7e27e41a887dba7bdc2c9f413897dfc6345a62a2/icu4c/source/d
ata/brkitr/rules/line.txt#L277-L332 (Did not quite work, unclear whether it could have been made to
work. The rules were long enough and hard enough to derive that spotting errors took millions of
monkey tests.)

● a different approach
https://github.com/unicode-org/icu/blob/f63de5e633d1d7a44a56eee75967b7fba2245d63/icu4c/source/
data/brkitr/rules/line.txt#L283-L338 (Conceptually simpler, this specific set of rules was known not to
work.)

● https://github.com/eggrobin/icu/blob/94ab34d42a33d30920d9197f2cd9166758dd3d1c/icu4c/source/dat
a/brkitr/rules/line.txt#L297-L351 (Continuation of the one above, should in principle have been workable
eventually, but as the last few rules were added took half an hour to compile to an automaton and then
just crashed the rule compiler).

Compare the rules for LB19 and LB19a with the proposed changes:
https://github.com/unicode-org/icu/blob/ec3e6f63c82ebcf55d23cf332b105ca78d68f249/icu4c/source/data/brkitr
/rules/line.txt#L277-L286.

5.7 lb=ID: no more unassigned in CJK Unified Ideographs & CJK Unified
Ideographs Extension A [#312]

Recommended UTC actions

1. Action Item for Markus Scherer, PAG: In UAX #14 documentation of lb=ID, replace the complete list of
blocks and ranges that default to that value with one example and a reference to DerivedLineBreak.txt.
For Unicode 16.0. See L2/24-162 item 5.7.

Feedback (verbatim)

Date/Time: Mon Jul 01 15:13:58 CDT 2024
ReportID: ID20240701151358
Name: Charlotte Buff
Report Type: Public Review Issue
Opt Subject: 490

The description of the line break class Ideographic states that unassigned
code points in the CJK Unified Ideographs and CJK Unified Ideographs
Extension A blocks default to lb=ID. However, said blocks no longer contain
any unassigned code points.

Background information / discussion

https://www.unicode.org/reports/tr14/proposed.html#ID

27

https://github.com/unicode-org/icu/blob/7e27e41a887dba7bdc2c9f413897dfc6345a62a2/icu4c/source/data/brkitr/rules/line.txt#L277-L332
https://github.com/unicode-org/icu/blob/7e27e41a887dba7bdc2c9f413897dfc6345a62a2/icu4c/source/data/brkitr/rules/line.txt#L277-L332
https://github.com/unicode-org/icu/blob/f63de5e633d1d7a44a56eee75967b7fba2245d63/icu4c/source/data/brkitr/rules/line.txt#L283-L338
https://github.com/unicode-org/icu/blob/f63de5e633d1d7a44a56eee75967b7fba2245d63/icu4c/source/data/brkitr/rules/line.txt#L283-L338
https://github.com/eggrobin/icu/blob/94ab34d42a33d30920d9197f2cd9166758dd3d1c/icu4c/source/data/brkitr/rules/line.txt#L297-L351
https://github.com/eggrobin/icu/blob/94ab34d42a33d30920d9197f2cd9166758dd3d1c/icu4c/source/data/brkitr/rules/line.txt#L297-L351
https://github.com/unicode-org/icu/blob/ec3e6f63c82ebcf55d23cf332b105ca78d68f249/icu4c/source/data/brkitr/rules/line.txt#L277-L286
https://github.com/unicode-org/icu/blob/ec3e6f63c82ebcf55d23cf332b105ca78d68f249/icu4c/source/data/brkitr/rules/line.txt#L277-L286
https://unicode.org/reports/tr14
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri490/feedback.html#ID20240701151358
https://www.unicode.org/reports/tr14/proposed.html#ID

6. Segmentation

6.1 Word boundaries and line breaks [#280]

Recommended UTC actions

1. No Action: The proposed changes have been incorporated.

Document

L2/24-043 by Norbert Lindenberg in response to action item UTC-176-A101 “For UAX #29, propose improved
wording for the last paragraph of the introduction of Section 4; for Unicode 16.0. See document L2/23-160 item
4.12.”

Background information / discussion

The proposed text changes have been incorporated into the proposed update of UAX #29 during the early part
of the Unicode 16.0 beta.

