# Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation <br> Международная организация по стандартизации 

| Doc Type: | Working Group Document |
| :--- | :--- |
| Title: | Proposal to encode two additional Zanabazar Square letters |
| Source: | Andrew West |
| Status: | Individual Contribution |
| Action: | For consideration by JTC1/SC2/WG2 and UTC |
| Date: | $2018-04-20$ |

## 1. Introduction

The Zanabazar Square script includes a character U+11A3A ZANABAZAR SQUARE CLUSTERINITIAL LETTER RA - which represents a special form of the letter RA $\overline{\text { ® }}$ that corresponds to the Tibetan head letter RA ( $\mathrm{ramgo} \mathrm{)} \mathrm{and} \mathrm{is} \mathrm{used} \mathrm{when} \mathrm{writing} \mathrm{Tibetan} \mathrm{conjuncts}$. two characters are encoded to represent RA, U+0F62 TIBETAN LETTER RA for the head letter which takes on a special glyph shape above some letters in Tibetan orthography, and U+0F6A TIBETAN LETTER FIXED-FORM RA which is used in Sanskrit transcription in cases when RA does not change shape above another letter.

This document proposes to encode two additional Zanabazar Square characters corresponding to Tibetan head letters LA (la mgo) and SA (sa mgo). In the Tibetan script the head letters LA and SA do not have a special form, and so are not encoded separately, but in the Soyombo script the letters RA, LA and SA, as well as SHA, have special forms when used as head letters in Tibetan, and separate characters SOYOMBO CLUSTER-INITIAL LETTER RA, LA, SHA and SA are encoded.

Zanabazar Square texts are not consistent with regard to the representation of the head letters LA and SA in Tibetan syllables, but there is evidence that LA and SA may be written using special vertically-compressed ligatured forms as head letters in Tibetan syllables, in contrast to usage in Sanskrit transcription when these two letters are normally written as standard-form letters, as shown below.

|  | RA + KA | LA + KA | SA + KA |
| :---: | :---: | :---: | :---: |
| Sanskrit Syllable | $\begin{aligned} & \square \\ & \square \end{aligned}$ |  | $\frac{N}{\square}$ |
| Tibetan Syllable | $\mp$ | $91$ | N |

In standard vertical clusters used for transcribing Sanskrit each consonant letter in the stack is normally full－height or nearly full－height，with a visible gap between the letters．However，in a Tibetan vertical cluster with an RA，LA or SA head letter the RA，LA or SA is vertically－compressed and normally ligates with the base consonant below it，which is also compressed so that both letters together occupy the same vertical height as a single consonant letter by itself．Examples of such vertically－compressed ligatured forms of RA，LA and SA above KA or GA are illustrated in most samplers of the Zanabazar Square script，for example Fig． 1 below（see Figs． 4 through 8 for additional examples）．

Fig．1：L2／15－337 Fig． 1 （C）

$r k a, s k a$ ，and $l k a=$ Tibetan 开’市「䍗’

Compare the above example with the example below where Sanskrit text is written in Zanabazar Square script．Here the conjunct letters are much higher than single letters，and the sa and ta in the highlighted conjunct stam are both nearly full－height．See Figs． 9 through 11 for other examples with SA＋consonant conjuncts in Sanskrit transcription．

Fig．2：WG2 L2／15－337 Fig． 40 （C）


It has to be admitted that the available Zanabazar Square texts are not consistent，and in places show vertically－compressed and ligatured LA and SA head forms in Tibetan syllables，but elsewhere show standard－height，unligatured letterforms（for example Figs． 12 through 15）． Actually，usage of cluster－initial RA is also not well－defined，as all the examples of cluster－initial RA given in L2／15－337 show the reduced ligatured form，both in Tibetan conjuncts and in Sanskrit conjuncts（see Fig．16），and there are no examples of the full－form RA in cluster－initial position．

Anshuman Pandey's proposal for encoding Zanabazar Square script discusses three methods for vertically sizing multiple characters in a vertical cluster (see p. 23-24):

## L2/15-337 p. 23



The default method involves no size changes and uses the regular forms of letters (column 'A'). In some sources, the regular size of the initial letter is used, while non-initial letters are compressed along the vertical axis so that their x -height is halved. (see figure 4 and column ' B '). A third practice is to vertically condense the all letter glyphs so that the height of the stack matches the height of surrounding letters (see figure 23 and column ' C '). Depending on x -height such size adjustments may be practical only for stacks of two letters.

It seems to me that Method C is not a general method, but normally applies only to Tibetan head letters RA, LA and SA. In Fig. 23 that he gives as an example of this method, there is a colophon in Tibetan language written in the Zanabazar Square script, and two out of the three clusters highlighted have the vertically-compressed head-letter SA. My analysis is that these two vertically-compressed SA letters represent the special head form of the letter SA, and are not indicative of a general method compressing conjuncts. The first highlighted example is an anomaly, as it shows the syllable gling which would normally be written as ग्रेㄹ, but is unusually written with a half-sized letter LA instead of U+11A3D ZANABAZAR SQUARE CLUSTER-FINAL LETTER LA.

