
Review of Identifier_Type for existing characters
Review document for PRI #517 --- last updated: 2025-02-04

The Unicode Consortium is broadly reviewing the assignment of Identifier_Type to characters of

non-ideographic scripts listed as Recommended in UAX31. As published in the datafiles for

UTS39, synchronized with Unicode Version 16.0, there are over a thousand non-Han characters

with Identifier_Type=Recommended, for which feedback received suggests that the existing

classification may be inappropriate for the purpose of defining a recommended repertoire for

default identifiers.

Many of these characters might be better classified as Technical (not for general use in the

writing system), Obsolete (no longer in current use) or Uncommon_Use (not attested as needed

for an orthography that is in widespread everyday common use for any living language).

The Unicode Consortium is interested in obtaining additional information that would help

improve the assignment of Identifier_Type. In particular, if any of the characters listed in

documents L2/25-033 and L2/25-034 can be attested as being in use for an orthography that is

in widespread everyday common use, we would like to receive feedback to that effect,

preferably with a citation that documents such usage.

Likewise, clear indication that a character is either no longer in current use (Obsolete) or

typically only used in a specialized context (Technical) would be appreciated. Please submit your

feedback by the closing date of the PRI.

The feedback should prioritize the characters listed in documents L2/25-033 and L2/25-034, but

in principle all assignments of Identifier_Type are open to reassessment if new and better

information becomes available. The identifier type adjustments proposed in these documents at

this point just constitute a body of feedback and do not predict the final outcome.

After a review of all available information, the Unicode Technical Committee will publish an

updated data file with the updated assignments for Identifier_Type, which will then be subject

to the normal beta review.

Notes

Identifier_Type values are used to guide implementers in setting rules for secure but usable

identifiers. In particular, the recommendation is to not include characters that are unfamiliar to

users because they are Technical, Obsolete or not in common use. There is a tendency for users

to misinterpret an unfamiliar character as an unusual rendering of some more familiar character

instead.

https://unicode.org/reports/tr31
https://www.unicode.org/Public/security/16.0.0/IdentifierType.txt
https://unicode.org/reports/tr39
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/25-033
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/25-034
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/25-033
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/25-034

A typical example for that is the Old English letter Wynn 'ƿ' that most modern users of the

English language would treat as a 'p', because the exact details of the bowl of a 'p' are not

normally important.

The effect of identifying additional characters as Technical, Obsolete or Uncommon_Use is to

remove them from the set of characters that are recommended for default identifiers. There is

no stability policy that prevents such changes. If any system supports identifiers that have been

created or registered before such a change and that are no longer considered default identifier,

the suggested treatment would be to grandfather existing ones, but not allow the creation or

registrations of new ones.

Implementations are also free to explicitly deviate from the recommended default identifiers as

needed to serve a particular constituency. Thus, this reevaluation of Identifier_Type

assignments is intended to improve the usefulness of the classification, but not to force

implementations to deviate from any established practice that works for them.

Note also that the Identifier_Type and Identifier_Status properties do not fall under stability

policies. They evolve as the use of writing systems changes and as Unicode receives feedback on

that use. By contrast, properties like ID_Start and XID_Continue, which are used for detecting

identifiers, are stable, and are not affected by these changes.