6.2 grapheme cluster boundaries vs. canonical equivalence: Kannada vowel
signs etc. [#287]

Recommended UTC actions

1. Consensus: Assign the Other_Grapheme_Extend property to U+0CC0, U+0CC7, U+0CC8, and
U+0CCA, U+0CCB (Kannada vowel signs II, EE, AI, O, and OO), as well as U+1B3B, U+1B3D, and
U+1B43 (Balinese vowel signs ra repa tedung, la lenga tedung, and pepet tedung), thereby changing
their Grapheme_Cluster_Break property from SpacingMark to Extend, ensuring consistency of legacy
grapheme clusters with canonical equivalence. For Unicode 16.0. See L2/24-162 item 6.2,
PRI-494#ID20240422114157, and PRI-494#ID20240422120150.

2. Action Item for Robin Leroy, PAG: Assign the Other_Grapheme_Extend property to U+0CC0,
U+0CC7, and U+0CC8, and U+0CCA, U+0CCB (Kannada vowel signs II, EE, AI, O, and OO), as well
as U+1B3B, U+1B3D, and U+1B43 (Balinese vowel signs ra repa tedung, la lenga tedung, and pepet
tedung), thereby changing their Grapheme_Cluster_Break property from SpacingMark to Extend. For
Unicode 16.0. See L2/24-162 item 6.2.

28

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-043
https://www.unicode.org/cgi-bin/GetL2Ref.pl?176-A101
https://unicode.org/reports/tr29
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-160
https://unicode.org/reports/tr29
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC0
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC8
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CCA
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CCB
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B3B
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B3D
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B43
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/review/pri494
https://www.unicode.org/review/pri494
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC0
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC8
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CCA
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CCB
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B3B
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B3D
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B43
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162

Feedback (verbatim)

PRI-494

Date/Time: Mon Apr 22 11:41:57 CDT 2024
ReportID: ID20240422114157
Name: Jules Bertholet
Report Type: Error Report
Opt Subject: PropList.txt

UAX 29 (http://unicode.org/reports/tr29/) says the following:

The default rules have been written so that they can be applied directly to non-NFD text and yield
equivalent results [versus applying to NFD text].

In support of this aim, it later says the following about legacy grapheme clusters:

The continuing characters include nonspacing marks, the Join_Controls (U+200C ZERO WIDTH
NON-JOINER and U+200D ZERO WIDTH JOINER) used in Indic languages, and a few spacing
combining marks to ensure canonical equivalence.

However, this property (that grapheme cluster boundaries are closed under canonical equivalence) currently
does not hold. U+0CC0 KANNADA VOWEL SIGN II has Grapheme_Cluster_Break=SpacingMark, but it
NFD decomposes to two characters (U+0CBF KANNADA VOWEL SIGN I and U+0CD5 KANNADA LENGTH
MARK) which both have Grapheme_Cluster_Break=Extend. To correct this error, U+0CC0 should be
given the property Other_Grapheme_Extend in PropList.txt.

Date/Time: Mon Apr 22 12:01:50 CDT 2024
ReportID: ID20240422120150
Name: Jules Bertholet
Report Type: Error Report
Opt Subject: PropList.txt

Amending my previous report

A few moments ago, I submitted an error report about the Grapheme_Cluster_Break property of U+0CC0. I
would like to amend this report to note the following other characters which are also affected:

● U+0CC7
● U+0CC8
● U+0CCA
● U+0CCB
● U+1B3B
● U+1B3D
● U+1B43

29

https://www.unicode.org/review/pri494
http://unicode.org/reports/tr29/
https://util.unicode.org/UnicodeJsps/character.jsp?a=200C
https://util.unicode.org/UnicodeJsps/character.jsp?a=200D
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC0
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CBF
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CD5
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC0
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC0
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC7
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CC8
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CCA
https://util.unicode.org/UnicodeJsps/character.jsp?a=0CCB
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B3B
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B3D
https://util.unicode.org/UnicodeJsps/character.jsp?a=1B43

Unset

Background information / discussion

It was noted in discussion that a similar issue with Kannada vowel signs occurred regarding consistency of the
UBA with canonical equivalence; this was resolved by decision UTC-93-C25.

Regarding the issue at hand in grapheme cluster segmentation, an invariant test was added, which found
exactly the characters reported across these two feedback items, namely:

Canonical decomposition preserves the initial GCB, except for LV and LVT.