Fig. 3: WG2 L2/15-337 Fig. 23


"completed at the Trashi Chöjorling Monastery"

## 2. Proposed Additions

A modern computer font cannot reflect the ambiguity of glyph forms for LA and SA as head letters evidenced in Zanabazar Square texts, and a font designer needs to be able to represent clusterinitial letters consistently. I recently designed and released a Unicode Zanabazar Square font (http://www.babelstone.co.uk/Fonts/Zanabazar.html), perhaps the only fully-functional Unicode Zanabazar font to have been developed to date, and I had to deal with the thorny issue of how to draw the letters LA and SA at the top of a consonant stack. If I followed the Zanabazar Square proposal (L2/15-337) then in all cases I would use the same glyph forms of the letters LA and SA when used as base consonants, with a gap between the LA or SA and the base consonant below, so there would be no distinction between LA/SA plus consonant in a Tibetan stack or in a Sanskrit stack. However, I want to emulate the many examples that show vertically-compressed ligatured forms of LA and SA matching the cluster-initial letter RA in Tibetan stacks. But there is no way of distinguishing Tibetan usage from Sanskrit usage in all cases, so if I use the vertically-compressed ligatured forms of LA and SA at the top of a consonant stack they will be incorrect when transcribing Sanskrit. Currently the only solution is to provide two different versions of the font, one tailored for Tibetan use and one tailored for Sanskrit use, which is not an acceptable solution given that Tibetan and Sanskrit frequently occur in the same text written in Zanabazar Square script. The only reasonable solution is to encode two additional characters: ZANABAZAR SQUARE CLUSTER-INITIAL LETTER LA and ZANABAZAR SQUARE CLUSTER-INITIAL LETTER SA. This would mirror the solution for head letters RA, LA and SA in the Soyombo script. Therefore I am requesting the encoding of the following two characters at $\mathrm{U}+11 \mathrm{~A} 48$ and $\mathrm{U}+11 \mathrm{~A} 49$ (with $\mathrm{U}+11 \mathrm{~A} 3 \mathrm{~A}$ shown for comparison):

| Code Point | Character Name | Glyph | Corresponding Base Letter |  |
| :--- | :--- | :---: | :--- | :---: |
| $11 A 3 A$ | ZANABAZAR SQUARE CLUSTER- <br> INITIAL LETTER RA | $\vdots$ | U+11A2B | ■ |
| $11 A 48$ | ZANABAZAR SQUARE CLUSTER- <br> INITIAL LETTER LA | $\vdots$ | U+11A2C | ПU |
| $11 A 49$ | ZANABAZAR SQUARE CLUSTER- <br> INITIAL LETTER SA | $\ddots$ | U+11A30 | N |

## Unicode data properties:

```
11A3A;ZANABAZAR SQUARE CLUSTER-INITIAL LETTER RA;LO;0;L;;;;;N;;;;;
11A48;ZANABAZAR SQUARE CLUSTER-INITIAL LETTER LA;Lo;0;L;;;;;N;;;;;
11A49;ZANABAZAR SQUARE CLUSTER-INITIAL LETTER SA;LO;0;L;;;;;N;;;;;
```

All other properties should be the same as for $\mathrm{U}+11 \mathrm{~A} 3 \mathrm{~A}$.

## 3. Additional Examples

Fig. 4: WG2 L2/15-337 Fig. 2 (C)


Fig. 5: WG2 L2/15-337 Fig. 5 (B)

##   मां

Fig. 6: WG2 L2/15-337 Fig. 9


ag
ak
an
ad
ab

Fig. 7: WG2 L2/15-337 Fig. 10


Fig. 8: WG2 L2/15-337 Fig. 10


Fig. 9: WG2 L2/15-337 Fig. 30 (A)

disthi (Sanskrit transcription)
Fig. 10: WG2 L2/15-337 Fig. 30 (B)

$s t u$ (Sanskrit transcription)

Fig. 11: WG2 L2/15-337 Fig. 39

svūh $\bar{a}=s v a ̄ h \bar{a}($ Sanskrit transcription)

Fig．12：WG2 L2／15－337 Fig． 3 （D）

smar = Tibetan

Fig．13：WG2 L2／15－337 Fig． 3 （E）

skyol＝Tibetan त्र्रॉ＂＂to protect＂

Fig．14：WG2 L2／15－337 Fig． 40 （D）

##  <br> sgrub＝Tibetan त⿹弋ָV『＂＂to complete＂

Fig. 15: WG2 L2/15-337 Fig. 3 (E)


> skad = Tibetan 剡" "language"

Fig. 16: WG2 L2/15-337 Fig. 30 (B)


## 4. Proposal Summary Form



[^0]
## C. Technical - Justification




[^0]:    ${ }^{1}$ Form number: N4102-F (Original 1994-10-14; Revised 1995-01, 1995-04, 1996-04, 1996-08, 1999-03, 2001-05, 2001-09, 2003-11, 200501, 2005-09, 2005-10, 2007-03, 2008-05, 2009-11, 2011-03, 2012-01)