In [\p{dt=canonical}-[\p{gcb=LV}\p{gcb=LVT}]], gcb * (take 1) * dm = gcb

**** START Test Failure 1 ****
Got unexpected property values: 7

0CC0 ; Extend≠SpacingMark # (◌ೀ) KANNADA VOWEL SIGN II
0CC7..0CC8 ; Extend≠SpacingMark # [2] (◌ೇ..◌ೈ) KANNADA VOWEL SIGN
EE..KANNADA VOWEL SIGN AI
0CCA ; Extend≠SpacingMark # (◌ೊ) KANNADA VOWEL SIGN O
1B3B ; Extend≠SpacingMark # () BALINESE VOWEL SIGN RA REPA TEDUNG
1B3D ; Extend≠SpacingMark # () BALINESE VOWEL SIGN LA LENGA TEDUNG
1B43 ; Extend≠SpacingMark # () BALINESE VOWEL SIGN PEPET TEDUNG

6.3 more Sentence_Break changes after AI 179-A113 [#292]

Recommended UTC actions

1. Consensus: Update Table 4, Sentence_Break Property Values of UAX # 29, categorizing Semicolons
(U+003B, U+FE14, U+FE54, and U+FF1B) and Greek Question Mark (U+037E) as SContinue, Coptic
punctuation (U+2CF9..U+2CFB) as STerm, and Vertical Forms punctuation (U+FE10..U+FE19) in the
same categories as their compatibility equivalents, and make corresponding changes in
SentenceBreakProperty.txt. For Unicode Version 16.0. See L2/24-162 item 6.3. This decision
supersedes consensus UTC-179-C33.

PAG recommends no further action; the UCD and UAX #29 have been updated to reflect the modified
proposal.

30

https://www.unicode.org/cgi-bin/GetL2Ref.pl?93-C25
https://util.unicode.org/UnicodeJsps/character.jsp?a=003B
https://util.unicode.org/UnicodeJsps/character.jsp?a=FE14
https://util.unicode.org/UnicodeJsps/character.jsp?a=FE54
https://util.unicode.org/UnicodeJsps/character.jsp?a=FF1B
https://util.unicode.org/UnicodeJsps/character.jsp?a=037E
https://util.unicode.org/UnicodeJsps/character.jsp?a=2CF9
https://util.unicode.org/UnicodeJsps/character.jsp?a=2CFB
https://util.unicode.org/UnicodeJsps/character.jsp?a=FE10
https://util.unicode.org/UnicodeJsps/character.jsp?a=FE19
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetL2Ref.pl?179-C33
https://unicode.org/reports/tr29

Feedback (verbatim)

Date/Time: Thu May 09 10:36:08 CDT 2024
ReportID: ID20240509103608
Name: David Corbett
Report Type: Public Review Issue
Opt Subject: 494

Action item 179-A113 says to categorize semicolons as Sentence_Break =
SContinue. https://github.com/unicode-org/unicodetools/pull/812 modifies
U+1364 ETHIOPIC SEMICOLON, U+A6F6 BAMUM SEMICOLON, and U+1DA89 SIGNWRITING
SEMICOLON accordingly. Those three scripts also have commas and colons,
which still have Sentence_Break = Other. If those scripts’ semicolons are
recategorized to match ASCII, so should their commas and colons; if there
is not yet any evidence supporting changing their commas and colons, there
probably isn’t any for their semicolons either, so their semicolons should
not be recategorized.

Lisu, Medefaidrin, Mongolian, Newa, and Vai don’t have semicolons, but they
do have commas or colons. Should those be recategorized too? I wouldn’t
assume so just from their character names, but maybe.

31

https://www.unicode.org/review/pri494/feedback.html#ID20240509103608
https://github.com/unicode-org/unicodetools/pull/812
https://util.unicode.org/UnicodeJsps/character.jsp?a=1364
https://util.unicode.org/UnicodeJsps/character.jsp?a=A6F6
https://util.unicode.org/UnicodeJsps/character.jsp?a=1DA89

6.4 East Asian Auto Spacing [#306]

Recommended UTC actions

1. Action Item for Koji Ishii, Markus Scherer, PAG: Prepare a working draft UTR for East Asian Auto
Spacing based on L2/24-057R in collaboration with PAG. See L2/24-162 item 6.4.

Document

L2/24-057R EAST ASIAN AUTO SPACING (Proposal) by Koji Ishii, Yasuo Kida, Fuqiao Xue (2024-jul-01)
supersedes L2/24-057, L2/23-283

From the doc intro:

East Asian text usually consists of multiple scripts [...]. East Asian established typography conventions define
that a thin spacing between East Asian scripts and other scripts improves the readability. [...]

While detailed rules of the spacing can vary across documents, it is important that the choice made by an
author for a specific document be clearly established, so that a rendering system can display what the author
intended. It is also important that this choice be established independently of the font resources, as the
rendering systems may have to use other fonts than those intended or specified in the document. [...]

This report describes a Unicode character property which can serve as a stable default rule of inserting the
spacing for the purpose of reliable document interchange.

Background information / discussion

We noticed that this is already being done outside the web platform (MS Word seems to perform auto-spacing
without inserting space characters), therefore seems appropriate for the UTC.

The doc suggests using ZWSP if you don't want any space; but it adds a line breaking opportunity which may
not be desirable. Authors should take this into consideration and review boundary conditions here vs. UAX
#14.

32

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-057R
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-057R
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-057
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-283
https://unicode.org/reports/tr14
https://unicode.org/reports/tr14

7. IDNA

7.1 UTS #46 disallowed_STD3_valid and disallowed_STD3_mapped [#282]

Recommended UTC actions

1. Consensus: In UTS #46, handle UseSTD3ASCIIRules only in the Validity Criteria. In the IDNA
Mapping Table, replace Status disallowed_STD3_valid with valid and disallowed_STD3_mapped with
mapped. Note edge cases of labels that are no longer unnecessarily disallowed. For Unicode 16.0. See
L2/24-162 item 7.1.

2. Action Item for Markus Scherer, PAG: In UTS #46, handle UseSTD3ASCIIRules only in the Validity
Criteria. In the IDNA Mapping Table, replace Status disallowed_STD3_valid with valid and
disallowed_STD3_mapped with mapped. Note edge cases of labels that are no longer unnecessarily
disallowed. For Unicode 16.0. See L2/24-162 item 7.1.

Feedback (verbatim)

Date/Time: Tue Apr 02 10:47:44 CDT 2024
ReportID: ID20240402104744
Name: Henri Sivonen
Report Type: Error Report
Opt Subject: UTS 46

When implementing UTS 46, the most time-consuming wrong path was trying to
design data structures for UTS 46 data assuming that the data needs to have
distinct data entries for disallowed_STD3_valid and disallowed_STD3_mapped
before discovering that these can be handled as valid and mapped with an
ASCII deny list applied afterwards.

I suggest refactoring the spec so that:

1) disallowed_STD3_valid and disallowed_STD3_mapped become simply valid and
mapped in the data and the spec says when to apply an ASCII deny list 2)
instead of a boolean UseSTD3ASCIIRules the algorithm would take an ASCII
deny list.

UTS 46 itself could define an STD3 ASCII deny list and the WHATWG URL
Standard could use forbidden domain code point
https://url.spec.whatwg.org/#forbidden-domain-code-point as an ASCII deny
list parameter to UTS 46.

It would probably appropriate to make informative remarks that a) putting
ASCII letters, digits, or hyphen on the deny list would break things and b)
in the validation phase, the ASCII period can be put on the deny list to
handle that validity constraint as part of the ASCII deny list check.

33

https://unicode.org/reports/tr46
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://unicode.org/reports/tr46
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/24-162
https://www.unicode.org/L2/L2024/24063-pubrev.html#ID20240402104744
https://url.spec.whatwg.org/#forbidden-domain-code-point

Background information / discussion

We have carefully compared the existing (Unicode 15.1) UTS #46 algorithm with the suggested approach of
checking for valid ASCII characters after the Map and Normalize steps.

We found subtle behavior differences, but we have concluded that they are unnecessary, and that the simpler
post-processing check is

1. more consistent with Unicode 15.1 changes of disallowed_STD3_valid characters (removing the only
three non-ASCII characters)

2. consistent with how UTS #46 has documented using a custom set of valid ASCII characters
3. avoids unnecessarily disallowing certain labels that contain disallowed_STD3_mapped characters but

which do not contain non-LDH ASCII characters when the mappings are applied
4. easier to implement (simpler data format & data lookup)
5. matches the implementation of a widely used UTS #46 implementation (in ICU)

Therefore, we agree with Henri’s suggested algorithm simplification, except as an actual algorithm change with
observable changes in behavior, rather than documenting it as equivalent to the current algorithm.

These proposed changes are marked with cyan background in the proposed update of UTS #46 for Unicode
16.0: https://www.unicode.org/reports/tr46/tr46-32.html

The proposed changes in behavior will affect users of UseSTD3ASCIIRules=true. (Assuming a conformant
implementation.) See details below.

The behavior does not change for UseSTD3ASCIIRules=false. This includes implementations that use a
custom set of valid ASCII characters according to section 4.1.1 UseSTD3ASCIIRules.

Before Unicode 15.1, U+2260 (≠), U+226E (≮), and U+226F (≯) were disallowed_STD3_valid.

Note that when UseSTD3ASCIIRules=true the data lookup (UTS #46 section 5) resolves
disallowed_STD3_valid and disallowed_STD3_mapped to disallowed, ignoring the mappings in the latter case.

Examples for UseSTD3ASCIIRules=true behavior changes:

● Example for a label which continues to fail the Validity Criteria despite the change in Processing:
In Unicode 15.1, input label "⑷" was unchanged in Processing and failed the Validity Criteria. (U+2477
disallowed_STD3_mapped was resolved to disallowed, and its mapping was not applied.)
With the proposed changes, "⑷" would be Mapped to "(4)", which would still fail the Validity Criteria,
except if a custom set of valid ASCII characters is used that includes the parentheses.

● Example for a label which newly passes the Validity Criteria due to the change in Processing:
In Unicode 15.1, input label "\uFF1D\u0338" (fullwidth equals + combining solidus overlay) was
unchanged in Processing and failed the Validity Criteria. (U+FF1D disallowed_STD3_mapped was
resolved to disallowed, and its mapping was not applied.)
With the proposed changes, "\uFF1D\u0338" would be Mapped to "\u003D\u0338" and Normalized to
"\u2260" (not equal to), which is valid.

34

https://unicode.org/reports/tr46
https://unicode.org/reports/tr46
https://unicode.org/reports/tr46
https://unicode.org/reports/tr46
https://www.unicode.org/reports/tr46/tr46-32.html
https://www.unicode.org/reports/tr46/tr46-31.html#UseSTD3ASCIIRules
https://util.unicode.org/UnicodeJsps/character.jsp?a=2260
https://util.unicode.org/UnicodeJsps/character.jsp?a=226E
https://util.unicode.org/UnicodeJsps/character.jsp?a=226F
https://www.unicode.org/reports/tr46/tr46-31.html#IDNA_Mapping_Table
https://util.unicode.org/UnicodeJsps/character.jsp?a=2477
https://util.unicode.org/UnicodeJsps/character.jsp?a=FF1D

7.2 UTS #46: clarify whether it is an error for Punycode decoding to not
yield any non-ASCII output [#283]

Recommended UTC actions

No Action: PAG recommends no new action because this is covered by existing action item UTC-165-A48
which has been done for Unicode 16.0.

Feedback (verbatim)

Date/Time: Tue Apr 02 10:50:47 CDT 2024
ReportID: ID20240402105047
Name: Henri Sivonen
Report Type: Error Report
Opt Subject: UTS 46

It seems to me that in practice it should be considered an error for
Punycode decoding not to yield any non-ASCII output (both Firefox and
Safari treat this as an error). However, I don’t see any spec text to that
effect either in UTS 46 itself or in RFC 3492. I suggest adding an item
under “Processing” step 4 ‘If the label starts with “xn--”:’ between
current items 1 and 2: “If the label ends with U+002D HYPHEN-MINUS, record
that there was an error, and continue with the next label.”

This would catch both the case where the hyphen is the last hyphen of “xn--”
and Punycode decoding would have no output at all and the case where there
are no Punycode digits after the delimiter, which means not producing any
non-ASCII output.

Notably in Firefox and Safari, https://xn--unicode-.org/ is in error and not
equivalent to https://unicode.org/ and https://unicode.org.xn--/ is in
error and not equivalent to https://unicode.org./ .

Background information / discussion

This is covered by UTC-165-A48 “Update UTS # 46 to validate ACE label edge cases, see L2/20-240 item F7.
For Unicode 14. (Retargeted for 15.1.)” which has been done for Unicode 16.0. See
https://www.unicode.org/reports/tr46/tr46-32.html#ProcessingStepPunycode

1. In fact, when this rule was added in Unicode 6.1 (see UTC-125-A99, L2/11-141R), U+3000 was not
lb=BA, but lb=ID; it was changed to lb=BA in Unicode 6.3 (UTC-132-C29). ↩

35

https://www.unicode.org/cgi-bin/GetL2Ref.pl?165-A48
https://www.unicode.org/L2/L2024/24063-pubrev.html#ID20240402105047
https://util.unicode.org/UnicodeJsps/character.jsp?a=002D
https://unicode.org/
https://unicode.org./
https://www.unicode.org/cgi-bin/GetL2Ref.pl?165-A48
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/20-240
https://www.unicode.org/reports/tr46/tr46-32.html#ProcessingStepPunycode
https://www.unicode.org/cgi-bin/GetL2Ref.pl?125-A99
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/11-141R
https://util.unicode.org/UnicodeJsps/character.jsp?a=3000
https://www.unicode.org/cgi-bin/GetL2Ref.pl?132-C29
https://sahtools-test.appspot.com/generate#fnref-lb21a-before-3000-ba

1. UCD
1.1 More precisely define what Terminal_Punctuation means [#259]

[180-C] Consensus: In UAX #44, clarify the description of Terminal_Punctation to mention that it is normally not part of the preceding word, as described in L2/24-162 item 1.1. For Unicode Version 16.0.
[180-A] Action Item for Ken Whistler, PAG: In UAX #44, clarify the description of Terminal_Punctation to mention that it is normally not part of the preceding word, as described in L2/24-162 item 1.1. For Unicode Version 16.0.

1.2 UAX #31 shows different character for GREEK ANO TELEIA [#284]
[180-?] No Action: PAG recommends no action: The issue has been corrected editorially.

1.3 DoNotEmit wrong replacement for 0149 [#285]
[180-C] Consensus: Change the line for U+0149 LATIN SMALL LETTER N PRECEDED BY APOSTROPHE in DoNotEmit.txt to: 0149; 2019 006E; Deprecated — For Unicode 16.0. See L2/24-162 item 1.3.
[180-A] Action Item for Roozbeh Pournader, PAG: Change the line for U+0149 LATIN SMALL LETTER N PRECEDED BY APOSTROPHE in DoNotEmit.txt to: 0149; 2019 006E; Deprecated— For Unicode 16.0. See L2/24-162 item 1.3.

1.4 DoNotEmit.txt: discourage decomposed forms of some Cyrillic letters [#293]
[180-?] No Action: PAG recommends no action: canonically equivalent sequences are out of scope for DoNotEmit.txt.

1.5 add Duployan to scx for several characters [#294]
[180-C] Consensus: Add Duployan (Dupl) to the Script_Extensions of U+00B7 MIDDLE DOT, U+0307 COMBINING DOT ABOVE, U+0308 COMBINING DIAERESIS, U+030A COMBINING RING ABOVE, U+0323 COMBINING DOT BELOW, U+0324 COMBINING DIAERESIS BELOW, and U+2E3C STENOGRAPHIC FULL STOP. For Unicode 16.0. See L2/24-162 item 1.5 and PRI-502#ID20240522040217.
[180-A] Action Item for Roozbeh Pournader, PAG: Add Duployan (Dupl) to the Script_Extensions of U+00B7 MIDDLE DOT, U+0307 COMBINING DOT ABOVE, U+0308 COMBINING DIAERESIS, U+030A COMBINING RING ABOVE, U+0323 COMBINING DOT BELOW, U+0324 COMBINING DIAERESIS BELOW, and U+2E3C STENOGRAPHIC FULL STOP. For Unicode Version 16.0. See L2/24-162 item 1.5.
[180-A] Action Item for Rick McGowan, PAG: Ask Charlotte Buff for evidence for the use in Duployan shorthand of other combining diacritical marks. See L2/24-162 item 1.5.

1.6 DoNotEmit U+13217 EGYPTIAN HIEROGLYPH N035A [#295]
[180-C] Consensus: Remove Egyptian hieroglyphs from DoNotEmit.txt. For Unicode Version 16.0. See L2/24-162 item 1.6.

1.7 scx=Hani for two new strokes 31E4..31E5 [#296]
[180-?] No Action: The recommended changes have been made.

1.8 Should Unikemet Normative and Informative properties be listed in Property(Value)Aliases? (Yes.) [#298]
[180-A] Action Item for Robin Leroy, PAG: Add the Unikemet Normative and Informative properties to PropertyAliases.txt and PropertyValueAliases.txt, namely kEH_Cat, kEH_Desc, kEH_HG, kEH_IFAO, kEH_JSesh, kEH_NoMirror, and kEH_NoRotate (as well as kEH_Core if the UTC does not follow the recommendation of the Script Encoding Working Group to change its status to Provisional). For Unicode Version 16.0. See L2/24-162 item 1.8.

1.9 Is gc=Lo really right for the two CHINESE SMALL ER? (No.) [#299]
[180-N] Note: The provisionally assigned characters U+16FF2 CHINESE SMALL SIMPLIFIED ER and U+16FF3 CHINESE SMALL TRADITIONAL ER will have General_Category Modifier_Letter (Lm).

1.10 The description of Hex_Digit is incorrect [#304]
[180-A] Action Item for Ken Whistler, PAG: In Unicode Standard Annex #44, Unicode Character Database, correct the description of property Hex_Digit as mentioned in L2/24-162 item 1.10, to mention that it only includes those compatibility equivalents to ASCII hex digits that have Decomposition_Type=Wide. For Unicode Version 16.0. See L2/24-162 item 1.10.

1.11 DoNotEmit.txt and Kashmiri [#305]
[180-A] Action Item for Roozbeh Pournader, PAG: Remove the three DoNotEmit entries for Hamza_Forms mentioned in feedback ID20240625045929. For Unicode 16.0. See L2/24-162 item 1.11.

2. Characters
2.1 YANGQIN SIGN SLOW TWO through FOUR [#286]
[180-C] Consensus: Change the name of the provisionally assigned characters U+16FF4, U+16FF5, and U+16FF6 from YANGQIN SIGN SLOW TWO, YANGQIN SIGN SLOW THREE, and YANGQIN SIGN SLOW FOUR to YANGQIN SIGN SLOW ONE BEAT, YANGQIN SIGN SLOW THREE HALF BEATS, and YANGQIN SIGN SLOW TWO BEATS.
[180-A] Action Item for Ken Whistler, UTC: Update the Pipeline to change the name of the provisionally assigned characters U+16FF4, U+16FF5, and U+16FF6 from YANGQIN SIGN SLOW TWO, YANGQIN SIGN SLOW THREE, and YANGQIN SIGN SLOW FOUR to YANGQIN SIGN SLOW ONE BEAT, YANGQIN SIGN SLOW THREE HALF BEATS, and YANGQIN SIGN SLOW TWO BEATS. See L2/24-162 item 2.1.
[180-N] Note: U+16FF4, U+16FF5, and U+16FF6 will have General_Category Letter_Number (Nl).

3. Proposed new scripts & characters
PAG members reviewed the following proposals, provided feedback to SAH, and the feedback has been addressed.

No further recommended actions from our side.

4. Normalization
4.1 document NFC_QC=N = Full_Composition_Exclusion [#310]
[180-A] Action Item for Markus Scherer, PAG: Document in UAX #15 and in UAX #44 that NFC_QC=N = Full_Composition_Exclusion. For Unicode 16.0. See L2/24-162 item 4.1.
4.2 UAX #15 “transform text according to the Stream-Safe Text Format” [#311]
[180-A] Action Item for Markus Scherer, PAG: Make editorial changes to conformance clause UAX15-C4 along the lines of L2/24-162 item 4.2. For Unicode 16.0. See L2/24-162 item 4.2.

5. Line Break
5.1 Linebreak property value of U+00AD SOFT HYPHEN [#273]
[180-?] No Action: PAG recommends no action: the current behavior is reasonable, and note that changing the default semantics of a common format control character after twenty-five years would be disruptive to implementers; contra L2/19-041, major implementations follow the default semantics for this character.

5.2 Follow-up on UTC-172-A66 and UTC-172-A100 [#291]
[180-C] Consensus: Approve the change of the Line_Break property of the Creative Commons symbols U+1F10D..U+1F10F, U+1F16D..U+1F16F, and U+1F1AD from Line_Break=Ideographic (ID) to Line_Break=Alphabetic (AL), and of the phonetic closing brackets U+2E56, U+2E58, U+2E5A, and U+2E5C from Line_Break=Close_Punctuation (CL) to Line_Break=Close_Parenthesis (CP). For Unicode 16.0". See L2/24-162 item 5.2.

5.3 L2/24-143 changes to East_Asian_Width property [#300]
[180-A] Action Item for Asmus Freytag, PAG: Review the suggested East_Asian_Width property value changes in L2/24-143. For Unicode 17.0. See L2/24-162 item 5.3.

5.4 Line_Break of U+19DA NEW TAI LUE THAM DIGIT ONE [#302]
[180-C] Consensus: Change the Line_Break assignment of U+19DA NEW TAI LUE THAM DIGIT ONE from Line_Break=Complex Context to Line_Break=Numeric. For Unicode 16.0. See L2/24-162 item 5.4.
[180-A] Action Item for Robin Leroy, PAG: Change the Line_Break assignment of U+19DA NEW TAI LUE THAM DIGIT ONE from Line_Break=Complex Context to Line_Break=Numeric in LineBreak.txt. For Unicode 16.0. See L2/24-162 item 5.4.

5.5 UAX #14 - AI Line_Break class description omissions [#303]
[180-C] Consensus: Change the Line_Break property of U+2150..U+2153, U+2156..U+215A, and U+215C..U+215D (VULGAR FRACTION ONE SEVENTH, ONE NINTH, ONE TENTH, ONE THIRD, TWO FIFTHS, THREE FIFTHS, FOUR FIFTHS, ONE SIXTH, FIVE SIXTHS, THREE EIGHTHS, and FIVE EIGHTHS) to lb=AI. For Unicode 16.0. See L2/24-162 item 5.5.
[180-A] Action Item for Robin Leroy, PAG: change the Line_Break property of U+2150..U+2153, U+2156..U+215A, and U+215C..U+215D (VULGAR FRACTION ONE SEVENTH, ONE NINTH, ONE TENTH, ONE THIRD, TWO FIFTHS, THREE FIFTHS, FOUR FIFTHS, ONE SIXTH, FIVE SIXTHS, THREE EIGHTHS, and FIVE EIGHTHS) to lb=AI. For Unicode 16.0. See L2/24-162 item 5.5.
[180-A] Action Item for Robin Leroy, PAG: In UAX #14, update the description of Line_Break class AI to mention that all vulgar fractions have this value. For Unicode 16.0. See L2/24-162 item 5.5.

5.6 Update LB10 and LB21a for implementability [#307]
[180-C] Consensus: Approve the changes to LB10 (to treat all properties of lb=CM characters unaffected by LB9 as those of U+0041 A, rather than just Line_Break) and to LB21a (to exclude characters that have both Line_Break=Break_After and East_Asian_Width Fullwidth, Halfwidth, or Wide from participating in the rule) described in L2/24-162 item 5.6. For Unicode Version 16.0.
[180-A] Action Item for Robin Leroy, PAG: In Unicode Standard Annex #14, change rules LB10 and LB21a as described in L2/24-162 item 5.6. For Unicode Version 16.0.
[180-A] Action Item for Robin Leroy, PAG: In LineBreakTest.txt, change rules LB10 and LB21a as described in L2/24-162 item 5.6. For Unicode Version 16.0.

5.7 lb=ID: no more unassigned in CJK Unified Ideographs & CJK Unified Ideographs Extension A [#312]
[180-A] Action Item for Markus Scherer, PAG: In UAX #14 documentation of lb=ID, replace the complete list of blocks and ranges that default to that value with one example and a reference to DerivedLineBreak.txt. For Unicode 16.0. See L2/24-162 item 5.7.

6. Segmentation
6.1 Word boundaries and line breaks [#280]
[180-?] No Action: The proposed changes have been incorporated.

6.2 grapheme cluster boundaries vs. canonical equivalence: Kannada vowel signs etc. [#287]
[180-C] Consensus: Assign the Other_Grapheme_Extend property to U+0CC0, U+0CC7, U+0CC8, and U+0CCA, U+0CCB (Kannada vowel signs II, EE, AI, O, and OO), as well as U+1B3B, U+1B3D, and U+1B43 (Balinese vowel signs ra repa tedung, la lenga tedung, and pepet tedung), thereby changing their Grapheme_Cluster_Break property from SpacingMark to Extend, ensuring consistency of legacy grapheme clusters with canonical equivalence. For Unicode 16.0. See L2/24-162 item 6.2, PRI-494#ID20240422114157, and PRI-494#ID20240422120150.
[180-A] Action Item for Robin Leroy, PAG: Assign the Other_Grapheme_Extend property to U+0CC0, U+0CC7, and U+0CC8, and U+0CCA, U+0CCB (Kannada vowel signs II, EE, AI, O, and OO), as well as U+1B3B, U+1B3D, and U+1B43 (Balinese vowel signs ra repa tedung, la lenga tedung, and pepet tedung), thereby changing their Grapheme_Cluster_Break property from SpacingMark to Extend. For Unicode 16.0. See L2/24-162 item 6.2.

6.3 more Sentence_Break changes after AI 179-A113 [#292]
[180-C] Consensus: Update Table 4, Sentence_Break Property Values of UAX #29, categorizing Semicolons (U+003B, U+FE14, U+FE54, and U+FF1B) and Greek Question Mark (U+037E) as SContinue, Coptic punctuation (U+2CF9..U+2CFB) as STerm, and Vertical Forms punctuation (U+FE10..U+FE19) in the same categories as their compatibility equivalents, and make corresponding changes in SentenceBreakProperty.txt. For Unicode Version 16.0. See L2/24-162 item 6.3. This decision supersedes consensus UTC-179-C33.

6.4 East Asian Auto Spacing [#306]
[180-A] Action Item for Koji Ishii, Markus Scherer, PAG: Prepare a working draft UTR for East Asian Auto Spacing based on L2/24-057R in collaboration with PAG. See L2/24-162 item 6.4.

7. IDNA
7.1 UAX #46 disallowed_STD3_valid and disallowed_STD3_mapped [#282]
[180-C] Consensus: In UAX #46, handle UseSTD3ASCIIRules only in the Validity Criteria. In the IDNA Mapping Table, replace Status disallowed_STD3_valid with valid and disallowed_STD3_mapped with mapped. Note edge cases of labels that are no longer unnecessarily disallowed. For Unicode 16.0. See L2/24-162 item 7.1.
[180-A] Action Item for Markus Scherer, PAG: In UAX #46, handle UseSTD3ASCIIRules only in the Validity Criteria. In the IDNA Mapping Table, replace Status disallowed_STD3_valid with valid and disallowed_STD3_mapped with mapped. Note edge cases of labels that are no longer unnecessarily disallowed. For Unicode 16.0. See L2/24-162 item 7.1.

